File size: 17,183 Bytes
13760e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""
	"LiftFeat: 3D Geometry-Aware Local Feature Matching"
    training script
"""

import argparse
import os
import time
import sys
sys.path.append(os.path.dirname(__file__))

def parse_arguments():
    parser = argparse.ArgumentParser(description="LiftFeat training script.")
    parser.add_argument('--name',type=str,default='LiftFeat',help='set process name')
    
    # MegaDepth dataset setting
    parser.add_argument('--use_megadepth',action='store_true')
    parser.add_argument('--megadepth_root_path', type=str,
                        default='/home/yepeng_liu/code_python/dataset/MegaDepth/phoenix/S6/zl548',
                        help='Path to the MegaDepth dataset root directory.')
    parser.add_argument('--megadepth_batch_size', type=int, default=6)
    
    # COCO20k dataset setting
    parser.add_argument('--use_coco',action='store_true')
    parser.add_argument('--coco_root_path', type=str, default='/home/yepeng_liu/code_python/dataset/coco_20k',
                        help='Path to the COCO20k dataset root directory.')
    parser.add_argument('--coco_batch_size',type=int,default=4)
    
    parser.add_argument('--ckpt_save_path', type=str, default='/home/yepeng_liu/code_python/LiftFeat/trained_weights/test',
                        help='Path to save the checkpoints.')
    parser.add_argument('--n_steps', type=int, default=160_000,
                        help='Number of training steps. Default is 160000.')
    parser.add_argument('--lr', type=float, default=3e-4,
                        help='Learning rate. Default is 0.0003.')
    parser.add_argument('--gamma_steplr', type=float, default=0.5,
                        help='Gamma value for StepLR scheduler. Default is 0.5.')
    parser.add_argument('--training_res', type=lambda s: tuple(map(int, s.split(','))),
                        default=(800, 608), help='Training resolution as width,height. Default is (800, 608).')
    parser.add_argument('--device_num', type=str, default='0',
                        help='Device number to use for training. Default is "0".')
    parser.add_argument('--dry_run', action='store_true',
                        help='If set, perform a dry run training with a mini-batch for sanity check.')
    parser.add_argument('--save_ckpt_every', type=int, default=500,
                        help='Save checkpoints every N steps. Default is 500.')

    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.device_num

    return args

args = parse_arguments()

import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset, DataLoader

import numpy as np
import tqdm
import glob

from models.model import LiftFeatSPModel
from loss.loss import LiftFeatLoss
from utils.config import featureboost_config
from models.interpolator import InterpolateSparse2d
from utils.depth_anything_wrapper import DepthAnythingExtractor
from utils.alike_wrapper import ALikeExtractor

from dataset import megadepth_wrapper
from dataset import coco_wrapper
from dataset.megadepth import MegaDepthDataset
from dataset.coco_augmentor import COCOAugmentor

import setproctitle


class Trainer():
    def __init__(self, megadepth_root_path,use_megadepth,megadepth_batch_size,
                       coco_root_path,use_coco,coco_batch_size,
                       ckpt_save_path, 
                       model_name = 'LiftFeat',
                       n_steps = 160_000, lr= 3e-4, gamma_steplr=0.5, 
                       training_res = (800, 608), device_num="0", dry_run = False,
                       save_ckpt_every = 500):
        print(f'MegeDepth: {use_megadepth}-{megadepth_batch_size}')
        print(f'COCO20k: {use_coco}-{coco_batch_size}')
        self.dev = torch.device ('cuda' if torch.cuda.is_available() else 'cpu')
        
        # training model
        self.net = LiftFeatSPModel(featureboost_config, use_kenc=False, use_normal=True, use_cross=True).to(self.dev)
        self.loss_fn=LiftFeatLoss(self.dev,lam_descs=1,lam_kpts=2,lam_heatmap=1)
        
        # depth-anything model
        self.depth_net=DepthAnythingExtractor('vits',self.dev,256)
        
        # alike model
        self.alike_net=ALikeExtractor('alike-t',self.dev)

        #Setup optimizer 
        self.steps = n_steps
        self.opt = optim.Adam(filter(lambda x: x.requires_grad, self.net.parameters()) , lr = lr)
        self.scheduler = torch.optim.lr_scheduler.StepLR(self.opt, step_size=10_000, gamma=gamma_steplr)

        ##################### COCO INIT ##########################
        self.use_coco=use_coco
        self.coco_batch_size=coco_batch_size
        if self.use_coco:
            self.augmentor=COCOAugmentor(
                img_dir=coco_root_path,
                device=self.dev,load_dataset=True,
                batch_size=self.coco_batch_size,
                out_resolution=training_res,
                warp_resolution=training_res,
                sides_crop=0.1,
                max_num_imgs=3000,
                num_test_imgs=5,
                photometric=True,
                geometric=True,
                reload_step=4000
            )
        ##################### COCO END #######################


        ##################### MEGADEPTH INIT ##########################
        self.use_megadepth=use_megadepth
        self.megadepth_batch_size=megadepth_batch_size
        if self.use_megadepth:
            TRAIN_BASE_PATH = f"{megadepth_root_path}/train_data/megadepth_indices"
            TRAINVAL_DATA_SOURCE = f"{megadepth_root_path}/MegaDepth_v1"

            TRAIN_NPZ_ROOT = f"{TRAIN_BASE_PATH}/scene_info_0.1_0.7"

            npz_paths = glob.glob(TRAIN_NPZ_ROOT + '/*.npz')[:]
            megadepth_dataset = torch.utils.data.ConcatDataset( [MegaDepthDataset(root_dir = TRAINVAL_DATA_SOURCE,
                            npz_path = path) for path in tqdm.tqdm(npz_paths, desc="[MegaDepth] Loading metadata")] )

            self.megadepth_dataloader = DataLoader(megadepth_dataset, batch_size=megadepth_batch_size, shuffle=True)
            self.megadepth_data_iter = iter(self.megadepth_dataloader)
        ##################### MEGADEPTH INIT END #######################

        os.makedirs(ckpt_save_path, exist_ok=True)
        os.makedirs(ckpt_save_path + '/logdir', exist_ok=True)

        self.dry_run = dry_run
        self.save_ckpt_every = save_ckpt_every
        self.ckpt_save_path = ckpt_save_path
        self.writer = SummaryWriter(ckpt_save_path + f'/logdir/{model_name}_' + time.strftime("%Y_%m_%d-%H_%M_%S"))
        self.model_name = model_name
        
        
    def generate_train_data(self):
        imgs1_t,imgs2_t=[],[]
        imgs1_np,imgs2_np=[],[]
        # norms0,norms1=[],[]
        positives_coarse=[]
        
        if self.use_coco:
            coco_imgs1, coco_imgs2, H1, H2 = coco_wrapper.make_batch(self.augmentor, 0.1)
            h_coarse, w_coarse = coco_imgs1[0].shape[-2] // 8, coco_imgs1[0].shape[-1] // 8
            _ , positives_coco_coarse = coco_wrapper.get_corresponding_pts(coco_imgs1, coco_imgs2, H1, H2, self.augmentor, h_coarse, w_coarse)
            coco_imgs1=coco_imgs1.mean(1,keepdim=True);coco_imgs2=coco_imgs2.mean(1,keepdim=True)
            imgs1_t.append(coco_imgs1);imgs2_t.append(coco_imgs2)
            positives_coarse += positives_coco_coarse
                    
        if self.use_megadepth:
            try:
                megadepth_data=next(self.megadepth_data_iter)
            except StopIteration:
                print('End of MD DATASET')
                self.megadepth_data_iter=iter(self.megadepth_dataloader)
                megadepth_data=next(self.megadepth_data_iter)
            if megadepth_data is not None:
                for k in megadepth_data.keys():
                    if isinstance(megadepth_data[k],torch.Tensor):
                        megadepth_data[k]=megadepth_data[k].to(self.dev)
                megadepth_imgs1_t,megadepth_imgs2_t=megadepth_data['image0'],megadepth_data['image1']
                megadepth_imgs1_t=megadepth_imgs1_t.mean(1,keepdim=True);megadepth_imgs2_t=megadepth_imgs2_t.mean(1,keepdim=True)
                imgs1_t.append(megadepth_imgs1_t);imgs2_t.append(megadepth_imgs2_t)
                megadepth_imgs1_np,megadepth_imgs2_np=megadepth_data['image0_np'],megadepth_data['image1_np']
                for np_idx in range(megadepth_imgs1_np.shape[0]):
                    img1_np,img2_np=megadepth_imgs1_np[np_idx].squeeze(0).cpu().numpy(),megadepth_imgs2_np[np_idx].squeeze(0).cpu().numpy()
                    imgs1_np.append(img1_np);imgs2_np.append(img2_np)
                positives_megadepth_coarse=megadepth_wrapper.spvs_coarse(megadepth_data,8)
                positives_coarse += positives_megadepth_coarse
                
        with torch.no_grad():
            imgs1_t=torch.cat(imgs1_t,dim=0)
            imgs2_t=torch.cat(imgs2_t,dim=0)
            
        return imgs1_t,imgs2_t,imgs1_np,imgs2_np,positives_coarse


    def train(self):
        self.net.train()

        with tqdm.tqdm(total=self.steps) as pbar:
            for i in range(self.steps):
                # import pdb;pdb.set_trace()
                imgs1_t,imgs2_t,imgs1_np,imgs2_np,positives_coarse=self.generate_train_data()

                #Check if batch is corrupted with too few correspondences
                is_corrupted = False
                for p in positives_coarse:
                    if len(p) < 30:
                        is_corrupted = True

                if is_corrupted:
                    continue

                # import pdb;pdb.set_trace()
                #Forward pass
                # start=time.perf_counter()
                feats1,kpts1,normals1 = self.net.forward1(imgs1_t)
                feats2,kpts2,normals2 = self.net.forward1(imgs2_t)
                
                coordinates,fb_coordinates=[],[]
                alike_kpts1,alike_kpts2=[],[]
                DA_normals1,DA_normals2=[],[]
                
                # import pdb;pdb.set_trace()
                
                fb_feats1,fb_feats2=[],[]
                for b in range(feats1.shape[0]):
                    feat1=feats1[b].permute(1,2,0).reshape(-1,feats1.shape[1])
                    feat2=feats2[b].permute(1,2,0).reshape(-1,feats2.shape[1])
                    
                    coordinate=self.net.fine_matcher(torch.cat([feat1,feat2],dim=-1))
                    coordinates.append(coordinate)
                    
                    fb_feat1=self.net.forward2(feats1[b].unsqueeze(0),kpts1[b].unsqueeze(0),normals1[b].unsqueeze(0))
                    fb_feat2=self.net.forward2(feats2[b].unsqueeze(0),kpts2[b].unsqueeze(0),normals2[b].unsqueeze(0))
                    
                    fb_coordinate=self.net.fine_matcher(torch.cat([fb_feat1,fb_feat2],dim=-1))
                    fb_coordinates.append(fb_coordinate)
                    
                    fb_feats1.append(fb_feat1.unsqueeze(0));fb_feats2.append(fb_feat2.unsqueeze(0))
                    
                    img1,img2=imgs1_t[b],imgs2_t[b]
                    img1=img1.permute(1,2,0).expand(-1,-1,3).cpu().numpy() * 255
                    img2=img2.permute(1,2,0).expand(-1,-1,3).cpu().numpy() * 255
                    alike_kpt1=torch.tensor(self.alike_net.extract_alike_kpts(img1),device=self.dev)
                    alike_kpt2=torch.tensor(self.alike_net.extract_alike_kpts(img2),device=self.dev)
                    alike_kpts1.append(alike_kpt1);alike_kpts2.append(alike_kpt2)
                
                # import pdb;pdb.set_trace()
                for b in range(len(imgs1_np)):
                    megadepth_depth1,megadepth_norm1=self.depth_net.extract(imgs1_np[b])
                    megadepth_depth2,megadepth_norm2=self.depth_net.extract(imgs2_np[b])
                    DA_normals1.append(megadepth_norm1);DA_normals2.append(megadepth_norm2)
                    
                # import pdb;pdb.set_trace()
                fb_feats1=torch.cat(fb_feats1,dim=0)
                fb_feats2=torch.cat(fb_feats2,dim=0)
                fb_feats1=fb_feats1.reshape(feats1.shape[0],feats1.shape[2],feats1.shape[3],-1).permute(0,3,1,2)
                fb_feats2=fb_feats2.reshape(feats2.shape[0],feats2.shape[2],feats2.shape[3],-1).permute(0,3,1,2)
                
                coordinates=torch.cat(coordinates,dim=0)
                coordinates=coordinates.reshape(feats1.shape[0],feats1.shape[2],feats1.shape[3],-1).permute(0,3,1,2)
                
                fb_coordinates=torch.cat(fb_coordinates,dim=0)
                fb_coordinates=fb_coordinates.reshape(feats1.shape[0],feats1.shape[2],feats1.shape[3],-1).permute(0,3,1,2)
                
                # end=time.perf_counter()
                # print(f"forward1 cost {end-start} seconds")

                loss_items = []

                # import pdb;pdb.set_trace()
                loss_info=self.loss_fn(
                    feats1,fb_feats1,kpts1,normals1,
                    feats2,fb_feats2,kpts2,normals2,
                    positives_coarse,
                    coordinates,fb_coordinates,
                    alike_kpts1,alike_kpts2,
                    DA_normals1,DA_normals2,
                    self.megadepth_batch_size,self.coco_batch_size)
                
                loss_descs,acc_coarse=loss_info['loss_descs'],loss_info['acc_coarse']
                loss_coordinates,acc_coordinates=loss_info['loss_coordinates'],loss_info['acc_coordinates']
                loss_fb_descs,acc_fb_coarse=loss_info['loss_fb_descs'],loss_info['acc_fb_coarse']
                loss_fb_coordinates,acc_fb_coordinates=loss_info['loss_fb_coordinates'],loss_info['acc_fb_coordinates']
                loss_kpts,acc_kpt=loss_info['loss_kpts'],loss_info['acc_kpt']
                loss_normals=loss_info['loss_normals']
                
                # loss_items.append(loss_descs.unsqueeze(0))
                # loss_items.append(loss_coordinates.unsqueeze(0))
                loss_items.append(loss_fb_descs.unsqueeze(0))
                loss_items.append(loss_fb_coordinates.unsqueeze(0))
                loss_items.append(loss_kpts.unsqueeze(0))
                loss_items.append(loss_normals.unsqueeze(0))

                # nb_coarse = len(m1)
                # nb_coarse = len(fb_m1)
                loss = torch.cat(loss_items, -1).mean()

                # Compute Backward Pass
                loss.backward()
                torch.nn.utils.clip_grad_norm_(self.net.parameters(), 1.)
                self.opt.step()
                self.opt.zero_grad()
                self.scheduler.step()

                # import pdb;pdb.set_trace()
                if (i+1) % self.save_ckpt_every == 0:
                    print('saving iter ', i+1)
                    torch.save(self.net.state_dict(), self.ckpt_save_path + f'/{self.model_name}_{i+1}.pth')

                pbar.set_description(
'Loss: {:.4f} \
loss_descs: {:.3f} acc_coarse: {:.3f} \
loss_coordinates: {:.3f} acc_coordinates: {:.3f} \
loss_fb_descs: {:.3f} acc_fb_coarse: {:.3f} \
loss_fb_coordinates: {:.3f} acc_fb_coordinates: {:.3f} \
loss_kpts: {:.3f} acc_kpts: {:.3f} \
loss_normals: {:.3f}'.format( \
loss.item(), \
loss_descs.item(), acc_coarse, \
loss_coordinates.item(), acc_coordinates, \
loss_fb_descs.item(), acc_fb_coarse, \
loss_fb_coordinates.item(), acc_fb_coordinates, \
loss_kpts.item(), acc_kpt, \
loss_normals.item()) )
                pbar.update(1)

                # Log metrics
                self.writer.add_scalar('Loss/total', loss.item(), i)
                self.writer.add_scalar('Accuracy/acc_coarse', acc_coarse, i)
                self.writer.add_scalar('Accuracy/acc_coordinates', acc_coordinates, i)
                self.writer.add_scalar('Accuracy/acc_fb_coarse', acc_fb_coarse, i)
                self.writer.add_scalar('Accuracy/acc_fb_coordinates', acc_fb_coordinates, i)
                self.writer.add_scalar('Loss/descs', loss_descs.item(), i)
                self.writer.add_scalar('Loss/coordinates', loss_coordinates.item(), i)
                self.writer.add_scalar('Loss/fb_descs', loss_fb_descs.item(), i)
                self.writer.add_scalar('Loss/fb_coordinates', loss_fb_coordinates.item(), i)
                self.writer.add_scalar('Loss/kpts', loss_kpts.item(), i)
                self.writer.add_scalar('Loss/normals', loss_normals.item(), i)



if __name__ == '__main__':
    
    setproctitle.setproctitle(args.name)

    trainer = Trainer(
        megadepth_root_path=args.megadepth_root_path, 
        use_megadepth=args.use_megadepth,
        megadepth_batch_size=args.megadepth_batch_size,
        coco_root_path=args.coco_root_path, 
        use_coco=args.use_coco,
        coco_batch_size=args.coco_batch_size,
        ckpt_save_path=args.ckpt_save_path,
        n_steps=args.n_steps,
        lr=args.lr,
        gamma_steplr=args.gamma_steplr,
        training_res=args.training_res,
        device_num=args.device_num,
        dry_run=args.dry_run,
        save_ckpt_every=args.save_ckpt_every
    )

    #The most fun part
    trainer.train()