Spaces:
Running
Running
Commit
·
d3fa801
1
Parent(s):
56c6bd4
Update player name translation, add daily and weekly leaderboards
Browse files- .gitattributes +1 -0
- app.py +7 -1
- assets/white_insignias/chunichi.png +3 -0
- assets/white_insignias/dena.png +3 -0
- assets/white_insignias/hanshin.png +3 -0
- assets/white_insignias/hiroshima.png +3 -0
- assets/white_insignias/lotte.png +3 -0
- assets/white_insignias/nipponham.png +3 -0
- assets/white_insignias/orix.png +3 -0
- assets/white_insignias/rakuten.png +3 -0
- assets/white_insignias/seibu.png +3 -0
- assets/white_insignias/softbank.png +3 -0
- assets/white_insignias/yakult.png +3 -0
- assets/white_insignias/yomiuri.png +3 -0
- daily_weekly_leaderboard.py +83 -0
- data.py +81 -32
- pitch_leaderboard.py +6 -1
- pitcher_overview.py +0 -1
- plotting.py +167 -5
- stats.py +54 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,13 +1,17 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
from data import data_df
|
4 |
from pitcher_overview import create_pitcher_overview
|
5 |
from pitch_leaderboard import create_pitch_leaderboard
|
|
|
6 |
from css import css
|
7 |
|
|
|
|
|
8 |
updated = '2025-07-21'
|
9 |
limitations = '''**General Limitations**
|
10 |
-
-
|
11 |
'''
|
12 |
|
13 |
if __name__ == '__main__':
|
@@ -16,6 +20,8 @@ if __name__ == '__main__':
|
|
16 |
create_pitcher_overview(data_df)
|
17 |
with gr.Tab('Pitch Leaderboard'):
|
18 |
create_pitch_leaderboard()
|
|
|
|
|
19 |
|
20 |
gr.Markdown(f'Last updated: {updated}')
|
21 |
gr.Markdown(limitations)
|
|
|
1 |
import gradio as gr
|
2 |
+
import matplotlib as mpl
|
3 |
|
4 |
from data import data_df
|
5 |
from pitcher_overview import create_pitcher_overview
|
6 |
from pitch_leaderboard import create_pitch_leaderboard
|
7 |
+
from daily_weekly_leaderboard import create_daily_weekly_leaderboard_app
|
8 |
from css import css
|
9 |
|
10 |
+
mpl.use('Agg')
|
11 |
+
|
12 |
updated = '2025-07-21'
|
13 |
limitations = '''**General Limitations**
|
14 |
+
- As new players make their debut, some names may not be translated/transliterated correctly.
|
15 |
'''
|
16 |
|
17 |
if __name__ == '__main__':
|
|
|
20 |
create_pitcher_overview(data_df)
|
21 |
with gr.Tab('Pitch Leaderboard'):
|
22 |
create_pitch_leaderboard()
|
23 |
+
with gr.Tab('Daily/Weekly Leaderboard'):
|
24 |
+
create_daily_weekly_leaderboard_app(data_df)
|
25 |
|
26 |
gr.Markdown(f'Last updated: {updated}')
|
27 |
gr.Markdown(limitations)
|
assets/white_insignias/chunichi.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/dena.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/hanshin.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/hiroshima.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/lotte.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/nipponham.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/orix.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/rakuten.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/seibu.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/softbank.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/yakult.png
ADDED
![]() |
Git LFS Details
|
assets/white_insignias/yomiuri.png
ADDED
![]() |
Git LFS Details
|
daily_weekly_leaderboard.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
|
4 |
+
import datetime
|
5 |
+
|
6 |
+
from plotting import create_daily_weekly_leaderboard
|
7 |
+
from data import data_df
|
8 |
+
|
9 |
+
|
10 |
+
def gr_create_daily_weekly_leaderboards(leaderboard_date, whiff_leaders, velo_leaders, data_df):
|
11 |
+
|
12 |
+
filenames = []
|
13 |
+
for time_type in ('daily', 'weekly'):
|
14 |
+
for stat, leaders in zip(('whiff', 'velo'), (whiff_leaders, velo_leaders)):
|
15 |
+
create_daily_weekly_leaderboard(stat, leaderboard_date, time_type, leaders, data_df)
|
16 |
+
filename = f'{stat}_{time_type}.png'
|
17 |
+
plt.savefig(filename, bbox_inches='tight')
|
18 |
+
filenames.append(filename)
|
19 |
+
|
20 |
+
return filenames
|
21 |
+
|
22 |
+
|
23 |
+
def go_back_day(date):
|
24 |
+
return date - datetime.timedelta(days=1)
|
25 |
+
|
26 |
+
|
27 |
+
def go_forward_day(date):
|
28 |
+
return date + datetime.timedelta(days=1)
|
29 |
+
|
30 |
+
|
31 |
+
def go_back_week(date):
|
32 |
+
return date - datetime.timedelta(days=7)
|
33 |
+
|
34 |
+
|
35 |
+
def go_forward_week(date):
|
36 |
+
return date + datetime.timedelta(days=7)
|
37 |
+
|
38 |
+
|
39 |
+
def create_daily_weekly_leaderboard_app(data_df):
|
40 |
+
with gr.Blocks() as app:
|
41 |
+
gr.Markdown('# Daily/Weekly Leaderboards')
|
42 |
+
|
43 |
+
_data_df = gr.State(data_df)
|
44 |
+
|
45 |
+
with gr.Row():
|
46 |
+
date_init = data_df['date'].max()
|
47 |
+
date_init = datetime.datetime(date_init.year, date_init.month, date_init.day)
|
48 |
+
leaderboard_date = gr.DateTime(date_init, include_time=False, type='datetime', label='Date')
|
49 |
+
|
50 |
+
whiff_leaders = gr.Number(10, precision=0, minimum=0, label='Whiff Leaders')
|
51 |
+
velo_leaders = gr.Number(10, precision=0, minimum=0, label='Velo Leaders')
|
52 |
+
search = gr.Button('Search')
|
53 |
+
|
54 |
+
with gr.Row():
|
55 |
+
prev_week = gr.Button('Previous Week')
|
56 |
+
prev_day = gr.Button('Previous Day')
|
57 |
+
next_day = gr.Button('Next Day')
|
58 |
+
next_week = gr.Button('Next Week')
|
59 |
+
|
60 |
+
leaderboards = []
|
61 |
+
for time_type in ('Daily', 'Weekly'):
|
62 |
+
with gr.Row():
|
63 |
+
gr.Markdown(f'## {time_type}')
|
64 |
+
with gr.Row():
|
65 |
+
for stat in ('Whiff', 'Velo'):
|
66 |
+
leaderboards.append(gr.Image(label=f'{time_type} {stat} Leaderboard', height=512))
|
67 |
+
|
68 |
+
|
69 |
+
search.click(gr_create_daily_weekly_leaderboards, inputs=[leaderboard_date, whiff_leaders, velo_leaders, _data_df], outputs=leaderboards)
|
70 |
+
|
71 |
+
for btn, fn in (
|
72 |
+
(prev_day, go_back_day),
|
73 |
+
(next_day, go_forward_day),
|
74 |
+
(prev_week, go_back_week),
|
75 |
+
(next_week, go_forward_week)
|
76 |
+
):
|
77 |
+
btn.click(fn, inputs=leaderboard_date, outputs=leaderboard_date)
|
78 |
+
|
79 |
+
return app
|
80 |
+
|
81 |
+
if __name__ == '__main__':
|
82 |
+
app = create_daily_weekly_leaderboard_app(data_df)
|
83 |
+
app.launch()
|
data.py
CHANGED
@@ -3,6 +3,9 @@ import os
|
|
3 |
from tqdm.auto import tqdm
|
4 |
import pykakasi
|
5 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
6 |
|
7 |
from convert import (
|
8 |
aux_global_id_to_code, presult,
|
@@ -44,44 +47,70 @@ for season in tqdm(SEASONS):
|
|
44 |
_aux_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'aux_schedule.parquet'))
|
45 |
aux_sched_df = pl.concat((aux_sched_df, _aux_sched_df))
|
46 |
|
47 |
-
players_df = pl.read_parquet(os.path.join(DATA_PATH, 'players.parquet'))
|
48 |
-
kana_df = pl.read_parquet(os.path.join(DATA_PATH, 'players_kana.parquet'))
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
kks = pykakasi.kakasi()
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
.with_columns(
|
54 |
-
pl.col('
|
55 |
-
(
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
-
.
|
62 |
)
|
|
|
|
|
63 |
)
|
64 |
-
.with_columns(pl.col('name_en').str.
|
65 |
)
|
66 |
|
67 |
-
|
68 |
-
('you', 'yo'),
|
69 |
-
('kou', 'ko'),
|
70 |
-
('gou', 'go'),
|
71 |
-
('shou', 'sho'),
|
72 |
-
('jou', 'jo'),
|
73 |
-
('rou', 'ro'),
|
74 |
-
('ou', 'oh'),
|
75 |
-
('shuu', 'shu'),
|
76 |
-
('ryuu', 'ryu'),
|
77 |
-
('yuu', 'yu'),
|
78 |
-
('oo', 'o') # messes with someone whose name ends in koo
|
79 |
-
]:
|
80 |
-
kana_df = kana_df.with_columns(pl.col('name_en').str.replace(old_part, new_part))
|
81 |
-
|
82 |
-
kana_df = kana_df.with_columns(pl.col('name_en').str.to_titlecase())
|
83 |
-
|
84 |
-
players_df = players_df.with_columns(pl.col('playerName').str.normalize('NFKC'))
|
85 |
for old_char, new_char in [
|
86 |
('崎', '﨑'),
|
87 |
('高', '髙'),
|
@@ -91,13 +120,33 @@ for old_char, new_char in [
|
|
91 |
]:
|
92 |
players_df = (
|
93 |
players_df.with_columns(
|
94 |
-
pl.when(~pl.col('playerName').is_in(
|
95 |
.then(pl.col('playerName').str.replace(old_char, new_char))
|
96 |
.otherwise('playerName')
|
97 |
)
|
98 |
)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
aux_df = (
|
103 |
aux_df
|
|
|
3 |
from tqdm.auto import tqdm
|
4 |
import pykakasi
|
5 |
from huggingface_hub import snapshot_download
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from string import ascii_letters
|
9 |
|
10 |
from convert import (
|
11 |
aux_global_id_to_code, presult,
|
|
|
47 |
_aux_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'aux_schedule.parquet'))
|
48 |
aux_sched_df = pl.concat((aux_sched_df, _aux_sched_df))
|
49 |
|
|
|
|
|
50 |
|
51 |
+
def select_name(names):
|
52 |
+
'''
|
53 |
+
When given mutiple names,
|
54 |
+
prioritizes the name with ASCII characters (ex. R. マルティネス > マルティネス),
|
55 |
+
followed by the shorter name (ex. 大勢 > 翁田 大勢)
|
56 |
+
Names with ASCII characters help differentiate between foreign players,
|
57 |
+
whlie shorter names are more accurate for players going by shorter names
|
58 |
+
'''
|
59 |
+
lens = []
|
60 |
+
for name in names:
|
61 |
+
if any([char in ascii_letters for char in name]):
|
62 |
+
return name
|
63 |
+
else:
|
64 |
+
lens.append(len(name))
|
65 |
+
return names[np.argmin(lens).item()]
|
66 |
+
|
67 |
+
# load player dfs
|
68 |
+
players_df = (
|
69 |
+
pl.read_parquet('files/players.parquet')
|
70 |
+
.with_columns(pl.col('playerName').str.normalize('NFKC').str.replace_all('・', ' '))
|
71 |
+
.group_by('playerId').agg(pl.col('playerName').map_elements(select_name, return_dtype=pl.String))
|
72 |
+
)
|
73 |
+
translated_df = (
|
74 |
+
pl.read_parquet('files/players_translated.parquet')
|
75 |
+
.with_columns(pl.col('name_jp').str.normalize('NFKC').str.replace_all('・', ' '))
|
76 |
+
)
|
77 |
+
manual_translated_df = pl.read_parquet('files/players_translated_manual.parquet')
|
78 |
+
|
79 |
+
# names with no romanization are approximated with kana translation
|
80 |
kks = pykakasi.kakasi()
|
81 |
+
|
82 |
+
# take names in parenthesis when they contain an ascii character
|
83 |
+
translated_df = (
|
84 |
+
translated_df
|
85 |
.with_columns(
|
86 |
+
pl.when(pl.col('name_jp').str.contains(r'\('))
|
87 |
+
.then(pl.col('name_jp').str.extract(r'.*\(', 0).str.strip_chars_end(' ('))
|
88 |
+
.otherwise(pl.col('name_jp'))
|
89 |
+
.str.replace_all('・', ' ')
|
90 |
+
.alias('name_jp')
|
91 |
+
)
|
92 |
+
.with_columns(pl.col('name_kana').str.normalize('NFKC').str.replace_all('・', ' '))
|
93 |
+
.with_columns(pl.col('name_kana').str.extract(r'\(.*\)', 0).str.strip_chars('()').alias('in_parentheses'))
|
94 |
+
.with_columns(pl.col('name_kana').str.extract(r'.*\(', 0).str.strip_chars_end('(').alias('before_parentheses'))
|
95 |
+
.with_columns(
|
96 |
+
pl.when(pl.col('name_en').is_null())
|
97 |
+
.then
|
98 |
+
(
|
99 |
+
pl.when(pl.col('in_parentheses').is_not_null() | pl.col('before_parentheses').is_not_null())
|
100 |
+
.then(
|
101 |
+
pl.when(pl.col('in_parentheses').map_elements(lambda name: any([char in ascii_letters for char in name]), pl.Boolean))
|
102 |
+
.then(pl.col('in_parentheses'))
|
103 |
+
.otherwise(pl.col('before_parentheses'))
|
104 |
)
|
105 |
+
.otherwise(pl.col('name_kana').map_elements(lambda name: ''.join([word['hepburn'].capitalize() for word in kks.convert(name)]), return_dtype=pl.String))
|
106 |
)
|
107 |
+
.otherwise(pl.col('name_en'))
|
108 |
+
.alias('name_en')
|
109 |
)
|
110 |
+
.with_columns(pl.col('name_en').str.replace_all(',', '').str.to_titlecase())
|
111 |
)
|
112 |
|
113 |
+
# handle inconsistent kanji between sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
for old_char, new_char in [
|
115 |
('崎', '﨑'),
|
116 |
('高', '髙'),
|
|
|
120 |
]:
|
121 |
players_df = (
|
122 |
players_df.with_columns(
|
123 |
+
pl.when(~pl.col('playerName').is_in(translated_df['name_jp']))
|
124 |
.then(pl.col('playerName').str.replace(old_char, new_char))
|
125 |
.otherwise('playerName')
|
126 |
)
|
127 |
)
|
128 |
|
129 |
+
# merge player dfs
|
130 |
+
players_df = (
|
131 |
+
players_df
|
132 |
+
.join(manual_translated_df.rename({'name_en': 'name_en_manual'}), on='playerId', how='left')
|
133 |
+
.join(
|
134 |
+
(
|
135 |
+
translated_df
|
136 |
+
.with_columns(
|
137 |
+
pl.when(pl.col('name_jp').str.contains(r'\.') & ~pl.col('name_jp').is_in(players_df.filter(pl.len().over('playerName') == 1)['playerName']))
|
138 |
+
.then(pl.col('name_jp').str.strip_chars(ascii_letters+'.'))
|
139 |
+
.otherwise('name_jp')
|
140 |
+
)
|
141 |
+
[['name_jp', 'name_en']]
|
142 |
+
),
|
143 |
+
left_on='playerName', right_on='name_jp', how='left'
|
144 |
+
)
|
145 |
+
.with_columns(pl.coalesce('name_en_manual', 'name_en').alias('name_en'))
|
146 |
+
.unique() # remove duplicates from names with multiple matches in other dataframes
|
147 |
+
.drop('name_en_manual', 'name_jp')
|
148 |
+
# .filter(pl.col('name_en').is_null())
|
149 |
+
)
|
150 |
|
151 |
aux_df = (
|
152 |
aux_df
|
pitch_leaderboard.py
CHANGED
@@ -139,7 +139,7 @@ def create_pitch_leaderboard():
|
|
139 |
all_teams = gr.Button('Select/Deselect all teams')
|
140 |
|
141 |
search = gr.Button('Search')
|
142 |
-
|
143 |
leaderboard = gr.DataFrame(
|
144 |
pl.DataFrame({'Pitcher': [], 'Pitch': []}),
|
145 |
column_widths=[125, 75, 125, 125] + [max(50, 10*len(stat)) for stat in STATS],
|
@@ -159,6 +159,11 @@ def create_pitch_leaderboard():
|
|
159 |
# inputs=pin_columns,
|
160 |
# outputs=leaderboard
|
161 |
# )
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
return app
|
164 |
|
|
|
139 |
all_teams = gr.Button('Select/Deselect all teams')
|
140 |
|
141 |
search = gr.Button('Search')
|
142 |
+
pin_columns = gr.Button('Pin columns')
|
143 |
leaderboard = gr.DataFrame(
|
144 |
pl.DataFrame({'Pitcher': [], 'Pitch': []}),
|
145 |
column_widths=[125, 75, 125, 125] + [max(50, 10*len(stat)) for stat in STATS],
|
|
|
159 |
# inputs=pin_columns,
|
160 |
# outputs=leaderboard
|
161 |
# )
|
162 |
+
pin_columns.click(
|
163 |
+
lambda : gr.update(pinned_columns=None),
|
164 |
+
# inputs=pin_columns,
|
165 |
+
outputs=leaderboard
|
166 |
+
)
|
167 |
|
168 |
return app
|
169 |
|
pitcher_overview.py
CHANGED
@@ -10,7 +10,6 @@ notes = '''**Limitations**
|
|
10 |
- Only supports regular season data
|
11 |
|
12 |
**To-do**
|
13 |
-
- Fix names of foreign players
|
14 |
- Add teams insignias
|
15 |
- Measure percentiles per pitcher handedness
|
16 |
- Allow for arbitrary date ranges
|
|
|
10 |
- Only supports regular season data
|
11 |
|
12 |
**To-do**
|
|
|
13 |
- Add teams insignias
|
14 |
- Measure percentiles per pitcher handedness
|
15 |
- Allow for arbitrary date ranges
|
plotting.py
CHANGED
@@ -6,15 +6,15 @@ import polars as pl
|
|
6 |
from pyfonts import load_google_font
|
7 |
from scipy.stats import gaussian_kde
|
8 |
import numpy as np
|
|
|
9 |
|
10 |
from types import SimpleNamespace
|
|
|
11 |
from datetime import date
|
|
|
12 |
|
13 |
-
from convert import ball_kind_code_to_color, get_text_color_from_color
|
14 |
-
from stats import get_pitcher_stats
|
15 |
-
|
16 |
-
|
17 |
-
mpl.use('Agg')
|
18 |
|
19 |
|
20 |
def get_card_data(id, **kwargs):
|
@@ -243,3 +243,165 @@ def create_pitcher_overview_card(id, season, dpi=300):
|
|
243 |
return fig
|
244 |
# fig = create_card('1600153', season=2023, dpi=300)
|
245 |
# plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from pyfonts import load_google_font
|
7 |
from scipy.stats import gaussian_kde
|
8 |
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
|
11 |
from types import SimpleNamespace
|
12 |
+
import datetime
|
13 |
from datetime import date
|
14 |
+
import os
|
15 |
|
16 |
+
from convert import ball_kind_code_to_color, get_text_color_from_color, team_names_short_to_color, get_text_color_from_team
|
17 |
+
from stats import get_pitcher_stats, filter_data_by_date_and_game_kind
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def get_card_data(id, **kwargs):
|
|
|
243 |
return fig
|
244 |
# fig = create_card('1600153', season=2023, dpi=300)
|
245 |
# plt.show()
|
246 |
+
|
247 |
+
# DAILY/WEEKLY LEADERBOARDS
|
248 |
+
|
249 |
+
def get_whiff_leaderboard_data(data, leaders, include_date):
|
250 |
+
data = (
|
251 |
+
data
|
252 |
+
.group_by('pitId', 'pitcher_team_name_short', 'date')
|
253 |
+
.agg(
|
254 |
+
pl.col('pitcher_name').first(),
|
255 |
+
pl.col('whiff').sum().alias('Whiffs')
|
256 |
+
)
|
257 |
+
.sort(['Whiffs', 'pitcher_name'], descending=[True, False])
|
258 |
+
)
|
259 |
+
# if len(data) > 0:
|
260 |
+
# data = data.filter(pl.col('Whiffs') >= data['Whiffs'][min(leaders, len(data)-1)])
|
261 |
+
data = (
|
262 |
+
data
|
263 |
+
.rename({'pitcher_name': 'Player', 'pitcher_team_name_short': 'Team'})
|
264 |
+
.with_columns(
|
265 |
+
pl.col('date').dt.to_string('%m.%d').alias('Date'),
|
266 |
+
pl.col('Whiffs').rank(descending=True, method='min').alias('Rank')
|
267 |
+
)
|
268 |
+
[['Rank', 'Team', 'Player'] + (['Date'] if include_date else []) + ['Whiffs']]
|
269 |
+
# .with_row_index('Rank', 1)
|
270 |
+
)
|
271 |
+
# data = data.filter(pl.col('Rank') <= leaders)
|
272 |
+
data = data.filter(pl.col('Rank') <= data.group_by('Rank').agg(pl.len()).sort('Rank').filter(pl.col('len').cum_sum()>=leaders)['Rank'].min())
|
273 |
+
return data
|
274 |
+
|
275 |
+
|
276 |
+
def get_velo_leaderboard_data(data, leaders):
|
277 |
+
data = data.sort(['ballSpeed', 'pitcher_name'], descending=[True, False])
|
278 |
+
# if len(data) > 0:
|
279 |
+
# data = data.filter(pl.col('ballSpeed') >= data['ballSpeed'][min(leaders, len(data)-1)])
|
280 |
+
data = (
|
281 |
+
data
|
282 |
+
.rename({'ballSpeed': 'KPH', 'pitcher_name': 'Player', 'pitcher_team_name_short': 'Team'})
|
283 |
+
# .with_row_index('Rank', 1)
|
284 |
+
.with_columns(
|
285 |
+
(pl.col('KPH') / 1.609).round(1).alias('MPH'),
|
286 |
+
pl.col('KPH').rank(descending=True, method='min').alias('Rank')
|
287 |
+
)
|
288 |
+
[['Rank', 'Team', 'Player', 'KPH', 'MPH']]
|
289 |
+
|
290 |
+
)
|
291 |
+
# data = data.filter(pl.col('Rank') <= leaders)
|
292 |
+
data = data.filter(pl.col('Rank') <= data.group_by('Rank').agg(pl.len()).sort('Rank').filter(pl.col('len').cum_sum()>=leaders)['Rank'].min())
|
293 |
+
return data
|
294 |
+
|
295 |
+
|
296 |
+
def create_daily_weekly_leaderboard(stat, leaderboard_date, time_type, leaders, data):
|
297 |
+
|
298 |
+
font = load_google_font('Saira Extra Condensed', weight='medium')
|
299 |
+
bold_font = load_google_font('Saira Extra Condensed', weight='bold')
|
300 |
+
date_font = load_google_font('Lekton', weight='bold')
|
301 |
+
|
302 |
+
assert stat in ('velo', 'whiff')
|
303 |
+
assert time_type in ('daily', 'weekly')
|
304 |
+
|
305 |
+
if time_type == 'daily':
|
306 |
+
data = filter_data_by_date_and_game_kind(data, start_date=leaderboard_date, end_date=leaderboard_date)
|
307 |
+
else:
|
308 |
+
monday = leaderboard_date - datetime.timedelta(days=leaderboard_date.weekday())
|
309 |
+
sunday = leaderboard_date + datetime.timedelta(days=6-leaderboard_date.weekday())
|
310 |
+
data = filter_data_by_date_and_game_kind(data, start_date=monday, end_date=sunday)
|
311 |
+
|
312 |
+
leaderboard = get_velo_leaderboard_data(data, leaders) if stat == 'velo' else get_whiff_leaderboard_data(data, leaders, include_date=time_type=='weekly')
|
313 |
+
stats = [col for col in leaderboard.columns if col not in ['Rank', 'Team', 'Player']]
|
314 |
+
stat_col_lens = [1 if max(leaderboard[stat].cast(pl.String).str.len_chars().max() or 0, len(stat)) < 5 else 1.5 for stat in stats]
|
315 |
+
|
316 |
+
dpi = 300
|
317 |
+
|
318 |
+
fig = plt.figure(figsize=(1080/300, 1350/300), dpi=dpi)
|
319 |
+
gs = fig.add_gridspec(
|
320 |
+
max(len(leaderboard), 1)+2,
|
321 |
+
3+len(stats),
|
322 |
+
height_ratios=[1] + ([9/(len(leaderboard)+1)] * (len(leaderboard)+1) if len(leaderboard) else [1, 8]),
|
323 |
+
width_ratios=[1, 1, 8-sum(stat_col_lens)] + stat_col_lens
|
324 |
+
)
|
325 |
+
|
326 |
+
data_offset = 2
|
327 |
+
|
328 |
+
axs = []
|
329 |
+
def create_and_add_subplot(indexed_gs):
|
330 |
+
ax = fig.add_subplot(indexed_gs)
|
331 |
+
axs.append(ax)
|
332 |
+
return ax
|
333 |
+
|
334 |
+
title_ax = create_and_add_subplot(gs[0, :])
|
335 |
+
title_ax.text(0, 0.1, f'{time_type.upper()} {stat.upper()} LEADERBOARD', verticalalignment='baseline', font=bold_font, size=15)
|
336 |
+
|
337 |
+
if time_type == 'daily':
|
338 |
+
title_ax.text(1, 0.1, leaderboard_date.strftime('%Y.%m.%d (%a)'), verticalalignment='baseline', horizontalalignment='right', font=date_font, size=7)
|
339 |
+
else:
|
340 |
+
|
341 |
+
title_ax.text(1, 0.1, monday.strftime('%Y.%m.%d (%a)')+'\n-'+sunday.strftime('%Y.%m.%d (%a)'), verticalalignment='baseline', horizontalalignment='right', font=date_font, size=7)
|
342 |
+
|
343 |
+
rank_ax = create_and_add_subplot(gs[data_offset-1, 0])
|
344 |
+
rank_ax.text(0.5, 0, 'RANK', verticalalignment='bottom', horizontalalignment='center', font=bold_font)
|
345 |
+
|
346 |
+
team_ax = create_and_add_subplot(gs[data_offset-1, 1])
|
347 |
+
team_ax.text(0.5, 0, 'TEAM', verticalalignment='bottom', horizontalalignment='center', font=bold_font)
|
348 |
+
|
349 |
+
player_ax = create_and_add_subplot(gs[data_offset-1, 2])
|
350 |
+
player_ax.text(0, 0, 'PLAYER', verticalalignment='bottom', font=bold_font)
|
351 |
+
|
352 |
+
for col, stat in enumerate(stats, start=3):
|
353 |
+
stat_ax = create_and_add_subplot(gs[data_offset-1, col])
|
354 |
+
stat_ax.text(0.5, 0, stat.upper(), verticalalignment='bottom', horizontalalignment='center', font=bold_font)
|
355 |
+
|
356 |
+
midline_ax = create_and_add_subplot(gs[data_offset-1, :])
|
357 |
+
midline_ax.add_patch(plt.Rectangle((0, 0), 1, 0.01, color='black'))
|
358 |
+
|
359 |
+
if len(leaderboard) == 0:
|
360 |
+
blank_ax = create_and_add_subplot(gs[data_offset:])
|
361 |
+
|
362 |
+
for i, row in enumerate(leaderboard.iter_rows()):
|
363 |
+
rank, team, player, *stats = row
|
364 |
+
rank_ax = create_and_add_subplot(gs[i+data_offset, 0])
|
365 |
+
rank_ax.text(0.5, 0.5, rank, verticalalignment='center_baseline', horizontalalignment='center', font=font)
|
366 |
+
|
367 |
+
team_ax = create_and_add_subplot(gs[i+data_offset, 1])
|
368 |
+
image = Image.open(os.path.join('assets', 'white_insignias', f'{team.lower()}.png'))
|
369 |
+
|
370 |
+
w, h = image.size
|
371 |
+
new_longer_side = 512
|
372 |
+
if w > h:
|
373 |
+
w, h = (new_longer_side, round(h*new_longer_side/w))
|
374 |
+
else:
|
375 |
+
w, h = (round(w*new_longer_side/h), new_longer_side)
|
376 |
+
image = image.resize((w, h))
|
377 |
+
ax_s = 512*1.5
|
378 |
+
team_ax.set_xlim(0, ax_s)
|
379 |
+
team_ax.set_ylim(0, ax_s)
|
380 |
+
image = np.array(image)
|
381 |
+
circle = plt.Circle((ax_s/2, ax_s/2), radius=ax_s/2, color=team_names_short_to_color[team], clip_on=False, zorder=1)
|
382 |
+
team_ax.add_patch(circle)
|
383 |
+
team_ax.imshow(
|
384 |
+
image[..., -1],
|
385 |
+
cmap=LinearSegmentedColormap.from_list('tmp', [team_names_short_to_color[team], 'black' if team in ('Lotte', 'Hanshin') else 'white']),
|
386 |
+
extent=((ax_s-w)/2, ax_s-(ax_s-w)/2, (ax_s-h)/2, ax_s-(ax_s-h)/2),
|
387 |
+
zorder=2
|
388 |
+
)
|
389 |
+
|
390 |
+
player_ax = create_and_add_subplot(gs[i+data_offset, 2])
|
391 |
+
player_ax.text(0.02, 0.5, player.upper(), verticalalignment='center_baseline', font=font, color=get_text_color_from_team(team))
|
392 |
+
player_ax.add_patch(plt.Polygon([(0, 0), (0.98, 0), (1, 0.5), (1, 1), (0, 1)], color=team_names_short_to_color[team], clip_on=False))
|
393 |
+
|
394 |
+
for col, stat in enumerate(stats, start=3):
|
395 |
+
stat_ax = create_and_add_subplot(gs[i+data_offset, col])
|
396 |
+
stat_ax.text(0.5, 0.5, stat, verticalalignment='center_baseline', horizontalalignment='center', font=font)
|
397 |
+
|
398 |
+
for ax in axs:
|
399 |
+
ax.axis('off')
|
400 |
+
ax.tick_params(
|
401 |
+
axis='both',
|
402 |
+
which='both',
|
403 |
+
length=0,
|
404 |
+
labelbottom=False,
|
405 |
+
labelleft=False
|
406 |
+
)
|
407 |
+
return fig
|
stats.py
CHANGED
@@ -35,10 +35,18 @@ def compute_team_games(data):
|
|
35 |
.rename({'VisitorTeamNameES': 'team'})
|
36 |
),
|
37 |
on='team',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
-
.with_columns((pl.col('home_games')+pl.col('visitor_games')).alias('games'))
|
40 |
)
|
41 |
|
|
|
42 |
return (
|
43 |
data
|
44 |
.drop('home_games', 'visitor_games')
|
@@ -110,6 +118,51 @@ def compute_pitch_stats(data, player_type, pitch_class_type, min_pitches=1):
|
|
110 |
return pitch_stats
|
111 |
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
def get_pitcher_stats(id, lr=None, game_kind=None, start_date=None, end_date=None, min_ip=1, min_pitches=1, pitch_class_type='specific'):
|
114 |
source_data = data_df.filter(pl.col('ballKind_code') != '-')
|
115 |
|
|
|
35 |
.rename({'VisitorTeamNameES': 'team'})
|
36 |
),
|
37 |
on='team',
|
38 |
+
how='full'
|
39 |
+
)
|
40 |
+
.fill_null(0)
|
41 |
+
.with_columns(
|
42 |
+
(pl.col('home_games')+pl.col('visitor_games')).alias('games'),
|
43 |
+
pl.when(pl.col('team').is_null())
|
44 |
+
.then(pl.col('team_right'))
|
45 |
+
.otherwise(pl.col('team')).alias('team')
|
46 |
)
|
|
|
47 |
)
|
48 |
|
49 |
+
|
50 |
return (
|
51 |
data
|
52 |
.drop('home_games', 'visitor_games')
|
|
|
118 |
return pitch_stats
|
119 |
|
120 |
|
121 |
+
def compute_pitcher_stats(data, min_ip='qualified'):
|
122 |
+
data = data.filter(pl.col('ballKind') != '-')
|
123 |
+
data = (
|
124 |
+
compute_team_games(data)
|
125 |
+
.with_columns(
|
126 |
+
pl.when(pl.col('half_inning').str.ends_with('1')).then('home_games').otherwise('visitor_games').first().over('pitId').alias('games'),
|
127 |
+
pl.col('inning_code').unique().len().over('pitId').alias('IP') # inaccurate
|
128 |
+
)
|
129 |
+
)
|
130 |
+
|
131 |
+
if min_ip == 'qualified':
|
132 |
+
data = data.with_columns((pl.col('IP') >= pl.col('games')).alias('qualified'))
|
133 |
+
else:
|
134 |
+
data = data.with_columns((pl.col('IP') >= min_ip).alias('qualified'))
|
135 |
+
|
136 |
+
pitcher_stats = (
|
137 |
+
data
|
138 |
+
.group_by('pitId', 'pitcher_team_name_short')
|
139 |
+
.agg(
|
140 |
+
pl.col('pitcher_name').first(),
|
141 |
+
(pl.when(pl.col('presult').str.contains('strikeout')).then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('K%'),
|
142 |
+
(pl.when(pl.col('presult') == 'Walk').then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('BB%'),
|
143 |
+
(pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
|
144 |
+
pl.col('whiff').sum().alias('Whiffs'),
|
145 |
+
pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
|
146 |
+
pl.first('qualified')
|
147 |
+
)
|
148 |
+
.explode('batType')
|
149 |
+
.unnest('batType')
|
150 |
+
.pivot(on='batType', values='proportion')
|
151 |
+
.fill_null(0)
|
152 |
+
.with_columns(
|
153 |
+
(pl.col('G') + pl.col('B')).alias('GB%'),
|
154 |
+
(pl.col('F') + pl.col('P')).alias('FB%'),
|
155 |
+
pl.col('L').alias('LD%'),
|
156 |
+
)
|
157 |
+
.drop('G', 'F', 'B', 'P', 'L', 'null')
|
158 |
+
.with_columns(
|
159 |
+
(pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=(stat == 'BB%'))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
|
160 |
+
for stat in ['CSW%', 'K%', 'BB%', 'GB%']
|
161 |
+
)
|
162 |
+
)
|
163 |
+
return pitcher_stats
|
164 |
+
|
165 |
+
|
166 |
def get_pitcher_stats(id, lr=None, game_kind=None, start_date=None, end_date=None, min_ip=1, min_pitches=1, pitch_class_type='specific'):
|
167 |
source_data = data_df.filter(pl.col('ballKind_code') != '-')
|
168 |
|