Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import requests
|
2 |
import io
|
|
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
from transformers import MarianMTModel, MarianTokenizer
|
@@ -8,6 +9,9 @@ model_name = "Helsinki-NLP/opus-mt-mul-en"
|
|
8 |
model = MarianMTModel.from_pretrained(model_name)
|
9 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
def translate_text(tamil_text):
|
13 |
inputs = tokenizer(tamil_text, return_tensors="pt")
|
@@ -15,46 +19,40 @@ def translate_text(tamil_text):
|
|
15 |
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
16 |
return translation
|
17 |
|
18 |
-
def query_gemini_api(translated_text
|
19 |
-
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-
|
20 |
headers = {"Content-Type": "application/json"}
|
21 |
-
prompt = f"Based on the following sentence, continue the story: {translated_text}"
|
22 |
payload = {
|
23 |
-
"
|
|
|
24 |
}
|
25 |
response = requests.post(f"{url}?key={gemini_api_key}", headers=headers, json=payload)
|
26 |
|
27 |
if response.status_code == 200:
|
28 |
result = response.json()
|
29 |
-
creative_text = result['candidates'][0]['
|
30 |
return creative_text
|
31 |
else:
|
32 |
return f"Error: {response.status_code} - {response.text}"
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
def query_image(payload, huggingface_api_key):
|
37 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
38 |
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
39 |
response = requests.post(API_URL, headers=headers, json=payload)
|
40 |
return response.content
|
41 |
|
42 |
|
43 |
-
def process_input(tamil_input
|
44 |
translated_output = translate_text(tamil_input)
|
45 |
-
creative_output = query_gemini_api(translated_output
|
46 |
-
image_bytes = query_image({"inputs": translated_output}
|
47 |
image = Image.open(io.BytesIO(image_bytes))
|
48 |
return translated_output, creative_output, image
|
49 |
|
50 |
|
51 |
iface = gr.Interface(
|
52 |
fn=process_input,
|
53 |
-
inputs=
|
54 |
-
gr.Textbox(label="Input Tamil Text"),
|
55 |
-
gr.Textbox(label="Enter your Gemini API Key", type="password"),
|
56 |
-
gr.Textbox(label="Enter your Hugging Face API Key", type="password"),
|
57 |
-
],
|
58 |
outputs=[
|
59 |
gr.Textbox(label="Translated Text"),
|
60 |
gr.Textbox(label="Creative Text"),
|
@@ -63,5 +61,4 @@ iface = gr.Interface(
|
|
63 |
title="TRANSART🎨 BY Sakthi",
|
64 |
description="Enter Tamil text to translate to English and generate an image based on the translated text."
|
65 |
)
|
66 |
-
|
67 |
iface.launch()
|
|
|
1 |
import requests
|
2 |
import io
|
3 |
+
import os
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
from transformers import MarianMTModel, MarianTokenizer
|
|
|
9 |
model = MarianMTModel.from_pretrained(model_name)
|
10 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
+
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
13 |
+
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
|
14 |
+
|
15 |
|
16 |
def translate_text(tamil_text):
|
17 |
inputs = tokenizer(tamil_text, return_tensors="pt")
|
|
|
19 |
translation = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
20 |
return translation
|
21 |
|
22 |
+
def query_gemini_api(translated_text):
|
23 |
+
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-turbo:generateText"
|
24 |
headers = {"Content-Type": "application/json"}
|
|
|
25 |
payload = {
|
26 |
+
"prompt": {"text": translated_text},
|
27 |
+
"temperature": 0.7
|
28 |
}
|
29 |
response = requests.post(f"{url}?key={gemini_api_key}", headers=headers, json=payload)
|
30 |
|
31 |
if response.status_code == 200:
|
32 |
result = response.json()
|
33 |
+
creative_text = result['candidates'][0]['output']
|
34 |
return creative_text
|
35 |
else:
|
36 |
return f"Error: {response.status_code} - {response.text}"
|
37 |
|
38 |
+
def query_image(payload):
|
|
|
|
|
39 |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
40 |
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
41 |
response = requests.post(API_URL, headers=headers, json=payload)
|
42 |
return response.content
|
43 |
|
44 |
|
45 |
+
def process_input(tamil_input):
|
46 |
translated_output = translate_text(tamil_input)
|
47 |
+
creative_output = query_gemini_api(translated_output)
|
48 |
+
image_bytes = query_image({"inputs": translated_output})
|
49 |
image = Image.open(io.BytesIO(image_bytes))
|
50 |
return translated_output, creative_output, image
|
51 |
|
52 |
|
53 |
iface = gr.Interface(
|
54 |
fn=process_input,
|
55 |
+
inputs=gr.Textbox(label="Input Tamil Text"),
|
|
|
|
|
|
|
|
|
56 |
outputs=[
|
57 |
gr.Textbox(label="Translated Text"),
|
58 |
gr.Textbox(label="Creative Text"),
|
|
|
61 |
title="TRANSART🎨 BY Sakthi",
|
62 |
description="Enter Tamil text to translate to English and generate an image based on the translated text."
|
63 |
)
|
|
|
64 |
iface.launch()
|