test2 / app.py
IS361Group4's picture
Update app.py
82c5ddf verified
raw
history blame
15 kB
import gradio as gr
import joblib
import re
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
# 1. Translator
class TextTranslator(BaseModel):
output: str = Field(description="Python string containing the output text translated in the desired language")
output_parser = PydanticOutputParser(pydantic_object=TextTranslator)
format_instructions = output_parser.get_format_instructions()
def text_translator(input_text : str, language : str) -> str:
human_template = """Enter the text that you want to translate:
{input_text}, and enter the language that you want it to translate to {language}. {format_instructions}"""
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
prompt = chat_prompt.format_prompt(input_text = input_text, language = language, format_instructions = format_instructions)
messages = prompt.to_messages()
response = chat(messages = messages)
output = output_parser.parse(response.content)
output_text = output.output
return output_text
# 2. Sentiment Analysis
classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment")
def sentiment_analysis(message, history):
"""
Función para analizar el sentimiento de un mensaje.
Retorna la etiqueta de sentimiento con su probabilidad.
"""
result = classifier(message)
return f"Sentimiento : {result[0]['label']} (Probabilidad: {result[0]['score']:.2f})"
# 3. Financial Analyst (LangChain with OpenAI, requires API key)
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')
def split_in_sentences(text):
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
def make_spans(text,results):
results_list = []
for i in range(len(results)):
results_list.append(results[i]['label'])
facts_spans = []
facts_spans = list(zip(split_in_sentences(text),results_list))
return facts_spans
auth_token = os.environ.get("HF_Token")
##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
text = asr(audio)["text"]
return text
def speech_to_text(speech):
text = asr(speech)["text"]
return text
##Summarization
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text(text):
resp = summarizer(text)
stext = resp[0]['summary_text']
return stext
##Fiscal Tone Analysis
fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
def text_to_sentiment(text):
sentiment = fin_model(text)[0]["label"]
return sentiment
##Company Extraction
def fin_ner(text):
api = gr.Interface.load("dslim/bert-base-NER", src='models', use_auth_token=auth_token)
replaced_spans = api(text)
return replaced_spans
##Fiscal Sentiment by Sentence
def fin_ext(text):
results = fin_model(split_in_sentences(text))
return make_spans(text,results)
##Forward Looking Statement
def fls(text):
# fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
fls_model = pipeline("text-classification", model="demo-org/finbert_fls", tokenizer="demo-org/finbert_fls", use_auth_token=auth_token)
results = fls_model(split_in_sentences(text))
return make_spans(text,results)
# 4. Personal Info Detection
def detect_pii(text):
pii_patterns = {
"email": r"[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+",
"phone": r"\+?\d[\d\-\s]{8,}\d",
"credit_card": r"\b(?:\d[ -]*?){13,16}\b"
}
found = {}
for label, pattern in pii_patterns.items():
matches = re.findall(pattern, text)
if matches:
found[label] = matches
return found or "No personal information found."
# 5. Telco Customer Churn Prediction
script_dir = os.path.dirname(os.path.abspath(__file__))
pipeline_path = os.path.join(script_dir, 'toolkit', 'pipeline.joblib')
model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.joblib')
# Load transformation pipeline and model
pipeline = joblib.load(pipeline_path)
model = joblib.load(model_path)
# Create a function to calculate TotalCharges
def calculate_total_charges(tenure, monthly_charges):
return tenure * monthly_charges
# Create a function that applies the ML pipeline and makes predictions
def predict(SeniorCitizen, Partner, Dependents, tenure,
InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod,
MonthlyCharges):
# Calculate TotalCharges
TotalCharges = calculate_total_charges(tenure, MonthlyCharges)
# Create a dataframe with the input data
input_df = pd.DataFrame({
'SeniorCitizen': [SeniorCitizen],
'Partner': [Partner],
'Dependents': [Dependents],
'tenure': [tenure],
'InternetService': [InternetService],
'OnlineSecurity': [OnlineSecurity],
'OnlineBackup': [OnlineBackup],
'DeviceProtection': [DeviceProtection],
'TechSupport': [TechSupport],
'StreamingTV': [StreamingTV],
'StreamingMovies': [StreamingMovies],
'Contract': [Contract],
'PaperlessBilling': [PaperlessBilling],
'PaymentMethod': [PaymentMethod],
'MonthlyCharges': [MonthlyCharges],
'TotalCharges': [TotalCharges]
})
# Selecting categorical and numerical columns separately
cat_cols = [col for col in input_df.columns if input_df[col].dtype == 'object']
num_cols = [col for col in input_df.columns if input_df[col].dtype != 'object']
X_processed = pipeline.transform(input_df)
# Extracting feature names for categorical columns after one-hot encoding
cat_encoder = pipeline.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot']
cat_feature_names = cat_encoder.get_feature_names_out(cat_cols)
# Concatenating numerical and categorical feature names
feature_names = num_cols + list(cat_feature_names)
# Convert X_processed to DataFrame
final_df = pd.DataFrame(X_processed, columns=feature_names)
# Extract the first three columns and remaining columns, then merge
first_three_columns = final_df.iloc[:, :3]
remaining_columns = final_df.iloc[:, 3:]
final_df = pd.concat([remaining_columns, first_three_columns], axis=1)
# Make predictions using the model
prediction_probs = model.predict_proba(final_df)[0]
prediction_label = {
"Prediction: CHURN 🔴": prediction_probs[1],
"Prediction: STAY ✅": prediction_probs[0]
}
return prediction_label
input_interface = []
# Gradio UI setup
with gr.Blocks() as demo:
with gr.Tab("Translator"):
gr.HTML("<h1 align = 'center'> Text Translator </h1>")
gr.HTML("<h4 align = 'center'> Translate to any language </h4>")
inputs = [gr.Textbox(label = "Enter the text that you want to translate"), gr.Textbox(label = "Enter the language that you want it to translate to", placeholder = "Example : Hindi,French,Bengali,etc")]
generate_btn = gr.Button(value = 'Generate')
outputs = [gr.Textbox(label = "Translated text")]
generate_btn.click(fn = text_translator, inputs= inputs, outputs = outputs)
with gr.Tab("Sentiment Analysis"):
gr.Markdown("""
# Análisis de Sentimientos
Esta aplicación utiliza un modelo de Machine Learning para analizar el sentimiento de los mensajes ingresados.
Puede detectar si un texto es positivo, negativo o neutral con su respectiva probabilidad.
""")
chat = gr.ChatInterface(sentiment_analysis, type="messages")
gr.Markdown("""
---
### Conéctate conmigo:
[Instagram 📸](https://www.instagram.com/srjosueaaron/)
[TikTok 🎵](https://www.tiktok.com/@srjosueaaron)
[YouTube 🎬](https://www.youtube.com/@srjosueaaron)
---
Demostración de Análisis de Sentimientos usando el modelo de [CardiffNLP](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment).
Desarrollado con ❤️ por [@srjosueaaron](https://www.instagram.com/srjosueaaron/).
""")
with gr.Tab("Financial Analyst"):
gr.Markdown("## Financial Analyst AI")
gr.Markdown("This project applies AI trained by our financial analysts to analyze earning calls and other financial documents.")
with gr.Row():
with gr.Column():
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
with gr.Row():
b1 = gr.Button("Recognize Speech")
with gr.Row():
text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
b1.click(speech_to_text, inputs=audio_file, outputs=text)
with gr.Row():
b2 = gr.Button("Summarize Text")
stext = gr.Textbox()
b2.click(summarize_text, inputs=text, outputs=stext)
with gr.Row():
b3 = gr.Button("Classify Financial Tone")
label = gr.Label()
b3.click(text_to_sentiment, inputs=stext, outputs=label)
with gr.Column():
b5 = gr.Button("Financial Tone and Forward Looking Statement Analysis")
with gr.Row():
fin_spans = gr.HighlightedText()
b5.click(fin_ext, inputs=text, outputs=fin_spans)
with gr.Row():
fls_spans = gr.HighlightedText()
b5.click(fls, inputs=text, outputs=fls_spans)
with gr.Row():
b4 = gr.Button("Identify Companies & Locations")
replaced_spans = gr.HighlightedText()
b4.click(fin_ner, inputs=text, outputs=replaced_spans)
with gr.Tab("PII Detector"):
pii_input = gr.Textbox(label="Text")
pii_output = gr.JSON(label="Detected PII")
pii_button = gr.Button("Detect")
pii_button.click(fn=detect_pii, inputs=pii_input, outputs=pii_output)
with gr.Tab("Telco Churn Predictor"):
Title = gr.Label('Customer Churn Prediction App')
with gr.Row():
Title
with gr.Row():
gr.Markdown("This app predicts likelihood of a customer to leave or stay with the company")
with gr.Row():
with gr.Column():
input_interface_column_1 = [
gr.components.Radio(['Yes', 'No'], label="Are you a Seniorcitizen?"),
gr.components.Radio(['Yes', 'No'], label='Do you have Partner?'),
gr.components.Radio(['No', 'Yes'], label='Do you have any Dependents?'),
gr.components.Slider(label='Enter lenghth of Tenure in Months', minimum=1, maximum=73, step=1),
gr.components.Radio(['DSL', 'Fiber optic', 'No Internet'], label='What is your Internet Service?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Online Security?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Online Backup?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Device Protection?')
]
with gr.Column():
input_interface_column_2 = [
gr.components.Radio(['No', 'Yes'], label='Do you have Tech Support?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Streaming TV?'),
gr.components.Radio(['No', 'Yes'], label='Do you have Streaming Movies?'),
gr.components.Radio(['Month-to-month', 'One year', 'Two year'], label='What is your Contract Type?'),
gr.components.Radio(['Yes', 'No'], label='Do you prefer Paperless Billing?'),
gr.components.Radio(['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'], label='Which PaymentMethod do you prefer?'),
gr.components.Slider(label="Enter monthly charges", minimum=18.40, maximum=118.65)
]
with gr.Row():
input_interface.extend(input_interface_column_1)
input_interface.extend(input_interface_column_2)
with gr.Row():
predict_btn = gr.Button('Predict')
output_interface = gr.Label(label="churn")
with gr.Accordion("Open for information on inputs", open=False):
gr.Markdown("""This app receives the following as inputs and processes them to return the prediction on whether a customer, will churn or not.
- SeniorCitizen: Whether a customer is a senior citizen or not
- Partner: Whether the customer has a partner or not (Yes, No)
- Dependents: Whether the customer has dependents or not (Yes, No)
- Tenure: Number of months the customer has stayed with the company
- InternetService: Customer's internet service provider (DSL, Fiber Optic, No)
- OnlineSecurity: Whether the customer has online security or not (Yes, No, No Internet)
- OnlineBackup: Whether the customer has online backup or not (Yes, No, No Internet)
- DeviceProtection: Whether the customer has device protection or not (Yes, No, No internet service)
- TechSupport: Whether the customer has tech support or not (Yes, No, No internet)
- StreamingTV: Whether the customer has streaming TV or not (Yes, No, No internet service)
- StreamingMovies: Whether the customer has streaming movies or not (Yes, No, No Internet service)
- Contract: The contract term of the customer (Month-to-Month, One year, Two year)
- PaperlessBilling: Whether the customer has paperless billing or not (Yes, No)
- Payment Method: The customer's payment method (Electronic check, mailed check, Bank transfer(automatic), Credit card(automatic))
- MonthlyCharges: The amount charged to the customer monthly
""")
predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface)
demo.launch()