Spaces:
Running
Running
File size: 17,183 Bytes
13760e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
"""
"LiftFeat: 3D Geometry-Aware Local Feature Matching"
training script
"""
import argparse
import os
import time
import sys
sys.path.append(os.path.dirname(__file__))
def parse_arguments():
parser = argparse.ArgumentParser(description="LiftFeat training script.")
parser.add_argument('--name',type=str,default='LiftFeat',help='set process name')
# MegaDepth dataset setting
parser.add_argument('--use_megadepth',action='store_true')
parser.add_argument('--megadepth_root_path', type=str,
default='/home/yepeng_liu/code_python/dataset/MegaDepth/phoenix/S6/zl548',
help='Path to the MegaDepth dataset root directory.')
parser.add_argument('--megadepth_batch_size', type=int, default=6)
# COCO20k dataset setting
parser.add_argument('--use_coco',action='store_true')
parser.add_argument('--coco_root_path', type=str, default='/home/yepeng_liu/code_python/dataset/coco_20k',
help='Path to the COCO20k dataset root directory.')
parser.add_argument('--coco_batch_size',type=int,default=4)
parser.add_argument('--ckpt_save_path', type=str, default='/home/yepeng_liu/code_python/LiftFeat/trained_weights/test',
help='Path to save the checkpoints.')
parser.add_argument('--n_steps', type=int, default=160_000,
help='Number of training steps. Default is 160000.')
parser.add_argument('--lr', type=float, default=3e-4,
help='Learning rate. Default is 0.0003.')
parser.add_argument('--gamma_steplr', type=float, default=0.5,
help='Gamma value for StepLR scheduler. Default is 0.5.')
parser.add_argument('--training_res', type=lambda s: tuple(map(int, s.split(','))),
default=(800, 608), help='Training resolution as width,height. Default is (800, 608).')
parser.add_argument('--device_num', type=str, default='0',
help='Device number to use for training. Default is "0".')
parser.add_argument('--dry_run', action='store_true',
help='If set, perform a dry run training with a mini-batch for sanity check.')
parser.add_argument('--save_ckpt_every', type=int, default=500,
help='Save checkpoints every N steps. Default is 500.')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.device_num
return args
args = parse_arguments()
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset, DataLoader
import numpy as np
import tqdm
import glob
from models.model import LiftFeatSPModel
from loss.loss import LiftFeatLoss
from utils.config import featureboost_config
from models.interpolator import InterpolateSparse2d
from utils.depth_anything_wrapper import DepthAnythingExtractor
from utils.alike_wrapper import ALikeExtractor
from dataset import megadepth_wrapper
from dataset import coco_wrapper
from dataset.megadepth import MegaDepthDataset
from dataset.coco_augmentor import COCOAugmentor
import setproctitle
class Trainer():
def __init__(self, megadepth_root_path,use_megadepth,megadepth_batch_size,
coco_root_path,use_coco,coco_batch_size,
ckpt_save_path,
model_name = 'LiftFeat',
n_steps = 160_000, lr= 3e-4, gamma_steplr=0.5,
training_res = (800, 608), device_num="0", dry_run = False,
save_ckpt_every = 500):
print(f'MegeDepth: {use_megadepth}-{megadepth_batch_size}')
print(f'COCO20k: {use_coco}-{coco_batch_size}')
self.dev = torch.device ('cuda' if torch.cuda.is_available() else 'cpu')
# training model
self.net = LiftFeatSPModel(featureboost_config, use_kenc=False, use_normal=True, use_cross=True).to(self.dev)
self.loss_fn=LiftFeatLoss(self.dev,lam_descs=1,lam_kpts=2,lam_heatmap=1)
# depth-anything model
self.depth_net=DepthAnythingExtractor('vits',self.dev,256)
# alike model
self.alike_net=ALikeExtractor('alike-t',self.dev)
#Setup optimizer
self.steps = n_steps
self.opt = optim.Adam(filter(lambda x: x.requires_grad, self.net.parameters()) , lr = lr)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.opt, step_size=10_000, gamma=gamma_steplr)
##################### COCO INIT ##########################
self.use_coco=use_coco
self.coco_batch_size=coco_batch_size
if self.use_coco:
self.augmentor=COCOAugmentor(
img_dir=coco_root_path,
device=self.dev,load_dataset=True,
batch_size=self.coco_batch_size,
out_resolution=training_res,
warp_resolution=training_res,
sides_crop=0.1,
max_num_imgs=3000,
num_test_imgs=5,
photometric=True,
geometric=True,
reload_step=4000
)
##################### COCO END #######################
##################### MEGADEPTH INIT ##########################
self.use_megadepth=use_megadepth
self.megadepth_batch_size=megadepth_batch_size
if self.use_megadepth:
TRAIN_BASE_PATH = f"{megadepth_root_path}/train_data/megadepth_indices"
TRAINVAL_DATA_SOURCE = f"{megadepth_root_path}/MegaDepth_v1"
TRAIN_NPZ_ROOT = f"{TRAIN_BASE_PATH}/scene_info_0.1_0.7"
npz_paths = glob.glob(TRAIN_NPZ_ROOT + '/*.npz')[:]
megadepth_dataset = torch.utils.data.ConcatDataset( [MegaDepthDataset(root_dir = TRAINVAL_DATA_SOURCE,
npz_path = path) for path in tqdm.tqdm(npz_paths, desc="[MegaDepth] Loading metadata")] )
self.megadepth_dataloader = DataLoader(megadepth_dataset, batch_size=megadepth_batch_size, shuffle=True)
self.megadepth_data_iter = iter(self.megadepth_dataloader)
##################### MEGADEPTH INIT END #######################
os.makedirs(ckpt_save_path, exist_ok=True)
os.makedirs(ckpt_save_path + '/logdir', exist_ok=True)
self.dry_run = dry_run
self.save_ckpt_every = save_ckpt_every
self.ckpt_save_path = ckpt_save_path
self.writer = SummaryWriter(ckpt_save_path + f'/logdir/{model_name}_' + time.strftime("%Y_%m_%d-%H_%M_%S"))
self.model_name = model_name
def generate_train_data(self):
imgs1_t,imgs2_t=[],[]
imgs1_np,imgs2_np=[],[]
# norms0,norms1=[],[]
positives_coarse=[]
if self.use_coco:
coco_imgs1, coco_imgs2, H1, H2 = coco_wrapper.make_batch(self.augmentor, 0.1)
h_coarse, w_coarse = coco_imgs1[0].shape[-2] // 8, coco_imgs1[0].shape[-1] // 8
_ , positives_coco_coarse = coco_wrapper.get_corresponding_pts(coco_imgs1, coco_imgs2, H1, H2, self.augmentor, h_coarse, w_coarse)
coco_imgs1=coco_imgs1.mean(1,keepdim=True);coco_imgs2=coco_imgs2.mean(1,keepdim=True)
imgs1_t.append(coco_imgs1);imgs2_t.append(coco_imgs2)
positives_coarse += positives_coco_coarse
if self.use_megadepth:
try:
megadepth_data=next(self.megadepth_data_iter)
except StopIteration:
print('End of MD DATASET')
self.megadepth_data_iter=iter(self.megadepth_dataloader)
megadepth_data=next(self.megadepth_data_iter)
if megadepth_data is not None:
for k in megadepth_data.keys():
if isinstance(megadepth_data[k],torch.Tensor):
megadepth_data[k]=megadepth_data[k].to(self.dev)
megadepth_imgs1_t,megadepth_imgs2_t=megadepth_data['image0'],megadepth_data['image1']
megadepth_imgs1_t=megadepth_imgs1_t.mean(1,keepdim=True);megadepth_imgs2_t=megadepth_imgs2_t.mean(1,keepdim=True)
imgs1_t.append(megadepth_imgs1_t);imgs2_t.append(megadepth_imgs2_t)
megadepth_imgs1_np,megadepth_imgs2_np=megadepth_data['image0_np'],megadepth_data['image1_np']
for np_idx in range(megadepth_imgs1_np.shape[0]):
img1_np,img2_np=megadepth_imgs1_np[np_idx].squeeze(0).cpu().numpy(),megadepth_imgs2_np[np_idx].squeeze(0).cpu().numpy()
imgs1_np.append(img1_np);imgs2_np.append(img2_np)
positives_megadepth_coarse=megadepth_wrapper.spvs_coarse(megadepth_data,8)
positives_coarse += positives_megadepth_coarse
with torch.no_grad():
imgs1_t=torch.cat(imgs1_t,dim=0)
imgs2_t=torch.cat(imgs2_t,dim=0)
return imgs1_t,imgs2_t,imgs1_np,imgs2_np,positives_coarse
def train(self):
self.net.train()
with tqdm.tqdm(total=self.steps) as pbar:
for i in range(self.steps):
# import pdb;pdb.set_trace()
imgs1_t,imgs2_t,imgs1_np,imgs2_np,positives_coarse=self.generate_train_data()
#Check if batch is corrupted with too few correspondences
is_corrupted = False
for p in positives_coarse:
if len(p) < 30:
is_corrupted = True
if is_corrupted:
continue
# import pdb;pdb.set_trace()
#Forward pass
# start=time.perf_counter()
feats1,kpts1,normals1 = self.net.forward1(imgs1_t)
feats2,kpts2,normals2 = self.net.forward1(imgs2_t)
coordinates,fb_coordinates=[],[]
alike_kpts1,alike_kpts2=[],[]
DA_normals1,DA_normals2=[],[]
# import pdb;pdb.set_trace()
fb_feats1,fb_feats2=[],[]
for b in range(feats1.shape[0]):
feat1=feats1[b].permute(1,2,0).reshape(-1,feats1.shape[1])
feat2=feats2[b].permute(1,2,0).reshape(-1,feats2.shape[1])
coordinate=self.net.fine_matcher(torch.cat([feat1,feat2],dim=-1))
coordinates.append(coordinate)
fb_feat1=self.net.forward2(feats1[b].unsqueeze(0),kpts1[b].unsqueeze(0),normals1[b].unsqueeze(0))
fb_feat2=self.net.forward2(feats2[b].unsqueeze(0),kpts2[b].unsqueeze(0),normals2[b].unsqueeze(0))
fb_coordinate=self.net.fine_matcher(torch.cat([fb_feat1,fb_feat2],dim=-1))
fb_coordinates.append(fb_coordinate)
fb_feats1.append(fb_feat1.unsqueeze(0));fb_feats2.append(fb_feat2.unsqueeze(0))
img1,img2=imgs1_t[b],imgs2_t[b]
img1=img1.permute(1,2,0).expand(-1,-1,3).cpu().numpy() * 255
img2=img2.permute(1,2,0).expand(-1,-1,3).cpu().numpy() * 255
alike_kpt1=torch.tensor(self.alike_net.extract_alike_kpts(img1),device=self.dev)
alike_kpt2=torch.tensor(self.alike_net.extract_alike_kpts(img2),device=self.dev)
alike_kpts1.append(alike_kpt1);alike_kpts2.append(alike_kpt2)
# import pdb;pdb.set_trace()
for b in range(len(imgs1_np)):
megadepth_depth1,megadepth_norm1=self.depth_net.extract(imgs1_np[b])
megadepth_depth2,megadepth_norm2=self.depth_net.extract(imgs2_np[b])
DA_normals1.append(megadepth_norm1);DA_normals2.append(megadepth_norm2)
# import pdb;pdb.set_trace()
fb_feats1=torch.cat(fb_feats1,dim=0)
fb_feats2=torch.cat(fb_feats2,dim=0)
fb_feats1=fb_feats1.reshape(feats1.shape[0],feats1.shape[2],feats1.shape[3],-1).permute(0,3,1,2)
fb_feats2=fb_feats2.reshape(feats2.shape[0],feats2.shape[2],feats2.shape[3],-1).permute(0,3,1,2)
coordinates=torch.cat(coordinates,dim=0)
coordinates=coordinates.reshape(feats1.shape[0],feats1.shape[2],feats1.shape[3],-1).permute(0,3,1,2)
fb_coordinates=torch.cat(fb_coordinates,dim=0)
fb_coordinates=fb_coordinates.reshape(feats1.shape[0],feats1.shape[2],feats1.shape[3],-1).permute(0,3,1,2)
# end=time.perf_counter()
# print(f"forward1 cost {end-start} seconds")
loss_items = []
# import pdb;pdb.set_trace()
loss_info=self.loss_fn(
feats1,fb_feats1,kpts1,normals1,
feats2,fb_feats2,kpts2,normals2,
positives_coarse,
coordinates,fb_coordinates,
alike_kpts1,alike_kpts2,
DA_normals1,DA_normals2,
self.megadepth_batch_size,self.coco_batch_size)
loss_descs,acc_coarse=loss_info['loss_descs'],loss_info['acc_coarse']
loss_coordinates,acc_coordinates=loss_info['loss_coordinates'],loss_info['acc_coordinates']
loss_fb_descs,acc_fb_coarse=loss_info['loss_fb_descs'],loss_info['acc_fb_coarse']
loss_fb_coordinates,acc_fb_coordinates=loss_info['loss_fb_coordinates'],loss_info['acc_fb_coordinates']
loss_kpts,acc_kpt=loss_info['loss_kpts'],loss_info['acc_kpt']
loss_normals=loss_info['loss_normals']
# loss_items.append(loss_descs.unsqueeze(0))
# loss_items.append(loss_coordinates.unsqueeze(0))
loss_items.append(loss_fb_descs.unsqueeze(0))
loss_items.append(loss_fb_coordinates.unsqueeze(0))
loss_items.append(loss_kpts.unsqueeze(0))
loss_items.append(loss_normals.unsqueeze(0))
# nb_coarse = len(m1)
# nb_coarse = len(fb_m1)
loss = torch.cat(loss_items, -1).mean()
# Compute Backward Pass
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 1.)
self.opt.step()
self.opt.zero_grad()
self.scheduler.step()
# import pdb;pdb.set_trace()
if (i+1) % self.save_ckpt_every == 0:
print('saving iter ', i+1)
torch.save(self.net.state_dict(), self.ckpt_save_path + f'/{self.model_name}_{i+1}.pth')
pbar.set_description(
'Loss: {:.4f} \
loss_descs: {:.3f} acc_coarse: {:.3f} \
loss_coordinates: {:.3f} acc_coordinates: {:.3f} \
loss_fb_descs: {:.3f} acc_fb_coarse: {:.3f} \
loss_fb_coordinates: {:.3f} acc_fb_coordinates: {:.3f} \
loss_kpts: {:.3f} acc_kpts: {:.3f} \
loss_normals: {:.3f}'.format( \
loss.item(), \
loss_descs.item(), acc_coarse, \
loss_coordinates.item(), acc_coordinates, \
loss_fb_descs.item(), acc_fb_coarse, \
loss_fb_coordinates.item(), acc_fb_coordinates, \
loss_kpts.item(), acc_kpt, \
loss_normals.item()) )
pbar.update(1)
# Log metrics
self.writer.add_scalar('Loss/total', loss.item(), i)
self.writer.add_scalar('Accuracy/acc_coarse', acc_coarse, i)
self.writer.add_scalar('Accuracy/acc_coordinates', acc_coordinates, i)
self.writer.add_scalar('Accuracy/acc_fb_coarse', acc_fb_coarse, i)
self.writer.add_scalar('Accuracy/acc_fb_coordinates', acc_fb_coordinates, i)
self.writer.add_scalar('Loss/descs', loss_descs.item(), i)
self.writer.add_scalar('Loss/coordinates', loss_coordinates.item(), i)
self.writer.add_scalar('Loss/fb_descs', loss_fb_descs.item(), i)
self.writer.add_scalar('Loss/fb_coordinates', loss_fb_coordinates.item(), i)
self.writer.add_scalar('Loss/kpts', loss_kpts.item(), i)
self.writer.add_scalar('Loss/normals', loss_normals.item(), i)
if __name__ == '__main__':
setproctitle.setproctitle(args.name)
trainer = Trainer(
megadepth_root_path=args.megadepth_root_path,
use_megadepth=args.use_megadepth,
megadepth_batch_size=args.megadepth_batch_size,
coco_root_path=args.coco_root_path,
use_coco=args.use_coco,
coco_batch_size=args.coco_batch_size,
ckpt_save_path=args.ckpt_save_path,
n_steps=args.n_steps,
lr=args.lr,
gamma_steplr=args.gamma_steplr,
training_res=args.training_res,
device_num=args.device_num,
dry_run=args.dry_run,
save_ckpt_every=args.save_ckpt_every
)
#The most fun part
trainer.train()
|