Spaces:
Running
Running
File size: 15,770 Bytes
13760e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
"""
"LiftFeat: 3D Geometry-Aware Local Feature Matching"
"""
import numpy as np
import os
import torch
from torch import nn
import torch.nn.functional as F
import tqdm
import math
import cv2
import sys
sys.path.append('/home/yepeng_liu/code_python/laiwenpeng/LiftFeat')
from utils.featurebooster import FeatureBooster
from utils.config import featureboost_config
# from models.model_dfb import LiftFeatModel
# from models.interpolator import InterpolateSparse2d
# from third_party.config import featureboost_config
"""
foundational functions
"""
def simple_nms(scores, radius):
"""Perform non maximum suppression on the heatmap using max-pooling.
This method does not suppress contiguous points that have the same score.
Args:
scores: the score heatmap of size `(B, H, W)`.
radius: an integer scalar, the radius of the NMS window.
"""
def max_pool(x):
return torch.nn.functional.max_pool2d(
x, kernel_size=radius * 2 + 1, stride=1, padding=radius
)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
def top_k_keypoints(keypoints, scores, k):
if k >= len(keypoints):
return keypoints, scores
scores, indices = torch.topk(scores, k, dim=0, sorted=True)
return keypoints[indices], scores
def sample_k_keypoints(keypoints, scores, k):
if k >= len(keypoints):
return keypoints, scores
indices = torch.multinomial(scores, k, replacement=False)
return keypoints[indices], scores[indices]
def soft_argmax_refinement(keypoints, scores, radius: int):
width = 2 * radius + 1
sum_ = torch.nn.functional.avg_pool2d(
scores[:, None], width, 1, radius, divisor_override=1
)
ar = torch.arange(-radius, radius + 1).to(scores)
kernel_x = ar[None].expand(width, -1)[None, None]
dx = torch.nn.functional.conv2d(scores[:, None], kernel_x, padding=radius)
dy = torch.nn.functional.conv2d(
scores[:, None], kernel_x.transpose(2, 3), padding=radius
)
dydx = torch.stack([dy[:, 0], dx[:, 0]], -1) / sum_[:, 0, :, :, None]
refined_keypoints = []
for i, kpts in enumerate(keypoints):
delta = dydx[i][tuple(kpts.t())]
refined_keypoints.append(kpts.float() + delta)
return refined_keypoints
# Legacy (broken) sampling of the descriptors
def sample_descriptors(keypoints, descriptors, s):
b, c, h, w = descriptors.shape
keypoints = keypoints - s / 2 + 0.5
keypoints /= torch.tensor(
[(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
).to(
keypoints
)[None]
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
args = {"align_corners": True} if torch.__version__ >= "1.3" else {}
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", **args
)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1
)
return descriptors
# The original keypoint sampling is incorrect. We patch it here but
# keep the original one above for legacy.
def sample_descriptors_fix_sampling(keypoints, descriptors, s: int = 8):
"""Interpolate descriptors at keypoint locations"""
b, c, h, w = descriptors.shape
keypoints = keypoints / (keypoints.new_tensor([w, h]) * s)
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False
)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1
)
return descriptors
class UpsampleLayer(nn.Module):
def __init__(self, in_channels):
super().__init__()
# 定义特征提取层,减少通道数同时增加特征提取能力
self.conv = nn.Conv2d(in_channels, in_channels//2, kernel_size=3, stride=1, padding=1)
# 使用BN层
self.bn = nn.BatchNorm2d(in_channels//2)
# 使用LeakyReLU激活函数
self.leaky_relu = nn.LeakyReLU(0.1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
x = self.leaky_relu(self.bn(self.conv(x)))
return x
class KeypointHead(nn.Module):
def __init__(self,in_channels,out_channels):
super().__init__()
self.layer1=BaseLayer(in_channels,32)
self.layer2=BaseLayer(32,32)
self.layer3=BaseLayer(32,64)
self.layer4=BaseLayer(64,64)
self.layer5=BaseLayer(64,128)
self.conv=nn.Conv2d(128,out_channels,kernel_size=3,stride=1,padding=1)
self.bn=nn.BatchNorm2d(65)
def forward(self,x):
x=self.layer1(x)
x=self.layer2(x)
x=self.layer3(x)
x=self.layer4(x)
x=self.layer5(x)
x=self.bn(self.conv(x))
return x
class DescriptorHead(nn.Module):
def __init__(self,in_channels,out_channels):
super().__init__()
self.layer=nn.Sequential(
BaseLayer(in_channels,32),
BaseLayer(32,32,activation=False),
BaseLayer(32,64,activation=False),
BaseLayer(64,out_channels,activation=False)
)
def forward(self,x):
x=self.layer(x)
# x=nn.functional.softmax(x,dim=1)
return x
class HeatmapHead(nn.Module):
def __init__(self,in_channels,mid_channels,out_channels):
super().__init__()
self.convHa = nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1)
self.bnHa = nn.BatchNorm2d(mid_channels)
self.convHb = nn.Conv2d(mid_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bnHb = nn.BatchNorm2d(out_channels)
self.leaky_relu = nn.LeakyReLU(0.1)
def forward(self,x):
x = self.leaky_relu(self.bnHa(self.convHa(x)))
x = self.leaky_relu(self.bnHb(self.convHb(x)))
x = torch.sigmoid(x)
return x
class DepthHead(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.upsampleDa = UpsampleLayer(in_channels)
self.upsampleDb = UpsampleLayer(in_channels//2)
self.upsampleDc = UpsampleLayer(in_channels//4)
self.convDepa = nn.Conv2d(in_channels//2+in_channels, in_channels//2, kernel_size=3, stride=1, padding=1)
self.bnDepa = nn.BatchNorm2d(in_channels//2)
self.convDepb = nn.Conv2d(in_channels//4+in_channels//2, in_channels//4, kernel_size=3, stride=1, padding=1)
self.bnDepb = nn.BatchNorm2d(in_channels//4)
self.convDepc = nn.Conv2d(in_channels//8+in_channels//4, 3, kernel_size=3, stride=1, padding=1)
self.bnDepc = nn.BatchNorm2d(3)
self.leaky_relu = nn.LeakyReLU(0.1)
def forward(self, x):
x0 = F.interpolate(x, scale_factor=2,mode='bilinear',align_corners=False)
x1 = self.upsampleDa(x)
x1 = torch.cat([x0,x1],dim=1)
x1 = self.leaky_relu(self.bnDepa(self.convDepa(x1)))
x1_0 = F.interpolate(x1,scale_factor=2,mode='bilinear',align_corners=False)
x2 = self.upsampleDb(x1)
x2 = torch.cat([x1_0,x2],dim=1)
x2 = self.leaky_relu(self.bnDepb(self.convDepb(x2)))
x2_0 = F.interpolate(x2,scale_factor=2,mode='bilinear',align_corners=False)
x3 = self.upsampleDc(x2)
x3 = torch.cat([x2_0,x3],dim=1)
x = self.leaky_relu(self.bnDepc(self.convDepc(x3)))
x = F.normalize(x,p=2,dim=1)
return x
class BaseLayer(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size=3,stride=1,padding=1,bias=False,activation=True):
super().__init__()
if activation:
self.layer=nn.Sequential(
nn.Conv2d(in_channels,out_channels,kernel_size,stride,padding,bias=bias),
nn.BatchNorm2d(out_channels,affine=False),
nn.ReLU(inplace=True)
)
else:
self.layer=nn.Sequential(
nn.Conv2d(in_channels,out_channels,kernel_size,stride,padding,bias=bias),
nn.BatchNorm2d(out_channels,affine=False)
)
def forward(self,x):
return self.layer(x)
class LiftFeatSPModel(nn.Module):
default_conf = {
"has_detector": True,
"has_descriptor": True,
"descriptor_dim": 64,
# Inference
"sparse_outputs": True,
"dense_outputs": False,
"nms_radius": 4,
"refinement_radius": 0,
"detection_threshold": 0.005,
"max_num_keypoints": -1,
"max_num_keypoints_val": None,
"force_num_keypoints": False,
"randomize_keypoints_training": False,
"remove_borders": 4,
"legacy_sampling": True, # True to use the old broken sampling
}
def __init__(self, featureboost_config, use_kenc=False, use_normal=True, use_cross=True):
super().__init__()
self.device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.descriptor_dim = 64
self.norm = nn.InstanceNorm2d(1)
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
c1,c2,c3,c4,c5 = 24,24,64,64,128
self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)
self.conv5a = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.conv5b = nn.Conv2d(c5, c5, kernel_size=3, stride=1, padding=1)
self.upsample4 = UpsampleLayer(c4)
self.upsample5 = UpsampleLayer(c5)
self.conv_fusion45 = nn.Conv2d(c5//2+c4,c4,kernel_size=3,stride=1,padding=1)
self.conv_fusion34 = nn.Conv2d(c4//2+c3,c3,kernel_size=3,stride=1,padding=1)
# detector
self.keypoint_head = KeypointHead(in_channels=c3,out_channels=65)
# descriptor
self.descriptor_head = DescriptorHead(in_channels=c3,out_channels=self.descriptor_dim)
# # heatmap
# self.heatmap_head = HeatmapHead(in_channels=c3,mid_channels=c3,out_channels=1)
# depth
self.depth_head = DepthHead(c3)
self.fine_matcher = nn.Sequential(
nn.Linear(128, 512),
nn.BatchNorm1d(512, affine=False),
nn.ReLU(inplace = True),
nn.Linear(512, 512),
nn.BatchNorm1d(512, affine=False),
nn.ReLU(inplace = True),
nn.Linear(512, 512),
nn.BatchNorm1d(512, affine=False),
nn.ReLU(inplace = True),
nn.Linear(512, 512),
nn.BatchNorm1d(512, affine=False),
nn.ReLU(inplace = True),
nn.Linear(512, 64),
)
# feature_booster
self.feature_boost = FeatureBooster(featureboost_config, use_kenc=use_kenc, use_cross=use_cross, use_normal=use_normal)
def feature_extract(self, x):
x1 = self.relu(self.conv1a(x))
x1 = self.relu(self.conv1b(x1))
x1 = self.pool(x1)
x2 = self.relu(self.conv2a(x1))
x2 = self.relu(self.conv2b(x2))
x2 = self.pool(x2)
x3 = self.relu(self.conv3a(x2))
x3 = self.relu(self.conv3b(x3))
x3 = self.pool(x3)
x4 = self.relu(self.conv4a(x3))
x4 = self.relu(self.conv4b(x4))
x4 = self.pool(x4)
x5 = self.relu(self.conv5a(x4))
x5 = self.relu(self.conv5b(x5))
x5 = self.pool(x5)
return x3,x4,x5
def fuse_multi_features(self,x3,x4,x5):
# upsample x5 feature
x5 = self.upsample5(x5)
x4 = torch.cat([x4,x5],dim=1)
x4 = self.conv_fusion45(x4)
# upsample x4 feature
x4 = self.upsample4(x4)
x3 = torch.cat([x3,x4],dim=1)
x = self.conv_fusion34(x3)
return x
def _unfold2d(self, x, ws = 2):
"""
Unfolds tensor in 2D with desired ws (window size) and concat the channels
"""
B, C, H, W = x.shape
x = x.unfold(2, ws , ws).unfold(3, ws,ws).reshape(B, C, H//ws, W//ws, ws**2)
return x.permute(0, 1, 4, 2, 3).reshape(B, -1, H//ws, W//ws)
def forward1(self, x):
"""
input:
x -> torch.Tensor(B, C, H, W) grayscale or rgb images
return:
feats -> torch.Tensor(B, 64, H/8, W/8) dense local features
keypoints -> torch.Tensor(B, 65, H/8, W/8) keypoint logit map
heatmap -> torch.Tensor(B, 1, H/8, W/8) reliability map
"""
with torch.no_grad():
x = x.mean(dim=1, keepdim = True)
x = self.norm(x)
x3,x4,x5 = self.feature_extract(x)
# features fusion
x = self.fuse_multi_features(x3,x4,x5)
# keypoint
keypoint_map = self.keypoint_head(x)
# descriptor
des_map = self.descriptor_head(x)
# # heatmap
# heatmap = self.heatmap_head(x)
# import pdb;pdb.set_trace()
# depth
d_feats = self.depth_head(x)
return des_map, keypoint_map, d_feats
# return des_map, keypoint_map, heatmap, d_feats
def forward2(self, descs, kpts, normals):
# import pdb;pdb.set_trace()
normals_feat=self._unfold2d(normals, ws=8)
normals_v=normals_feat.squeeze(0).permute(1,2,0).reshape(-1,normals_feat.shape[1])
descs_v=descs.squeeze(0).permute(1,2,0).reshape(-1,descs.shape[1])
kpts_v=kpts.squeeze(0).permute(1,2,0).reshape(-1,kpts.shape[1])
descs_refine = self.feature_boost(descs_v, kpts_v, normals_v)
return descs_refine
def forward(self,x):
M1,K1,D1=self.forward1(x)
descs_refine=self.forward2(M1,K1,D1)
return descs_refine,M1,K1,D1
if __name__ == "__main__":
img_path=os.path.join(os.path.dirname(__file__),'../assert/ref.jpg')
img=cv2.imread(img_path,cv2.IMREAD_GRAYSCALE)
img=cv2.resize(img,(800,608))
import pdb;pdb.set_trace()
img=torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float()/255.0
img=img.cuda() if torch.cuda.is_available() else img
liftfeat_sp=LiftFeatSPModel(featureboost_config).to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
des_map, keypoint_map, d_feats=liftfeat_sp.forward1(img)
des_fine=liftfeat_sp.forward2(des_map,keypoint_map,d_feats)
print(des_map.shape)
|