File size: 15,770 Bytes
13760e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

"""
	"LiftFeat: 3D Geometry-Aware Local Feature Matching"
"""

import numpy as np
import os
import torch
from torch import nn
import torch.nn.functional as F

import tqdm
import math
import cv2

import sys
sys.path.append('/home/yepeng_liu/code_python/laiwenpeng/LiftFeat')
from utils.featurebooster import FeatureBooster
from utils.config import featureboost_config

# from models.model_dfb import LiftFeatModel
# from models.interpolator import InterpolateSparse2d
# from third_party.config import featureboost_config

"""
foundational functions
"""
def simple_nms(scores, radius):
    """Perform non maximum suppression on the heatmap using max-pooling.
    This method does not suppress contiguous points that have the same score.
    Args:
        scores: the score heatmap of size `(B, H, W)`.
        radius: an integer scalar, the radius of the NMS window.
    """

    def max_pool(x):
        return torch.nn.functional.max_pool2d(
            x, kernel_size=radius * 2 + 1, stride=1, padding=radius
        )

    zeros = torch.zeros_like(scores)
    max_mask = scores == max_pool(scores)
    for _ in range(2):
        supp_mask = max_pool(max_mask.float()) > 0
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == max_pool(supp_scores)
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


def top_k_keypoints(keypoints, scores, k):
    if k >= len(keypoints):
        return keypoints, scores
    scores, indices = torch.topk(scores, k, dim=0, sorted=True)
    return keypoints[indices], scores


def sample_k_keypoints(keypoints, scores, k):
    if k >= len(keypoints):
        return keypoints, scores
    indices = torch.multinomial(scores, k, replacement=False)
    return keypoints[indices], scores[indices]


def soft_argmax_refinement(keypoints, scores, radius: int):
    width = 2 * radius + 1
    sum_ = torch.nn.functional.avg_pool2d(
        scores[:, None], width, 1, radius, divisor_override=1
    )
    ar = torch.arange(-radius, radius + 1).to(scores)
    kernel_x = ar[None].expand(width, -1)[None, None]
    dx = torch.nn.functional.conv2d(scores[:, None], kernel_x, padding=radius)
    dy = torch.nn.functional.conv2d(
        scores[:, None], kernel_x.transpose(2, 3), padding=radius
    )
    dydx = torch.stack([dy[:, 0], dx[:, 0]], -1) / sum_[:, 0, :, :, None]
    refined_keypoints = []
    for i, kpts in enumerate(keypoints):
        delta = dydx[i][tuple(kpts.t())]
        refined_keypoints.append(kpts.float() + delta)
    return refined_keypoints


# Legacy (broken) sampling of the descriptors
def sample_descriptors(keypoints, descriptors, s):
    b, c, h, w = descriptors.shape
    keypoints = keypoints - s / 2 + 0.5
    keypoints /= torch.tensor(
        [(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
    ).to(
        keypoints
    )[None]
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    args = {"align_corners": True} if torch.__version__ >= "1.3" else {}
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", **args
    )
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1
    )
    return descriptors


# The original keypoint sampling is incorrect. We patch it here but
# keep the original one above for legacy.
def sample_descriptors_fix_sampling(keypoints, descriptors, s: int = 8):
    """Interpolate descriptors at keypoint locations"""
    b, c, h, w = descriptors.shape
    keypoints = keypoints / (keypoints.new_tensor([w, h]) * s)
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False
    )
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1
    )
    return descriptors


class UpsampleLayer(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        # 定义特征提取层,减少通道数同时增加特征提取能力
        self.conv = nn.Conv2d(in_channels, in_channels//2, kernel_size=3, stride=1, padding=1)
        # 使用BN层
        self.bn = nn.BatchNorm2d(in_channels//2)
        # 使用LeakyReLU激活函数
        self.leaky_relu = nn.LeakyReLU(0.1)

    def forward(self, x):
        x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
        x = self.leaky_relu(self.bn(self.conv(x)))

        return x


class KeypointHead(nn.Module):
    def __init__(self,in_channels,out_channels):
        super().__init__()
        self.layer1=BaseLayer(in_channels,32)
        self.layer2=BaseLayer(32,32)
        self.layer3=BaseLayer(32,64)
        self.layer4=BaseLayer(64,64)
        self.layer5=BaseLayer(64,128)
        
        self.conv=nn.Conv2d(128,out_channels,kernel_size=3,stride=1,padding=1)
        self.bn=nn.BatchNorm2d(65)
        
    def forward(self,x):
        x=self.layer1(x)
        x=self.layer2(x)
        x=self.layer3(x)
        x=self.layer4(x)
        x=self.layer5(x)
        x=self.bn(self.conv(x))
        return x
    
    
class DescriptorHead(nn.Module):
    def __init__(self,in_channels,out_channels):
        super().__init__()
        self.layer=nn.Sequential(
            BaseLayer(in_channels,32),
            BaseLayer(32,32,activation=False),
            BaseLayer(32,64,activation=False),
            BaseLayer(64,out_channels,activation=False)
        )
        
    def forward(self,x):
        x=self.layer(x)
        # x=nn.functional.softmax(x,dim=1)
        return x
    
    
class HeatmapHead(nn.Module):
    def __init__(self,in_channels,mid_channels,out_channels):
        super().__init__()
        self.convHa = nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1)
        self.bnHa = nn.BatchNorm2d(mid_channels)
        self.convHb = nn.Conv2d(mid_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.bnHb = nn.BatchNorm2d(out_channels)
        self.leaky_relu = nn.LeakyReLU(0.1)
        
    def forward(self,x):
        x = self.leaky_relu(self.bnHa(self.convHa(x)))
        x = self.leaky_relu(self.bnHb(self.convHb(x)))
        
        x = torch.sigmoid(x)
        return x
        

class DepthHead(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.upsampleDa = UpsampleLayer(in_channels)
        self.upsampleDb = UpsampleLayer(in_channels//2)
        self.upsampleDc = UpsampleLayer(in_channels//4)
        
        self.convDepa = nn.Conv2d(in_channels//2+in_channels, in_channels//2, kernel_size=3, stride=1, padding=1)
        self.bnDepa = nn.BatchNorm2d(in_channels//2)
        self.convDepb = nn.Conv2d(in_channels//4+in_channels//2, in_channels//4, kernel_size=3, stride=1, padding=1)
        self.bnDepb = nn.BatchNorm2d(in_channels//4)
        self.convDepc = nn.Conv2d(in_channels//8+in_channels//4, 3, kernel_size=3, stride=1, padding=1)
        self.bnDepc = nn.BatchNorm2d(3)
        
        self.leaky_relu = nn.LeakyReLU(0.1)
        
    def forward(self, x):
        x0 = F.interpolate(x, scale_factor=2,mode='bilinear',align_corners=False)
        x1 = self.upsampleDa(x)
        x1 = torch.cat([x0,x1],dim=1)
        x1 = self.leaky_relu(self.bnDepa(self.convDepa(x1)))
        
        x1_0 = F.interpolate(x1,scale_factor=2,mode='bilinear',align_corners=False)
        x2 = self.upsampleDb(x1)
        x2 = torch.cat([x1_0,x2],dim=1)
        x2 = self.leaky_relu(self.bnDepb(self.convDepb(x2)))
        
        x2_0 = F.interpolate(x2,scale_factor=2,mode='bilinear',align_corners=False)
        x3 = self.upsampleDc(x2)
        x3 = torch.cat([x2_0,x3],dim=1)
        x = self.leaky_relu(self.bnDepc(self.convDepc(x3)))
        
        x = F.normalize(x,p=2,dim=1)
        return x
    

class BaseLayer(nn.Module):
    def __init__(self,in_channels,out_channels,kernel_size=3,stride=1,padding=1,bias=False,activation=True):
        super().__init__()
        if activation:
            self.layer=nn.Sequential(
                nn.Conv2d(in_channels,out_channels,kernel_size,stride,padding,bias=bias),
                nn.BatchNorm2d(out_channels,affine=False),
                nn.ReLU(inplace=True)
            )
        else:
            self.layer=nn.Sequential(
                nn.Conv2d(in_channels,out_channels,kernel_size,stride,padding,bias=bias),
                nn.BatchNorm2d(out_channels,affine=False)
            )
        
    def forward(self,x):
        return self.layer(x)


class LiftFeatSPModel(nn.Module):
    default_conf = {
        "has_detector": True,
        "has_descriptor": True,
        "descriptor_dim": 64,
        # Inference
        "sparse_outputs": True,
        "dense_outputs": False,
        "nms_radius": 4,
        "refinement_radius": 0,
        "detection_threshold": 0.005,
        "max_num_keypoints": -1,
        "max_num_keypoints_val": None,
        "force_num_keypoints": False,
        "randomize_keypoints_training": False,
        "remove_borders": 4,
        "legacy_sampling": True,  # True to use the old broken sampling
    }

    def __init__(self, featureboost_config, use_kenc=False, use_normal=True, use_cross=True):
        super().__init__()
        self.device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.descriptor_dim = 64
        
        self.norm = nn.InstanceNorm2d(1)

        self.relu = nn.ReLU(inplace=True)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        c1,c2,c3,c4,c5 = 24,24,64,64,128

        self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
        self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
        self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
        self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
        self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
        self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
        self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
        self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)
        self.conv5a = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
        self.conv5b = nn.Conv2d(c5, c5, kernel_size=3, stride=1, padding=1)
        
        self.upsample4 = UpsampleLayer(c4)
        self.upsample5 = UpsampleLayer(c5)
        self.conv_fusion45 = nn.Conv2d(c5//2+c4,c4,kernel_size=3,stride=1,padding=1)
        self.conv_fusion34 = nn.Conv2d(c4//2+c3,c3,kernel_size=3,stride=1,padding=1)

        # detector
        self.keypoint_head = KeypointHead(in_channels=c3,out_channels=65)
        # descriptor
        self.descriptor_head = DescriptorHead(in_channels=c3,out_channels=self.descriptor_dim)
        # # heatmap
        # self.heatmap_head = HeatmapHead(in_channels=c3,mid_channels=c3,out_channels=1)
        # depth
        self.depth_head = DepthHead(c3)
        
        self.fine_matcher =  nn.Sequential(
                                            nn.Linear(128, 512),
                                            nn.BatchNorm1d(512, affine=False),
                                            nn.ReLU(inplace = True),
                                            nn.Linear(512, 512),
                                            nn.BatchNorm1d(512, affine=False),
                                            nn.ReLU(inplace = True),
                                            nn.Linear(512, 512),
                                            nn.BatchNorm1d(512, affine=False),
                                            nn.ReLU(inplace = True),
                                            nn.Linear(512, 512),
                                            nn.BatchNorm1d(512, affine=False),
                                            nn.ReLU(inplace = True),
                                            nn.Linear(512, 64),
                                        )
        
        # feature_booster
        self.feature_boost = FeatureBooster(featureboost_config, use_kenc=use_kenc, use_cross=use_cross, use_normal=use_normal)
        
    def feature_extract(self, x):
        x1 = self.relu(self.conv1a(x))
        x1 = self.relu(self.conv1b(x1))
        x1 = self.pool(x1)
        x2 = self.relu(self.conv2a(x1))
        x2 = self.relu(self.conv2b(x2))
        x2 = self.pool(x2)
        x3 = self.relu(self.conv3a(x2))
        x3 = self.relu(self.conv3b(x3))
        x3 = self.pool(x3)
        x4 = self.relu(self.conv4a(x3))
        x4 = self.relu(self.conv4b(x4))
        x4 = self.pool(x4)
        x5 = self.relu(self.conv5a(x4))
        x5 = self.relu(self.conv5b(x5))
        x5 = self.pool(x5)
        return x3,x4,x5
    
    def fuse_multi_features(self,x3,x4,x5):
        # upsample x5 feature
        x5 = self.upsample5(x5)
        x4 = torch.cat([x4,x5],dim=1)
        x4 = self.conv_fusion45(x4)
        
        # upsample x4 feature
        x4 = self.upsample4(x4)
        x3 = torch.cat([x3,x4],dim=1)
        x = self.conv_fusion34(x3)
        return x
    
    def _unfold2d(self, x, ws = 2):
        """
            Unfolds tensor in 2D with desired ws (window size) and concat the channels
        """
        B, C, H, W = x.shape
        x = x.unfold(2,  ws , ws).unfold(3, ws,ws).reshape(B, C, H//ws, W//ws, ws**2)
        return x.permute(0, 1, 4, 2, 3).reshape(B, -1, H//ws, W//ws)


    def forward1(self, x):
        """
            input:
                x -> torch.Tensor(B, C, H, W) grayscale or rgb images
            return:
                feats     ->  torch.Tensor(B, 64, H/8, W/8) dense local features
                keypoints ->  torch.Tensor(B, 65, H/8, W/8) keypoint logit map
                heatmap   ->  torch.Tensor(B,  1, H/8, W/8) reliability map

        """
        with torch.no_grad():
            x = x.mean(dim=1, keepdim = True)
            x = self.norm(x)
        
        x3,x4,x5 = self.feature_extract(x)
        
        # features fusion
        x = self.fuse_multi_features(x3,x4,x5)
        
        # keypoint 
        keypoint_map = self.keypoint_head(x)
        # descriptor
        des_map = self.descriptor_head(x)
        # # heatmap
        # heatmap = self.heatmap_head(x)
        
        # import pdb;pdb.set_trace()
        # depth
        d_feats = self.depth_head(x)
       
        return des_map, keypoint_map, d_feats
        # return des_map, keypoint_map, heatmap, d_feats
    
    def forward2(self, descs, kpts, normals):
        # import pdb;pdb.set_trace()
        normals_feat=self._unfold2d(normals, ws=8)
        normals_v=normals_feat.squeeze(0).permute(1,2,0).reshape(-1,normals_feat.shape[1])
        descs_v=descs.squeeze(0).permute(1,2,0).reshape(-1,descs.shape[1])
        kpts_v=kpts.squeeze(0).permute(1,2,0).reshape(-1,kpts.shape[1])
        descs_refine = self.feature_boost(descs_v, kpts_v, normals_v)
        return descs_refine
    
    def forward(self,x):
        M1,K1,D1=self.forward1(x)
        descs_refine=self.forward2(M1,K1,D1)
        return descs_refine,M1,K1,D1
    

if __name__ == "__main__":
    img_path=os.path.join(os.path.dirname(__file__),'../assert/ref.jpg')
    img=cv2.imread(img_path,cv2.IMREAD_GRAYSCALE)
    img=cv2.resize(img,(800,608))
    import pdb;pdb.set_trace()
    img=torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float()/255.0
    img=img.cuda() if torch.cuda.is_available() else img
    liftfeat_sp=LiftFeatSPModel(featureboost_config).to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
    des_map, keypoint_map, d_feats=liftfeat_sp.forward1(img)
    des_fine=liftfeat_sp.forward2(des_map,keypoint_map,d_feats)
    print(des_map.shape)