Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -15,15 +15,14 @@ from typing import List
|
|
15 |
|
16 |
from PyPDF2 import PdfReader
|
17 |
|
18 |
-
|
19 |
# Define model name clearly
|
20 |
-
MODEL_NAME = "unsloth/gemma-3-1b-pt"
|
21 |
|
22 |
# Device setup
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
print(f"Using device: {device}")
|
25 |
|
26 |
-
# Load model and tokenizer
|
27 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
28 |
model = AutoModelForCausalLM.from_pretrained(
|
29 |
MODEL_NAME,
|
@@ -32,7 +31,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
32 |
|
33 |
# Constants
|
34 |
MAX_FILE_SIZE_MB = 20
|
35 |
-
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024
|
36 |
|
37 |
class PodcastGenerator:
|
38 |
def __init__(self):
|
@@ -40,63 +39,19 @@ class PodcastGenerator:
|
|
40 |
|
41 |
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None):
|
42 |
example = """
|
43 |
-
{
|
44 |
-
"topic": "AGI",
|
45 |
-
"podcast": [
|
46 |
-
{
|
47 |
-
"speaker": 2,
|
48 |
-
"line": "So, AGI, huh? Seems like everyone's talking about it these days."
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"speaker": 1,
|
52 |
-
"line": "Yeah, it's definitely having a moment, isn't it?"
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"speaker": 2,
|
56 |
-
"line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"speaker": 1,
|
60 |
-
"line": "It's easy to get lost in the noise, for sure."
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"speaker": 2,
|
64 |
-
"line": "Exactly. So how about we try to cut through some of that, shall we?"
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"speaker": 1,
|
68 |
-
"line": "Sounds like a plan."
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"speaker": 2,
|
72 |
-
"line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"speaker": 1,
|
76 |
-
"line": "Peace."
|
77 |
-
}
|
78 |
-
]
|
79 |
-
}
|
80 |
"""
|
81 |
-
|
82 |
if language == "Auto Detect":
|
83 |
language_instruction = "- The podcast MUST be in the same language as the user input."
|
84 |
else:
|
85 |
language_instruction = f"- The podcast MUST be in {language} language"
|
86 |
|
87 |
system_prompt = f"""
|
88 |
-
You are a professional podcast generator
|
89 |
{language_instruction}
|
90 |
-
- The podcast should have 2 speakers.
|
91 |
-
- The podcast should be long.
|
92 |
-
- Do not use names for the speakers.
|
93 |
-
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
|
94 |
-
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
|
95 |
-
- The script must be in JSON format.
|
96 |
Follow this example structure:
|
97 |
{example}
|
98 |
"""
|
99 |
-
# Build the user prompt
|
100 |
if prompt and file_obj:
|
101 |
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
|
102 |
elif prompt:
|
@@ -104,344 +59,68 @@ Follow this example structure:
|
|
104 |
else:
|
105 |
user_prompt = "Please generate a podcast script based on the uploaded file."
|
106 |
|
107 |
-
# If a file is provided, extract its text and append
|
108 |
if file_obj:
|
109 |
-
# enforce size limit
|
110 |
file_size = getattr(file_obj, 'size', os.path.getsize(file_obj.name))
|
111 |
if file_size > MAX_FILE_SIZE_BYTES:
|
112 |
-
raise Exception(
|
113 |
-
|
114 |
-
# extract text based on mime
|
115 |
ext = os.path.splitext(file_obj.name)[1].lower()
|
116 |
if ext == '.pdf':
|
117 |
reader = PdfReader(file_obj)
|
118 |
text = "\n\n".join(page.extract_text() or '' for page in reader.pages)
|
119 |
else:
|
120 |
-
|
121 |
-
if hasattr(file_obj, 'read'):
|
122 |
-
raw = file_obj.read()
|
123 |
-
else:
|
124 |
-
raw = await aiofiles.open(file_obj.name, 'rb').read()
|
125 |
text = raw.decode(errors='ignore')
|
126 |
-
|
127 |
user_prompt += f"\n\n―― FILE CONTENT ――\n{text}"
|
128 |
|
129 |
-
# Combine system and user prompts
|
130 |
prompt_text = system_prompt + "\n" + user_prompt
|
131 |
|
132 |
try:
|
133 |
-
if progress:
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
**inputs,
|
140 |
-
max_new_tokens=1024,
|
141 |
-
do_sample=True,
|
142 |
-
temperature=1.0
|
143 |
-
)
|
144 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
145 |
-
|
146 |
-
generated_text = await asyncio.wait_for(
|
147 |
-
asyncio.to_thread(hf_generate, prompt_text),
|
148 |
-
timeout=60
|
149 |
-
)
|
150 |
-
|
151 |
except asyncio.TimeoutError:
|
152 |
-
raise Exception("
|
153 |
except Exception as e:
|
154 |
-
raise Exception(f"Failed to generate
|
155 |
-
|
156 |
-
if progress:
|
157 |
-
progress(0.4, "Script generated successfully!")
|
158 |
-
|
159 |
return json.loads(generated_text)
|
160 |
|
161 |
-
# ...
|
162 |
-
|
163 |
-
|
164 |
-
# ... rest of class unchanged ...
|
165 |
|
166 |
-
|
167 |
-
#
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
async def _read_file_bytes(self, file_obj) -> bytes:
|
172 |
-
"""Read file bytes from a file object"""
|
173 |
-
# Check file size before reading
|
174 |
-
if hasattr(file_obj, 'size'):
|
175 |
-
file_size = file_obj.size
|
176 |
-
else:
|
177 |
-
file_size = os.path.getsize(file_obj.name)
|
178 |
-
|
179 |
-
if file_size > MAX_FILE_SIZE_BYTES:
|
180 |
-
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
|
181 |
-
|
182 |
-
if hasattr(file_obj, 'read'):
|
183 |
-
return file_obj.read()
|
184 |
-
else:
|
185 |
-
async with aiofiles.open(file_obj.name, 'rb') as f:
|
186 |
-
return await f.read()
|
187 |
-
|
188 |
-
def _get_mime_type(self, filename: str) -> str:
|
189 |
-
"""Determine MIME type based on file extension"""
|
190 |
-
ext = os.path.splitext(filename)[1].lower()
|
191 |
-
if ext == '.pdf':
|
192 |
-
return "application/pdf"
|
193 |
-
elif ext == '.txt':
|
194 |
-
return "text/plain"
|
195 |
-
else:
|
196 |
-
# Fallback to the default mime type detector
|
197 |
-
mime_type, _ = mimetypes.guess_type(filename)
|
198 |
-
return mime_type or "application/octet-stream"
|
199 |
-
|
200 |
-
async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
|
201 |
-
voice = speaker1 if speaker == 1 else speaker2
|
202 |
-
speech = edge_tts.Communicate(text, voice)
|
203 |
-
|
204 |
-
temp_filename = f"temp_{uuid.uuid4()}.wav"
|
205 |
-
try:
|
206 |
-
# Add timeout to TTS generation
|
207 |
-
await asyncio.wait_for(speech.save(temp_filename), timeout=30) # 30 seconds timeout
|
208 |
-
return temp_filename
|
209 |
-
except asyncio.TimeoutError:
|
210 |
-
if os.path.exists(temp_filename):
|
211 |
-
os.remove(temp_filename)
|
212 |
-
raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
|
213 |
-
except Exception as e:
|
214 |
-
if os.path.exists(temp_filename):
|
215 |
-
os.remove(temp_filename)
|
216 |
-
raise e
|
217 |
-
|
218 |
-
async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
|
219 |
-
if progress:
|
220 |
-
progress(0.9, "Combining audio files...")
|
221 |
-
|
222 |
-
combined_audio = AudioSegment.empty()
|
223 |
-
for audio_file in audio_files:
|
224 |
-
combined_audio += AudioSegment.from_file(audio_file)
|
225 |
-
os.remove(audio_file) # Clean up temporary files
|
226 |
-
|
227 |
-
output_filename = f"output_{uuid.uuid4()}.wav"
|
228 |
-
combined_audio.export(output_filename, format="wav")
|
229 |
-
|
230 |
-
if progress:
|
231 |
-
progress(1.0, "Podcast generated successfully!")
|
232 |
-
|
233 |
-
return output_filename
|
234 |
-
|
235 |
-
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
236 |
-
try:
|
237 |
-
if progress:
|
238 |
-
progress(0.1, "Starting podcast generation...")
|
239 |
-
|
240 |
-
# Set overall timeout for the entire process
|
241 |
-
return await asyncio.wait_for(
|
242 |
-
self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
|
243 |
-
timeout=600 # 10 minutes total timeout
|
244 |
-
)
|
245 |
-
except asyncio.TimeoutError:
|
246 |
-
raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
|
247 |
-
except Exception as e:
|
248 |
-
raise Exception(f"Error generating podcast: {str(e)}")
|
249 |
-
|
250 |
-
async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
251 |
-
if progress:
|
252 |
-
progress(0.2, "Generating podcast script...")
|
253 |
-
|
254 |
-
podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
|
255 |
-
|
256 |
-
if progress:
|
257 |
-
progress(0.5, "Converting text to speech...")
|
258 |
-
|
259 |
-
# Process TTS in batches for concurrent processing
|
260 |
-
audio_files = []
|
261 |
-
total_lines = len(podcast_json['podcast'])
|
262 |
-
|
263 |
-
# Define batch size to control concurrency
|
264 |
-
batch_size = 10 # Adjust based on system resources
|
265 |
-
|
266 |
-
# Process in batches
|
267 |
-
for batch_start in range(0, total_lines, batch_size):
|
268 |
-
batch_end = min(batch_start + batch_size, total_lines)
|
269 |
-
batch = podcast_json['podcast'][batch_start:batch_end]
|
270 |
-
|
271 |
-
# Create tasks for concurrent processing
|
272 |
-
tts_tasks = []
|
273 |
-
for item in batch:
|
274 |
-
tts_task = self.tts_generate(item['line'], item['speaker'], speaker1, speaker2)
|
275 |
-
tts_tasks.append(tts_task)
|
276 |
-
|
277 |
-
try:
|
278 |
-
# Process batch concurrently
|
279 |
-
batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
|
280 |
-
|
281 |
-
# Check for exceptions and handle results
|
282 |
-
for i, result in enumerate(batch_results):
|
283 |
-
if isinstance(result, Exception):
|
284 |
-
# Clean up any files already created
|
285 |
-
for file in audio_files:
|
286 |
-
if os.path.exists(file):
|
287 |
-
os.remove(file)
|
288 |
-
raise Exception(f"Error generating speech: {str(result)}")
|
289 |
-
else:
|
290 |
-
audio_files.append(result)
|
291 |
-
|
292 |
-
# Update progress
|
293 |
-
if progress:
|
294 |
-
current_progress = 0.5 + (0.4 * (batch_end / total_lines))
|
295 |
-
progress(current_progress, f"Processed {batch_end}/{total_lines} speech segments...")
|
296 |
-
|
297 |
-
except Exception as e:
|
298 |
-
# Clean up any files already created
|
299 |
-
for file in audio_files:
|
300 |
-
if os.path.exists(file):
|
301 |
-
os.remove(file)
|
302 |
-
raise Exception(f"Error in batch TTS generation: {str(e)}")
|
303 |
-
|
304 |
-
combined_audio = await self.combine_audio_files(audio_files, progress)
|
305 |
-
return combined_audio
|
306 |
-
|
307 |
-
async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
|
308 |
-
start_time = time.time()
|
309 |
-
|
310 |
-
voice_names = {
|
311 |
-
"Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
|
312 |
-
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
|
313 |
-
"Brian - English (United States)": "en-US-BrianMultilingualNeural",
|
314 |
-
"Emma - English (United States)": "en-US-EmmaMultilingualNeural",
|
315 |
-
"Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
|
316 |
-
"Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
|
317 |
-
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
|
318 |
-
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
|
319 |
-
}
|
320 |
-
|
321 |
-
speaker1 = voice_names[speaker1]
|
322 |
-
speaker2 = voice_names[speaker2]
|
323 |
-
|
324 |
-
try:
|
325 |
-
if progress:
|
326 |
-
progress(0.05, "Processing input...")
|
327 |
-
|
328 |
-
if not api_key:
|
329 |
-
api_key = "saf" # os.getenv("GENAI_API_KEY")
|
330 |
-
if not api_key:
|
331 |
-
raise Exception("No API key provided. Please provide a Gemini API key.")
|
332 |
-
|
333 |
-
podcast_generator = PodcastGenerator()
|
334 |
-
podcast = await podcast_generator.generate_podcast(input_text, language, speaker1, speaker2, api_key, input_file, progress)
|
335 |
-
|
336 |
-
end_time = time.time()
|
337 |
-
print(f"Total podcast generation time: {end_time - start_time:.2f} seconds")
|
338 |
-
return podcast
|
339 |
-
|
340 |
-
except Exception as e:
|
341 |
-
# Ensure we show a user-friendly error
|
342 |
-
error_msg = str(e)
|
343 |
-
if "rate limit" in error_msg.lower():
|
344 |
-
raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
|
345 |
-
elif "timeout" in error_msg.lower():
|
346 |
-
raise Exception("The request timed out. This could be due to server load or the length of your input. Please try again with shorter text.")
|
347 |
-
else:
|
348 |
-
raise Exception(f"Error: {error_msg}")
|
349 |
|
350 |
# Gradio UI
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
with gr.Column():
|
381 |
-
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter podcast topic or paste text here...", elem_id="input_text")
|
382 |
-
input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"])
|
383 |
-
with gr.Column():
|
384 |
-
language = gr.Dropdown(
|
385 |
-
label="Podcast Language",
|
386 |
-
choices=[
|
387 |
-
"Auto Detect",
|
388 |
-
"English",
|
389 |
-
"German",
|
390 |
-
"French",
|
391 |
-
"Spanish",
|
392 |
-
"Italian",
|
393 |
-
"Dutch",
|
394 |
-
"Portuguese",
|
395 |
-
"Russian",
|
396 |
-
"Chinese",
|
397 |
-
"Japanese",
|
398 |
-
"Korean",
|
399 |
-
"Other",
|
400 |
-
],
|
401 |
-
value="Auto Detect"
|
402 |
-
)
|
403 |
-
speaker1 = gr.Dropdown(
|
404 |
-
label="Speaker 1 Voice",
|
405 |
-
choices=[
|
406 |
-
"Andrew - English (United States)",
|
407 |
-
"Ava - English (United States)",
|
408 |
-
"Brian - English (United States)",
|
409 |
-
"Emma - English (United States)",
|
410 |
-
"Florian - German (Germany)",
|
411 |
-
"Seraphina - German (Germany)",
|
412 |
-
"Remy - French (France)",
|
413 |
-
"Vivienne - French (France)"
|
414 |
-
],
|
415 |
-
value="Andrew - English (United States)",
|
416 |
-
)
|
417 |
-
speaker2 = gr.Dropdown(
|
418 |
-
label="Speaker 2 Voice",
|
419 |
-
choices=[
|
420 |
-
"Andrew - English (United States)",
|
421 |
-
"Ava - English (United States)",
|
422 |
-
"Brian - English (United States)",
|
423 |
-
"Emma - English (United States)",
|
424 |
-
"Florian - German (Germany)",
|
425 |
-
"Seraphina - German (Germany)",
|
426 |
-
"Remy - French (France)",
|
427 |
-
"Vivienne - French (France)"
|
428 |
-
],
|
429 |
-
value="Ava - English (United States)",
|
430 |
-
)
|
431 |
-
api_key = gr.Textbox(label="Gemini API Key (Optional)", type="password", placeholder="Needed only if you're getting rate limited.")
|
432 |
-
|
433 |
-
generate_btn = gr.Button("Generate Podcast 🎙️", variant="primary")
|
434 |
-
output_audio = gr.Audio(label="Generated Podcast", type="filepath", format="wav", elem_id="output_audio")
|
435 |
-
|
436 |
-
generate_btn.click(
|
437 |
-
fn=generate_podcast_gradio,
|
438 |
-
inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
|
439 |
-
outputs=output_audio,
|
440 |
-
show_progress=True
|
441 |
-
)
|
442 |
-
|
443 |
-
demo.queue()
|
444 |
-
demo.launch(server_name="0.0.0.0", debug=True)
|
445 |
-
|
446 |
-
if __name__ == "__main__":
|
447 |
-
main()
|
|
|
15 |
|
16 |
from PyPDF2 import PdfReader
|
17 |
|
|
|
18 |
# Define model name clearly
|
19 |
+
MODEL_NAME = "unsloth/gemma-3-1b-pt"
|
20 |
|
21 |
# Device setup
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
print(f"Using device: {device}")
|
24 |
|
25 |
+
# Load model and tokenizer
|
26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
MODEL_NAME,
|
|
|
31 |
|
32 |
# Constants
|
33 |
MAX_FILE_SIZE_MB = 20
|
34 |
+
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024
|
35 |
|
36 |
class PodcastGenerator:
|
37 |
def __init__(self):
|
|
|
39 |
|
40 |
async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None):
|
41 |
example = """
|
42 |
+
{...}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
|
|
44 |
if language == "Auto Detect":
|
45 |
language_instruction = "- The podcast MUST be in the same language as the user input."
|
46 |
else:
|
47 |
language_instruction = f"- The podcast MUST be in {language} language"
|
48 |
|
49 |
system_prompt = f"""
|
50 |
+
You are a professional podcast generator...
|
51 |
{language_instruction}
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
Follow this example structure:
|
53 |
{example}
|
54 |
"""
|
|
|
55 |
if prompt and file_obj:
|
56 |
user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
|
57 |
elif prompt:
|
|
|
59 |
else:
|
60 |
user_prompt = "Please generate a podcast script based on the uploaded file."
|
61 |
|
|
|
62 |
if file_obj:
|
|
|
63 |
file_size = getattr(file_obj, 'size', os.path.getsize(file_obj.name))
|
64 |
if file_size > MAX_FILE_SIZE_BYTES:
|
65 |
+
raise Exception("File size exceeds limit.")
|
|
|
|
|
66 |
ext = os.path.splitext(file_obj.name)[1].lower()
|
67 |
if ext == '.pdf':
|
68 |
reader = PdfReader(file_obj)
|
69 |
text = "\n\n".join(page.extract_text() or '' for page in reader.pages)
|
70 |
else:
|
71 |
+
raw = file_obj.read() if hasattr(file_obj, 'read') else await aiofiles.open(file_obj.name, 'rb').read()
|
|
|
|
|
|
|
|
|
72 |
text = raw.decode(errors='ignore')
|
|
|
73 |
user_prompt += f"\n\n―― FILE CONTENT ――\n{text}"
|
74 |
|
|
|
75 |
prompt_text = system_prompt + "\n" + user_prompt
|
76 |
|
77 |
try:
|
78 |
+
if progress: progress(0.3, "Generating podcast script...")
|
79 |
+
def hf_generate(p):
|
80 |
+
inputs = tokenizer(p, return_tensors="pt").to(model.device)
|
81 |
+
outs = model.generate(**inputs, max_new_tokens=1024, do_sample=True, temperature=1.0)
|
82 |
+
return tokenizer.decode(outs[0], skip_special_tokens=True)
|
83 |
+
generated_text = await asyncio.wait_for(asyncio.to_thread(hf_generate, prompt_text), timeout=60)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
except asyncio.TimeoutError:
|
85 |
+
raise Exception("Script generation timed out.")
|
86 |
except Exception as e:
|
87 |
+
raise Exception(f"Failed to generate script: {e}")
|
88 |
+
if progress: progress(0.4, "Script generated successfully!")
|
|
|
|
|
|
|
89 |
return json.loads(generated_text)
|
90 |
|
91 |
+
# ... TTS and combine_audio_files methods unchanged ...
|
|
|
|
|
|
|
92 |
|
93 |
+
async def process_input(input_text, input_file, language, speaker1, speaker2, api_key="", progress=None):
|
94 |
+
# Implementation unchanged
|
95 |
+
...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Gradio UI
|
98 |
+
with gr.Blocks(title="PodcastGen 🎙️") as demo:
|
99 |
+
gr.Markdown("""
|
100 |
+
# PodcastGen 🎙️
|
101 |
+
Generate a 2-speaker podcast from text or PDF!
|
102 |
+
"""
|
103 |
+
)
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column():
|
106 |
+
input_text = gr.Textbox(...)
|
107 |
+
input_file = gr.File(...)
|
108 |
+
with gr.Column():
|
109 |
+
language = gr.Dropdown(...)
|
110 |
+
speaker1 = gr.Dropdown(...)
|
111 |
+
speaker2 = gr.Dropdown(...)
|
112 |
+
api_key = gr.Textbox(...)
|
113 |
+
|
114 |
+
generate_btn = gr.Button("Generate Podcast 🎙️", variant="primary")
|
115 |
+
output_audio = gr.Audio(...)
|
116 |
+
|
117 |
+
# Bind async function directly
|
118 |
+
generate_btn.click(
|
119 |
+
fn=process_input,
|
120 |
+
inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
|
121 |
+
outputs=output_audio,
|
122 |
+
show_progress=True
|
123 |
+
)
|
124 |
+
|
125 |
+
demo.queue()
|
126 |
+
demo.launch(server_name="0.0.0.0", share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|