Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
from pydub import AudioSegment
|
3 |
-
from google import genai
|
4 |
-
from google.genai import types
|
5 |
import json
|
6 |
import uuid
|
7 |
import edge_tts
|
@@ -11,11 +9,23 @@ import os
|
|
11 |
import time
|
12 |
import mimetypes
|
13 |
from typing import List, Dict
|
|
|
|
|
14 |
|
15 |
# Constants
|
16 |
MAX_FILE_SIZE_MB = 20
|
17 |
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
class PodcastGenerator:
|
20 |
def __init__(self):
|
21 |
pass
|
@@ -26,575 +36,112 @@ class PodcastGenerator:
|
|
26 |
"topic": "AGI",
|
27 |
"podcast": [
|
28 |
{
|
29 |
-
"speaker":
|
30 |
-
"
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"speaker": 1,
|
34 |
-
"line": "Yeah, it's definitely having a moment, isn't it?"
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"speaker": 2,
|
38 |
-
"line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"speaker": 1,
|
42 |
-
"line": "Honestly, it's the sheer scale of what AGI could do. We're talking about potentially reshaping well everything."
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"speaker": 2,
|
46 |
-
"line": "No kidding, but let's be real. Sometimes it feels like every other headline is either hyping AGI up as this technological utopia or painting it as our inevitable robot overlords."
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"speaker": 1,
|
50 |
-
"line": "It's easy to get lost in the noise, for sure."
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"speaker": 2,
|
54 |
-
"line": "Exactly. So how about we try to cut through some of that, shall we?"
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"speaker": 1,
|
58 |
-
"line": "Sounds like a plan."
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"speaker": 2,
|
62 |
-
"line": "Okay, so first things first, AGI, what is it really? And I don't just mean some dictionary definition, we're talking about something way bigger than just a super smart computer, right?"
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"speaker": 1,
|
66 |
-
"line": "Right, it's not just about more processing power or better algorithms, it's about a fundamental shift in how we think about intelligence itself."
|
67 |
-
},
|
68 |
-
{
|
69 |
-
"speaker": 2,
|
70 |
-
"line": "So like, instead of programming a machine for a specific task, we're talking about creating something that can learn and adapt like we do."
|
71 |
-
},
|
72 |
-
{
|
73 |
-
"speaker": 1,
|
74 |
-
"line": "Exactly, think of it this way: Right now, we've got AI that can beat a grandmaster at chess but ask that same AI to, say, write a poem or compose a symphony. No chance."
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"speaker": 2,
|
78 |
-
"line": "Okay, I see. So, AGI is about bridging that gap, creating something that can move between those different realms of knowledge seamlessly."
|
79 |
-
},
|
80 |
-
{
|
81 |
-
"speaker": 1,
|
82 |
-
"line": "Precisely. It's about replicating that uniquely human ability to learn something new and apply that knowledge in completely different contexts and that's a tall order, let me tell you."
|
83 |
-
},
|
84 |
-
{
|
85 |
-
"speaker": 2,
|
86 |
-
"line": "I bet. I mean, think about how much we still don't even understand about our own brains."
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"speaker": 1,
|
90 |
-
"line": "That's exactly it. We're essentially trying to reverse-engineer something we don't fully comprehend."
|
91 |
-
},
|
92 |
-
{
|
93 |
-
"speaker": 2,
|
94 |
-
"line": "And how are researchers even approaching that? What are some of the big ideas out there?"
|
95 |
-
},
|
96 |
-
{
|
97 |
-
"speaker": 1,
|
98 |
-
"line": "Well, there are a few different schools of thought. One is this idea of neuromorphic computing where they're literally trying to build computer chips that mimic the structure and function of the human brain."
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"speaker": 2,
|
102 |
-
"line": "Wow, so like actually replicating the physical architecture of the brain. That's wild."
|
103 |
-
},
|
104 |
-
{
|
105 |
-
"speaker": 1,
|
106 |
-
"line": "It's pretty mind-blowing stuff and then you've got folks working on something called whole brain emulation."
|
107 |
-
},
|
108 |
-
{
|
109 |
-
"speaker": 2,
|
110 |
-
"line": "Okay, and what's that all about?"
|
111 |
-
},
|
112 |
-
{
|
113 |
-
"speaker": 1,
|
114 |
-
"line": "The basic idea there is to create a complete digital copy of a human brain down to the last neuron and synapse and run it on a sufficiently powerful computer simulation."
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"speaker": 2,
|
118 |
-
"line": "Hold on, a digital copy of an entire brain, that sounds like something straight out of science fiction."
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"speaker": 1,
|
122 |
-
"line": "It does, doesn't it? But it gives you an idea of the kind of ambition we're talking about here and the truth is we're still a long way off from truly achieving AGI, no matter which approach you look at."
|
123 |
-
},
|
124 |
-
{
|
125 |
-
"speaker": 2,
|
126 |
-
"line": "That makes sense but it's still exciting to think about the possibilities, even if they're a ways off."
|
127 |
-
},
|
128 |
-
{
|
129 |
-
"speaker": 1,
|
130 |
-
"line": "Absolutely and those possibilities are what really get people fired up about AGI, right? Yeah."
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"speaker": 2,
|
134 |
-
"line": "For sure. In fact, I remember you mentioning something in that podcast about AGI's potential to revolutionize scientific research. Something about supercharging breakthroughs."
|
135 |
-
},
|
136 |
-
{
|
137 |
-
"speaker": 1,
|
138 |
-
"line": "Oh, absolutely. Imagine an AI that doesn't just crunch numbers but actually understands scientific data the way a human researcher does. We're talking about potential breakthroughs in everything from medicine and healthcare to material science and climate change."
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"speaker": 2,
|
142 |
-
"line": "It's like giving scientists this incredibly powerful new tool to tackle some of the biggest challenges we face."
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"speaker": 1,
|
146 |
-
"line": "Exactly, it could be a total game changer."
|
147 |
-
},
|
148 |
-
{
|
149 |
-
"speaker": 2,
|
150 |
-
"line": "Okay, but let's be real, every coin has two sides. What about the potential downsides of AGI? Because it can't all be sunshine and roses, right?"
|
151 |
-
},
|
152 |
-
{
|
153 |
-
"speaker": 1,
|
154 |
-
"line": "Right, there are definitely valid concerns. Probably the biggest one is the impact on the job market. As AGI gets more sophisticated, there's a real chance it could automate a lot of jobs that are currently done by humans."
|
155 |
-
},
|
156 |
-
{
|
157 |
-
"speaker": 2,
|
158 |
-
"line": "So we're not just talking about robots taking over factories but potentially things like, what, legal work, analysis, even creative fields?"
|
159 |
-
},
|
160 |
-
{
|
161 |
-
"speaker": 1,
|
162 |
-
"line": "Potentially, yes. And that raises a whole host of questions about what happens to those workers, how we retrain them, how we ensure that the benefits of AGI are shared equitably."
|
163 |
-
},
|
164 |
-
{
|
165 |
-
"speaker": 2,
|
166 |
-
"line": "Right, because it's not just about the technology itself, but how we choose to integrate it into society."
|
167 |
-
},
|
168 |
-
{
|
169 |
-
"speaker": 1,
|
170 |
-
"line": "Absolutely. We need to be having these conversations now about ethics, about regulation, about how to make sure AGI is developed and deployed responsibly."
|
171 |
-
},
|
172 |
-
{
|
173 |
-
"speaker": 2,
|
174 |
-
"line": "So it's less about preventing some kind of sci-fi robot apocalypse and more about making sure we're steering this technology in the right direction from the get-go."
|
175 |
-
},
|
176 |
-
{
|
177 |
-
"speaker": 1,
|
178 |
-
"line": "Exactly, AGI has the potential to be incredibly beneficial, but it's not going to magically solve all our problems. It's on us to make sure we're using it for good."
|
179 |
-
},
|
180 |
-
{
|
181 |
-
"speaker": 2,
|
182 |
-
"line": "It's like you said earlier, it's about shaping the future of intelligence."
|
183 |
-
},
|
184 |
-
{
|
185 |
-
"speaker": 1,
|
186 |
-
"line": "I like that. It really is."
|
187 |
},
|
188 |
{
|
189 |
-
"speaker":
|
190 |
-
"
|
191 |
-
},
|
192 |
-
{
|
193 |
-
"speaker": 1,
|
194 |
-
"line": "100%"
|
195 |
-
},
|
196 |
-
{
|
197 |
-
"speaker": 2,
|
198 |
-
"line": "So to everyone listening out there I'll leave you with this. As AGI continues to develop, what role do you want to play in shaping its future?"
|
199 |
-
},
|
200 |
-
{
|
201 |
-
"speaker": 1,
|
202 |
-
"line": "That's a question worth pondering."
|
203 |
-
},
|
204 |
-
{
|
205 |
-
"speaker": 2,
|
206 |
-
"line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."
|
207 |
-
},
|
208 |
-
{
|
209 |
-
"speaker": 1,
|
210 |
-
"line": "Peace."
|
211 |
}
|
212 |
]
|
213 |
}
|
214 |
-
"""
|
215 |
-
|
216 |
-
if language == "Auto Detect":
|
217 |
-
language_instruction = "- The podcast MUST be in the same language as the user input."
|
218 |
-
else:
|
219 |
-
language_instruction = f"- The podcast MUST be in {language} language"
|
220 |
-
|
221 |
-
system_prompt = f"""
|
222 |
-
You are a professional podcast generator. Your task is to generate a professional podcast script based on the user input.
|
223 |
-
{language_instruction}
|
224 |
-
- The podcast should have 2 speakers.
|
225 |
-
- The podcast should be long.
|
226 |
-
- Do not use names for the speakers.
|
227 |
-
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
|
228 |
-
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
|
229 |
-
- The script must be in JSON format.
|
230 |
-
Follow this example structure:
|
231 |
-
{example}
|
232 |
"""
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
user_prompt = f"Please generate a podcast script based on the following user input:\n{prompt}"
|
238 |
-
else:
|
239 |
-
user_prompt = "Please generate a podcast script based on the uploaded file."
|
240 |
-
|
241 |
-
messages = []
|
242 |
-
|
243 |
-
# If file is provided, add it to the messages
|
244 |
-
if file_obj:
|
245 |
-
file_data = await self._read_file_bytes(file_obj)
|
246 |
-
mime_type = self._get_mime_type(file_obj.name)
|
247 |
-
|
248 |
-
messages.append(
|
249 |
-
types.Content(
|
250 |
-
role="user",
|
251 |
-
parts=[
|
252 |
-
types.Part.from_bytes(
|
253 |
-
data=file_data,
|
254 |
-
mime_type=mime_type,
|
255 |
-
)
|
256 |
-
],
|
257 |
-
)
|
258 |
-
)
|
259 |
-
|
260 |
-
# Add text prompt
|
261 |
-
messages.append(
|
262 |
-
types.Content(
|
263 |
-
role="user",
|
264 |
-
parts=[
|
265 |
-
types.Part.from_text(text=user_prompt)
|
266 |
-
],
|
267 |
-
)
|
268 |
)
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
{
|
274 |
-
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
275 |
-
"threshold": "BLOCK_NONE"
|
276 |
-
},
|
277 |
-
{
|
278 |
-
"category": "HARM_CATEGORY_HARASSMENT",
|
279 |
-
"threshold": "BLOCK_NONE"
|
280 |
-
},
|
281 |
-
{
|
282 |
-
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
283 |
-
"threshold": "BLOCK_NONE"
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"category": "HARM_CATEGORY_HATE_SPEECH",
|
287 |
-
"threshold": "BLOCK_NONE"
|
288 |
-
}
|
289 |
-
]
|
290 |
|
291 |
try:
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
# Add timeout to the API call
|
296 |
-
response = await asyncio.wait_for(
|
297 |
-
client.aio.models.generate_content(
|
298 |
-
model="gemini-2.0-flash",
|
299 |
-
contents=messages,
|
300 |
-
config=types.GenerateContentConfig(
|
301 |
-
temperature=1,
|
302 |
-
response_mime_type="application/json",
|
303 |
-
safety_settings=[
|
304 |
-
types.SafetySetting(
|
305 |
-
category=safety_setting["category"],
|
306 |
-
threshold=safety_setting["threshold"]
|
307 |
-
) for safety_setting in safety_settings
|
308 |
-
],
|
309 |
-
system_instruction=system_prompt
|
310 |
-
)
|
311 |
-
),
|
312 |
-
timeout=60 # 60 seconds timeout
|
313 |
-
)
|
314 |
-
except asyncio.TimeoutError:
|
315 |
-
raise Exception("The script generation request timed out. Please try again later.")
|
316 |
-
except Exception as e:
|
317 |
-
if "API key not valid" in str(e):
|
318 |
-
raise Exception("Invalid API key. Please provide a valid Gemini API key.")
|
319 |
-
elif "rate limit" in str(e).lower():
|
320 |
-
raise Exception("Rate limit exceeded for the API key. Please try again later or provide your own Gemini API key.")
|
321 |
-
else:
|
322 |
-
raise Exception(f"Failed to generate podcast script: {e}")
|
323 |
|
324 |
-
|
325 |
-
|
326 |
-
if progress:
|
327 |
-
progress(0.4, "Script generated successfully!")
|
328 |
-
|
329 |
-
return json.loads(response.text)
|
330 |
-
|
331 |
-
async def _read_file_bytes(self, file_obj) -> bytes:
|
332 |
-
"""Read file bytes from a file object"""
|
333 |
-
# Check file size before reading
|
334 |
-
if hasattr(file_obj, 'size'):
|
335 |
-
file_size = file_obj.size
|
336 |
-
else:
|
337 |
-
file_size = os.path.getsize(file_obj.name)
|
338 |
-
|
339 |
-
if file_size > MAX_FILE_SIZE_BYTES:
|
340 |
-
raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
|
341 |
-
|
342 |
-
if hasattr(file_obj, 'read'):
|
343 |
-
return file_obj.read()
|
344 |
-
else:
|
345 |
-
async with aiofiles.open(file_obj.name, 'rb') as f:
|
346 |
-
return await f.read()
|
347 |
-
|
348 |
-
def _get_mime_type(self, filename: str) -> str:
|
349 |
-
"""Determine MIME type based on file extension"""
|
350 |
-
ext = os.path.splitext(filename)[1].lower()
|
351 |
-
if ext == '.pdf':
|
352 |
-
return "application/pdf"
|
353 |
-
elif ext == '.txt':
|
354 |
-
return "text/plain"
|
355 |
-
else:
|
356 |
-
# Fallback to the default mime type detector
|
357 |
-
mime_type, _ = mimetypes.guess_type(filename)
|
358 |
-
return mime_type or "application/octet-stream"
|
359 |
|
360 |
-
async def
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
temp_filename = f"temp_{uuid.uuid4()}.wav"
|
365 |
-
try:
|
366 |
-
# Add timeout to TTS generation
|
367 |
-
await asyncio.wait_for(speech.save(temp_filename), timeout=30) # 30 seconds timeout
|
368 |
-
return temp_filename
|
369 |
-
except asyncio.TimeoutError:
|
370 |
-
if os.path.exists(temp_filename):
|
371 |
-
os.remove(temp_filename)
|
372 |
-
raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
|
373 |
-
except Exception as e:
|
374 |
-
if os.path.exists(temp_filename):
|
375 |
-
os.remove(temp_filename)
|
376 |
-
raise e
|
377 |
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
combined_audio = AudioSegment.empty()
|
383 |
-
for audio_file in audio_files:
|
384 |
-
combined_audio += AudioSegment.from_file(audio_file)
|
385 |
-
os.remove(audio_file) # Clean up temporary files
|
386 |
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
|
395 |
-
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
396 |
-
try:
|
397 |
if progress:
|
398 |
-
progress(
|
399 |
-
|
400 |
-
# Set overall timeout for the entire process
|
401 |
-
return await asyncio.wait_for(
|
402 |
-
self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
|
403 |
-
timeout=600 # 10 minutes total timeout
|
404 |
-
)
|
405 |
-
except asyncio.TimeoutError:
|
406 |
-
raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
|
407 |
-
except Exception as e:
|
408 |
-
raise Exception(f"Error generating podcast: {str(e)}")
|
409 |
-
|
410 |
-
async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
|
411 |
-
if progress:
|
412 |
-
progress(0.2, "Generating podcast script...")
|
413 |
-
|
414 |
-
podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
|
415 |
-
|
416 |
-
if progress:
|
417 |
-
progress(0.5, "Converting text to speech...")
|
418 |
-
|
419 |
-
# Process TTS in batches for concurrent processing
|
420 |
-
audio_files = []
|
421 |
-
total_lines = len(podcast_json['podcast'])
|
422 |
-
|
423 |
-
# Define batch size to control concurrency
|
424 |
-
batch_size = 10 # Adjust based on system resources
|
425 |
-
|
426 |
-
# Process in batches
|
427 |
-
for batch_start in range(0, total_lines, batch_size):
|
428 |
-
batch_end = min(batch_start + batch_size, total_lines)
|
429 |
-
batch = podcast_json['podcast'][batch_start:batch_end]
|
430 |
-
|
431 |
-
# Create tasks for concurrent processing
|
432 |
-
tts_tasks = []
|
433 |
-
for item in batch:
|
434 |
-
tts_task = self.tts_generate(item['line'], item['speaker'], speaker1, speaker2)
|
435 |
-
tts_tasks.append(tts_task)
|
436 |
-
|
437 |
-
try:
|
438 |
-
# Process batch concurrently
|
439 |
-
batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
|
440 |
-
|
441 |
-
# Check for exceptions and handle results
|
442 |
-
for i, result in enumerate(batch_results):
|
443 |
-
if isinstance(result, Exception):
|
444 |
-
# Clean up any files already created
|
445 |
-
for file in audio_files:
|
446 |
-
if os.path.exists(file):
|
447 |
-
os.remove(file)
|
448 |
-
raise Exception(f"Error generating speech: {str(result)}")
|
449 |
-
else:
|
450 |
-
audio_files.append(result)
|
451 |
-
|
452 |
-
# Update progress
|
453 |
-
if progress:
|
454 |
-
current_progress = 0.5 + (0.4 * (batch_end / total_lines))
|
455 |
-
progress(current_progress, f"Processed {batch_end}/{total_lines} speech segments...")
|
456 |
-
|
457 |
-
except Exception as e:
|
458 |
-
# Clean up any files already created
|
459 |
-
for file in audio_files:
|
460 |
-
if os.path.exists(file):
|
461 |
-
os.remove(file)
|
462 |
-
raise Exception(f"Error in batch TTS generation: {str(e)}")
|
463 |
-
|
464 |
-
combined_audio = await self.combine_audio_files(audio_files, progress)
|
465 |
-
return combined_audio
|
466 |
|
467 |
-
|
468 |
-
|
|
|
469 |
|
470 |
-
|
471 |
-
|
472 |
-
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
|
473 |
-
"Brian - English (United States)": "en-US-BrianMultilingualNeural",
|
474 |
-
"Emma - English (United States)": "en-US-EmmaMultilingualNeural",
|
475 |
-
"Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
|
476 |
-
"Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
|
477 |
-
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
|
478 |
-
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
|
479 |
-
}
|
480 |
|
481 |
-
|
482 |
-
speaker2 = voice_names[speaker2]
|
483 |
|
484 |
-
try:
|
485 |
-
if progress:
|
486 |
-
progress(0.05, "Processing input...")
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
if not api_key:
|
491 |
-
raise Exception("No API key provided. Please provide a Gemini API key.")
|
492 |
|
493 |
-
|
494 |
-
|
|
|
|
|
495 |
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
except Exception as e:
|
501 |
-
# Ensure we show a user-friendly error
|
502 |
-
error_msg = str(e)
|
503 |
-
if "rate limit" in error_msg.lower():
|
504 |
-
raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
|
505 |
-
elif "timeout" in error_msg.lower():
|
506 |
-
raise Exception("The request timed out. This could be due to server load or the length of your input. Please try again with shorter text.")
|
507 |
-
else:
|
508 |
-
raise Exception(f"Error: {error_msg}")
|
509 |
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
# Use the progress function from Gradio
|
518 |
-
def progress_callback(value, text):
|
519 |
-
progress(value, text)
|
520 |
|
521 |
-
|
522 |
-
|
523 |
-
input_text,
|
524 |
-
file_obj,
|
525 |
-
language,
|
526 |
-
speaker1,
|
527 |
-
speaker2,
|
528 |
-
api_key,
|
529 |
-
progress_callback
|
530 |
-
))
|
531 |
-
|
532 |
-
return result
|
533 |
|
534 |
-
|
535 |
-
|
536 |
-
language_options = [
|
537 |
-
"Auto Detect",
|
538 |
-
"Afrikaans", "Albanian", "Amharic", "Arabic", "Armenian", "Azerbaijani",
|
539 |
-
"Bahasa Indonesian", "Bangla", "Basque", "Bengali", "Bosnian", "Bulgarian",
|
540 |
-
"Burmese", "Catalan", "Chinese Cantonese", "Chinese Mandarin",
|
541 |
-
"Chinese Taiwanese", "Croatian", "Czech", "Danish", "Dutch", "English",
|
542 |
-
"Estonian", "Filipino", "Finnish", "French", "Galician", "Georgian",
|
543 |
-
"German", "Greek", "Hebrew", "Hindi", "Hungarian", "Icelandic", "Irish",
|
544 |
-
"Italian", "Japanese", "Javanese", "Kannada", "Kazakh", "Khmer", "Korean",
|
545 |
-
"Lao", "Latvian", "Lithuanian", "Macedonian", "Malay", "Malayalam",
|
546 |
-
"Maltese", "Mongolian", "Nepali", "Norwegian Bokmål", "Pashto", "Persian",
|
547 |
-
"Polish", "Portuguese", "Romanian", "Russian", "Serbian", "Sinhala",
|
548 |
-
"Slovak", "Slovene", "Somali", "Spanish", "Sundanese", "Swahili",
|
549 |
-
"Swedish", "Tamil", "Telugu", "Thai", "Turkish", "Ukrainian", "Urdu",
|
550 |
-
"Uzbek", "Vietnamese", "Welsh", "Zulu"
|
551 |
-
]
|
552 |
-
|
553 |
-
# Define voice options
|
554 |
-
voice_options = [
|
555 |
-
"Andrew - English (United States)",
|
556 |
-
"Ava - English (United States)",
|
557 |
-
"Brian - English (United States)",
|
558 |
-
"Emma - English (United States)",
|
559 |
-
"Florian - German (Germany)",
|
560 |
-
"Seraphina - German (Germany)",
|
561 |
-
"Remy - French (France)",
|
562 |
-
"Vivienne - French (France)"
|
563 |
-
]
|
564 |
-
|
565 |
-
# Create Gradio interface
|
566 |
-
with gr.Blocks(title="PodcastGen 🎙️") as demo:
|
567 |
-
gr.Markdown("# PodcastGen 🎙️")
|
568 |
-
gr.Markdown("Generate a 2-speaker podcast from text input or documents!")
|
569 |
-
|
570 |
-
with gr.Row():
|
571 |
-
with gr.Column(scale=2):
|
572 |
-
input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text for podcast generation...")
|
573 |
-
|
574 |
-
with gr.Column(scale=1):
|
575 |
-
input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"])
|
576 |
-
|
577 |
-
with gr.Row():
|
578 |
-
with gr.Column():
|
579 |
-
api_key = gr.Textbox(label="Your Gemini API Key (Optional)", placeholder="Enter API key here if you're getting rate limited", type="password")
|
580 |
-
language = gr.Dropdown(label="Language", choices=language_options, value="Auto Detect")
|
581 |
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
)
|
596 |
-
|
597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
|
599 |
if __name__ == "__main__":
|
600 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from pydub import AudioSegment
|
|
|
|
|
3 |
import json
|
4 |
import uuid
|
5 |
import edge_tts
|
|
|
9 |
import time
|
10 |
import mimetypes
|
11 |
from typing import List, Dict
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM # Replaced gemini
|
13 |
+
import torch # Replaced gemini
|
14 |
|
15 |
# Constants
|
16 |
MAX_FILE_SIZE_MB = 20
|
17 |
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
|
18 |
|
19 |
+
# Model setup
|
20 |
+
MODEL_ID = "tabularisai/german-gemma-3-1b-it"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
MODEL_ID,
|
24 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
25 |
+
device_map="auto",
|
26 |
+
).eval()
|
27 |
+
|
28 |
+
|
29 |
class PodcastGenerator:
|
30 |
def __init__(self):
|
31 |
pass
|
|
|
36 |
"topic": "AGI",
|
37 |
"podcast": [
|
38 |
{
|
39 |
+
"speaker": "Alex",
|
40 |
+
"text": "Hallo und willkommen zur heutigen Folge über AGI."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
},
|
42 |
{
|
43 |
+
"speaker": "Ben",
|
44 |
+
"text": "Danke Alex! Wir sprechen heute über Artificial General Intelligence und ihre möglichen Auswirkungen."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
}
|
46 |
]
|
47 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
"""
|
49 |
+
full_prompt = (
|
50 |
+
f"Lies den Inhalt und fasse ihn in einem kurzen Podcast-Drehbuch in folgender JSON-Struktur zusammen:\n"
|
51 |
+
f"{example}\n\n"
|
52 |
+
f"Inhalt:\n{prompt}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
)
|
54 |
|
55 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
56 |
+
output = model.generate(**inputs, max_new_tokens=1024, do_sample=True)
|
57 |
+
script_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
try:
|
60 |
+
podcast_json = json.loads(script_text)
|
61 |
+
except json.JSONDecodeError:
|
62 |
+
return {"error": "Fehler beim Parsen der Antwort: Kein gültiges JSON erkannt."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
return podcast_json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
async def text_to_audio(self, segments: List[Dict], language: str, progress=None) -> str:
|
67 |
+
audio_segments = []
|
68 |
+
temp_files = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
for idx, segment in enumerate(segments):
|
71 |
+
speaker = segment.get("speaker", "Sprecher")
|
72 |
+
text = segment.get("text", "")
|
73 |
+
tts_text = f"{speaker} sagt: {text}"
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
filename = f"temp_{uuid.uuid4()}.mp3"
|
76 |
+
communicate = edge_tts.Communicate(tts_text, "de-DE-KasperNeural")
|
77 |
+
await communicate.save(filename)
|
78 |
+
|
79 |
+
audio = AudioSegment.from_file(filename, format="mp3")
|
80 |
+
audio_segments.append(audio)
|
81 |
+
temp_files.append(filename)
|
82 |
|
|
|
|
|
83 |
if progress:
|
84 |
+
progress((idx + 1) / len(segments), f"Segment {idx+1} erstellt...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
podcast = sum(audio_segments[1:], audio_segments[0])
|
87 |
+
final_filename = f"podcast_{uuid.uuid4()}.mp3"
|
88 |
+
podcast.export(final_filename, format="mp3")
|
89 |
|
90 |
+
for f in temp_files:
|
91 |
+
os.remove(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
return final_filename
|
|
|
94 |
|
|
|
|
|
|
|
95 |
|
96 |
+
async def generate_podcast(prompt, language, api_key, file, progress=gr.Progress(track_tqdm=True)):
|
97 |
+
gen = PodcastGenerator()
|
|
|
|
|
98 |
|
99 |
+
text = ""
|
100 |
+
if file is not None:
|
101 |
+
if file.size > MAX_FILE_SIZE_BYTES:
|
102 |
+
return "Datei zu groß. Maximal erlaubt sind 20 MB.", None
|
103 |
|
104 |
+
mime_type, _ = mimetypes.guess_type(file.name)
|
105 |
+
if not mime_type or not mime_type.endswith("pdf"):
|
106 |
+
return "Nur PDF-Dateien sind erlaubt.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
async with aiofiles.open(file.name, mode="rb") as f:
|
109 |
+
pdf_data = await f.read()
|
110 |
+
import fitz # PyMuPDF
|
111 |
+
with fitz.open(stream=pdf_data, filetype="pdf") as doc:
|
112 |
+
text = "\n".join([page.get_text() for page in doc])
|
113 |
+
else:
|
114 |
+
text = prompt
|
|
|
|
|
|
|
115 |
|
116 |
+
progress(0.1, "Erzeuge Skript...")
|
117 |
+
script = await gen.generate_script(text, language, api_key, file_obj=file, progress=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
if "error" in script:
|
120 |
+
return script["error"], None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
progress(0.5, "Erzeuge Audio...")
|
123 |
+
podcast_path = await gen.text_to_audio(script["podcast"], language, progress=progress)
|
124 |
+
|
125 |
+
progress(1.0, "Fertig!")
|
126 |
+
return "Podcast erfolgreich erstellt!", podcast_path
|
127 |
+
|
128 |
+
|
129 |
+
demo = gr.Interface(
|
130 |
+
fn=generate_podcast,
|
131 |
+
inputs=[
|
132 |
+
gr.Textbox(label="Thema oder Text", lines=5, placeholder="Worum soll es im Podcast gehen?"),
|
133 |
+
gr.Radio(["de"], label="Sprache", value="de"),
|
134 |
+
gr.Textbox(label="API Key (nicht benötigt für dieses Modell)", type="password", placeholder=""),
|
135 |
+
gr.File(label="Optional: PDF-Datei hochladen", file_types=[".pdf"])
|
136 |
+
],
|
137 |
+
outputs=[
|
138 |
+
gr.Textbox(label="Status"),
|
139 |
+
gr.Audio(label="Erstellter Podcast", type="filepath")
|
140 |
+
],
|
141 |
+
title="Podcast Generator (German-Gemma)",
|
142 |
+
description="Erstelle Podcasts aus Text oder PDFs mithilfe eines KI-Modells. Nutzt das Modell 'tabularisai/german-gemma-3-1b-it'.",
|
143 |
+
allow_flagging="never"
|
144 |
+
)
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
+
demo.launch()
|