File size: 21,661 Bytes
1b369eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import torch
import torch.nn.functional as F

from torch import nn
import cv2
import numpy as np
from copy import deepcopy
from RDD.dataset.megadepth.utils import warp

def plot_keypoints(image, kpts, radius=2, color=(255, 0, 0)):
    image = image.cpu().detach().numpy() if isinstance(image, torch.Tensor) else image
    kpts = kpts.cpu().detach().numpy() if isinstance(kpts, torch.Tensor) else kpts

    if image.dtype is not np.dtype('uint8'):
        image = image * 255
        image = image.astype(np.uint8)

    if len(image.shape) == 2 or image.shape[2] == 1:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)

    out = np.ascontiguousarray(deepcopy(image))
    kpts = np.round(kpts).astype(int)

    for kpt in kpts:
        y0, x0 = kpt
        cv2.drawMarker(out, (x0, y0), color, cv2.MARKER_CROSS, radius)

        # cv2.circle(out, (x0, y0), radius, color, -1, lineType=cv2.LINE_4)
    return out

class DetectorLoss(nn.Module):
    def __init__(self, temperature = 0.1, scores_th = 0.1, peaky_weight = 0.5, reprojection_weight = 1, scoremap_weight = 0.5):
        super().__init__()
        self.temperature = temperature
        self.scores_th = scores_th
        self.peaky_weight = peaky_weight
        self.reprojection_weight = reprojection_weight
        self.scoremap_weight = scoremap_weight
        
        self.PeakyLoss = PeakyLoss(scores_th = scores_th)
        self.ReprojectionLocLoss = ReprojectionLocLoss(scores_th = scores_th)
        self.ScoreMapRepLoss = ScoreMapRepLoss(temperature = temperature)
        
    def forward(self, correspondences, pred0_with_rand, pred1_with_rand):
        loss_peaky0 = self.PeakyLoss(pred0_with_rand)
        loss_peaky1 = self.PeakyLoss(pred1_with_rand)
        loss_peaky = (loss_peaky0 + loss_peaky1) / 2.
        
        loss_reprojection = self.ReprojectionLocLoss(pred0_with_rand, pred1_with_rand, correspondences)
        
        loss_score_map_rp = self.ScoreMapRepLoss(pred0_with_rand, pred1_with_rand, correspondences)
        
        loss_kp = loss_peaky * self.peaky_weight + loss_reprojection * self.reprojection_weight + loss_score_map_rp * self.scoremap_weight
        
        return loss_kp

class PeakyLoss(object):
    """ PeakyLoss to avoid an uniform score map """

    def __init__(self, scores_th: float = 0.1):
        super().__init__()
        self.scores_th = scores_th

    def __call__(self, pred):
        b, c, h, w = pred['scores_map'].shape
        loss_mean = 0
        CNT = 0
        
        for idx in range(b):
            n_original = len(pred['score_dispersity'][idx])
            scores_kpts = pred['scores'][idx][:n_original]
            valid = scores_kpts > self.scores_th
            loss_peaky = pred['score_dispersity'][idx][valid]

            loss_mean = loss_mean + loss_peaky.sum()
            CNT = CNT + len(loss_peaky)

        loss_mean = loss_mean / CNT if CNT != 0 else pred['scores_map'].new_tensor(0)
        assert not torch.isnan(loss_mean)
        return loss_mean


class ReprojectionLocLoss(object):
    """
    Reprojection location errors of keypoints to train repeatable detector.
    """

    def __init__(self, norm: int = 1, scores_th: float = 0.1):
        super().__init__()
        self.norm = norm
        self.scores_th = scores_th

    def __call__(self, pred0, pred1, correspondences):
        b, c, h, w = pred0['scores_map'].shape
        loss_mean = 0
        CNT = 0
        for idx in range(b):
            if correspondences[idx]['correspondence0'] is None:
                continue

            if self.norm == 2:
                dist = correspondences[idx]['dist']
            elif self.norm == 1:
                dist = correspondences[idx]['dist_l1']
            else:
                raise TypeError('No such norm in correspondence.')

            ids0_d = correspondences[idx]['ids0_d']
            ids1_d = correspondences[idx]['ids1_d']

            scores0 = correspondences[idx]['scores0'].detach()[ids0_d]
            scores1 = correspondences[idx]['scores1'].detach()[ids1_d]
            valid = (scores0 > self.scores_th) * (scores1 > self.scores_th)
            reprojection_errors = dist[ids0_d, ids1_d][valid]

            loss_mean = loss_mean + reprojection_errors.sum()
            CNT = CNT + len(reprojection_errors)

        loss_mean = loss_mean / CNT if CNT != 0 else correspondences[0]['dist'].new_tensor(0)

        assert not torch.isnan(loss_mean)
        return loss_mean


def local_similarity(descriptor_map, descriptors, kpts_wh, radius):
    """
    :param descriptor_map: CxHxW
    :param descriptors: NxC
    :param kpts_wh: Nx2 (W,H)
    :return:
    """
    _, h, w = descriptor_map.shape
    ksize = 2 * radius + 1

    descriptor_map_unflod = torch.nn.functional.unfold(descriptor_map.unsqueeze(0),
                                                       kernel_size=(ksize, ksize),
                                                       padding=(radius, radius))
    descriptor_map_unflod = descriptor_map_unflod[0].t().reshape(h * w, -1, ksize * ksize)
    # find the correspondence patch
    kpts_wh_long = kpts_wh.detach().long()
    patch_ids = kpts_wh_long[:, 0] + kpts_wh_long[:, 1] * h
    desc_patches = descriptor_map_unflod[patch_ids].permute(0, 2, 1).detach()  # N_kpts x s*s x 128

    local_sim = torch.einsum('nsd,nd->ns', desc_patches, descriptors)
    local_sim_sort = torch.sort(local_sim, dim=1, descending=True).values
    local_sim_sort_mean = local_sim_sort[:, 4:].mean(dim=1)  # 4 is safe radius for bilinear interplation

    return local_sim_sort_mean


class ScoreMapRepLoss(object):
    """ Scoremap repetability"""

    def __init__(self, temperature: float = 0.1):
        super().__init__()
        self.temperature = temperature
        self.radius = 2

    def __call__(self, pred0, pred1, correspondences):
        b, c, h, w = pred0['scores_map'].shape
        wh = pred0['keypoints'][0].new_tensor([[w - 1, h - 1]])
        loss_mean = 0
        CNT = 0

        for idx in range(b):
            if correspondences[idx]['correspondence0'] is None:
                continue

            scores_map0 = pred0['scores_map'][idx]
            scores_map1 = pred1['scores_map'][idx]
            kpts01 = correspondences[idx]['kpts01']
            kpts10 = correspondences[idx]['kpts10']  # valid warped keypoints

            # =====================
            scores_kpts10 = torch.nn.functional.grid_sample(scores_map0.unsqueeze(0), kpts10.view(1, 1, -1, 2),
                                                            mode='bilinear', align_corners=True)[0, 0, 0, :]
            scores_kpts01 = torch.nn.functional.grid_sample(scores_map1.unsqueeze(0), kpts01.view(1, 1, -1, 2),
                                                            mode='bilinear', align_corners=True)[0, 0, 0, :]

            s0 = scores_kpts01 * correspondences[idx]['scores0']  # repeatability
            s1 = scores_kpts10 * correspondences[idx]['scores1']  # repeatability

            # ===================== repetability
            similarity_map_01 = correspondences[idx]['similarity_map_01_valid']
            similarity_map_10 = correspondences[idx]['similarity_map_10_valid']

            pmf01 = ((similarity_map_01.detach() - 1) / self.temperature).exp()
            pmf10 = ((similarity_map_10.detach() - 1) / self.temperature).exp()
            kpts01 = kpts01.detach()
            kpts10 = kpts10.detach()

            pmf01_kpts = torch.nn.functional.grid_sample(pmf01.unsqueeze(0), kpts01.view(1, 1, -1, 2),
                                                         mode='bilinear', align_corners=True)[0, :, 0, :]
            pmf10_kpts = torch.nn.functional.grid_sample(pmf10.unsqueeze(0), kpts10.view(1, 1, -1, 2),
                                                         mode='bilinear', align_corners=True)[0, :, 0, :]
            repetability01 = torch.diag(pmf01_kpts)
            repetability10 = torch.diag(pmf10_kpts)
            
            # ===================== reliability
            # ids0, ids1 = correspondences[idx]['ids0'], correspondences[idx]['ids1']
            # descriptor_map0 = pred0['descriptor_map'][idx].detach()
            # descriptor_map1 = pred1['descriptor_map'][idx].detach()
            # descriptors0 = pred0['descriptors'][idx][ids0].detach()
            # descriptors1 = pred1['descriptors'][idx][ids1].detach()
            # kpts0 = pred0['keypoints'][idx][ids0].detach()
            # kpts1 = pred1['keypoints'][idx][ids1].detach()
            # kpts0_wh = (kpts0 / 2 + 0.5) * wh
            # kpts1_wh = (kpts1 / 2 + 0.5) * wh
            # ls0 = local_similarity(descriptor_map0, descriptors0, kpts0_wh, self.radius)
            # ls1 = local_similarity(descriptor_map1, descriptors1, kpts1_wh, self.radius)
            # reliability0 = 1 - ((ls0 - 1) / self.temperature).exp()
            # reliability1 = 1 - ((ls1 - 1) / self.temperature).exp()

            fs0 = repetability01  # * reliability0
            fs1 = repetability10  # * reliability1

            if s0.sum() != 0:
                loss01 = (1 - fs0) * s0 * len(s0) / s0.sum()
                loss_mean = loss_mean + loss01.sum()
                CNT = CNT + len(loss01)
            if s1.sum() != 0:
                loss10 = (1 - fs1) * s1 * len(s1) / s1.sum()
                loss_mean = loss_mean + loss10.sum()
                CNT = CNT + len(loss10)
        
        loss_mean = loss_mean / CNT if CNT != 0 else pred0['scores_map'].new_tensor(0)
        assert not torch.isnan(loss_mean)
        return loss_mean
    
    

#+++++++++++++++++++++++++++++++++++++++++++++++++++Taken from ALIKE+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

def compute_keypoints_distance(kpts0, kpts1, p=2, debug=False):
    """
    Args:
        kpts0: torch.tensor [M,2]
        kpts1: torch.tensor [N,2]
        p: (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm

    Returns:
        dist, torch.tensor [N,M]
    """
    dist = kpts0[:, None, :] - kpts1[None, :, :]  # [M,N,2]
    dist = torch.norm(dist, p=p, dim=2)  # [M,N]
    return dist

def mutual_argmax(value, mask=None, as_tuple=True):
    """
    Args:
        value: MxN
        mask:  MxN

    Returns:

    """
    value = value - value.min()  # convert to non-negative tensor
    if mask is not None:
        value = value * mask

    max0 = value.max(dim=1, keepdim=True)  # the col index the max value in each row
    max1 = value.max(dim=0, keepdim=True)

    valid_max0 = value == max0[0]
    valid_max1 = value == max1[0]

    mutual = valid_max0 * valid_max1
    if mask is not None:
        mutual = mutual * mask

    return mutual.nonzero(as_tuple=as_tuple)


def mutual_argmin(value, mask=None):
    return mutual_argmax(-value, mask)

def compute_correspondence(model, pred0, pred1, batch, radius = 2, rand=True, train_gt_th = 5, debug=False):
    b, c, h, w = pred0['scores_map'].shape
    wh = pred0['scores_map'][0].new_tensor([[w - 1, h - 1]])
    
    pred0_with_rand = pred0
    pred1_with_rand = pred1
    pred0_with_rand['scores'] = []
    pred1_with_rand['scores'] = []
    pred0_with_rand['descriptors'] = []
    pred1_with_rand['descriptors'] = []
    pred0_with_rand['num_det'] = []
    pred1_with_rand['num_det'] = []

    kps, score_dispersity, scores = model.softdetect.detect_keypoints(pred0['scores_map'])
    
    pred0_with_rand['keypoints'] = kps
    pred0_with_rand['score_dispersity'] = score_dispersity
    
    
    kps, score_dispersity, scores = model.softdetect.detect_keypoints(pred1['scores_map'])
    pred1_with_rand['keypoints'] = kps
    pred1_with_rand['score_dispersity'] = score_dispersity

    correspondences = []
    for idx in range(b):
        # =========================== prepare keypoints
        kpts0, kpts1 = pred0['keypoints'][idx], pred1['keypoints'][idx]  # (x,y), shape: Nx2
        
        # additional random keypoints
        if rand:
            rand0 = torch.rand(len(kpts0), 2, device=kpts0.device) * 2 - 1  # -1~1
            rand1 = torch.rand(len(kpts1), 2, device=kpts1.device) * 2 - 1  # -1~1
            kpts0 = torch.cat([kpts0, rand0])
            kpts1 = torch.cat([kpts1, rand1])

            pred0_with_rand['keypoints'][idx] = kpts0
            pred1_with_rand['keypoints'][idx] = kpts1
        
        scores_map0 = pred0['scores_map'][idx]
        scores_map1 = pred1['scores_map'][idx]
        scores_kpts0 = torch.nn.functional.grid_sample(scores_map0.unsqueeze(0), kpts0.view(1, 1, -1, 2),
                                                        mode='bilinear', align_corners=True).squeeze()
        scores_kpts1 = torch.nn.functional.grid_sample(scores_map1.unsqueeze(0), kpts1.view(1, 1, -1, 2),
                                                        mode='bilinear', align_corners=True).squeeze()

        kpts0_wh_ = (kpts0 / 2 + 0.5) * wh  # N0x2, (w,h)
        kpts1_wh_ = (kpts1 / 2 + 0.5) * wh  # N1x2, (w,h)

        # ========================= nms
        dist = compute_keypoints_distance(kpts0_wh_.detach(), kpts0_wh_.detach())
        local_mask = dist < radius
        valid_cnt = torch.sum(local_mask, dim=1)
        indices_need_nms = torch.where(valid_cnt > 1)[0]
        
        for i in indices_need_nms:
            if valid_cnt[i] > 0:
                kpt_indices = torch.where(local_mask[i])[0]
                scs_max_idx = scores_kpts0[kpt_indices].argmax()

                tmp_mask = kpt_indices.new_ones(len(kpt_indices)).bool()
                tmp_mask[scs_max_idx] = False
                suppressed_indices = kpt_indices[tmp_mask]

                valid_cnt[suppressed_indices] = 0
        
        valid_mask = valid_cnt > 0
        kpts0_wh = kpts0_wh_[valid_mask]
        kpts0 = kpts0[valid_mask]
        scores_kpts0 = scores_kpts0[valid_mask]
        pred0_with_rand['keypoints'][idx] = kpts0

        valid_mask = valid_mask[:len(pred0_with_rand['score_dispersity'][idx])]
        pred0_with_rand['score_dispersity'][idx] = pred0_with_rand['score_dispersity'][idx][valid_mask]
        pred0_with_rand['num_det'].append(valid_mask.sum())

        dist = compute_keypoints_distance(kpts1_wh_.detach(), kpts1_wh_.detach())
        local_mask = dist < radius
        valid_cnt = torch.sum(local_mask, dim=1)
        indices_need_nms = torch.where(valid_cnt > 1)[0]
        for i in indices_need_nms:
            if valid_cnt[i] > 0:
                kpt_indices = torch.where(local_mask[i])[0]
                scs_max_idx = scores_kpts1[kpt_indices].argmax()

                tmp_mask = kpt_indices.new_ones(len(kpt_indices)).bool()
                tmp_mask[scs_max_idx] = False
                suppressed_indices = kpt_indices[tmp_mask]

                valid_cnt[suppressed_indices] = 0
                
        valid_mask = valid_cnt > 0
        kpts1_wh = kpts1_wh_[valid_mask]
        kpts1 = kpts1[valid_mask]
        scores_kpts1 = scores_kpts1[valid_mask]
        pred1_with_rand['keypoints'][idx] = kpts1

        valid_mask = valid_mask[:len(pred1_with_rand['score_dispersity'][idx])]
        pred1_with_rand['score_dispersity'][idx] = pred1_with_rand['score_dispersity'][idx][valid_mask]
        pred1_with_rand['num_det'].append(valid_mask.sum())

        # del dist, local_mask, valid_cnt, indices_need_nms, scs_max_idx, tmp_mask, suppressed_indices, valid_mask
        # torch.cuda.empty_cache()
        # ========================= nms

        pred0_with_rand['scores'].append(scores_kpts0)
        pred1_with_rand['scores'].append(scores_kpts1)
        
        descriptor_map0, descriptor_map1 = pred0['descriptor_map'][idx], pred1['descriptor_map'][idx]
        descriptor_map0 = F.normalize(descriptor_map0, dim=0)
        descriptor_map1 = F.normalize(descriptor_map1, dim=0)

        desc0 = torch.nn.functional.grid_sample(descriptor_map0.unsqueeze(0), kpts0.view(1, 1, -1, 2),
                                                mode='bilinear', align_corners=True)[0, :, 0, :].t()
        desc1 = torch.nn.functional.grid_sample(descriptor_map1.unsqueeze(0), kpts1.view(1, 1, -1, 2),
                                                mode='bilinear', align_corners=True)[0, :, 0, :].t()
        desc0 = F.normalize(desc0, dim=-1)
        desc1 = F.normalize(desc1, dim=-1)

        pred0_with_rand['descriptors'].append(desc0)
        pred1_with_rand['descriptors'].append(desc1)
        
        # =========================== prepare warp parameters
        warp01_params = {}
        for k, v in batch['warp01_params'].items():
            warp01_params[k] = v[idx]
        warp10_params = {}
        for k, v in batch['warp10_params'].items():
            warp10_params[k] = v[idx]

        # =========================== warp keypoints across images
        try:
            kpts0_wh, kpts01_wh, ids0, ids0_out = warp(kpts0_wh, warp01_params)
            kpts1_wh, kpts10_wh, ids1, ids1_out = warp(kpts1_wh, warp10_params)
        except:
            correspondences.append({'correspondence0': None, 'correspondence1': None,
                                    'dist': kpts0_wh.new_tensor(0),
                                    })
            continue

        if debug:
            from training.utils import save_image_in_actual_size
            
            image0 = batch['image0'][idx].cpu().detach().numpy().transpose(1, 2, 0)
            image1 = batch['image1'][idx].cpu().detach().numpy().transpose(1, 2, 0)
            
            p0 = kpts0_wh[:, [1, 0]].cpu().detach().numpy()
            img_kpts0 = plot_keypoints(image0, p0, radius=5, color=(255, 0, 0))
            # display_image_in_actual_size(img_kpts0)

            p1 = kpts1_wh[:, [1, 0]].cpu().detach().numpy()
            img_kpts1 = plot_keypoints(image1, p1, radius=5, color=(255, 0, 0))
            # display_image_in_actual_size(img_kpts1)

            p01 = kpts01_wh[:, [1, 0]].cpu().detach().numpy()
            img_kpts01 = plot_keypoints(img_kpts1, p01, radius=5, color=(0, 255, 0))
            save_image_in_actual_size(img_kpts01, name='kpts01.png')
            
            p10 = kpts10_wh[:, [1, 0]].cpu().detach().numpy()
            img_kpts10 = plot_keypoints(img_kpts0, p10, radius=5, color=(0, 255, 0))
            save_image_in_actual_size(img_kpts10, name='kpts10.png')

        # ============================= compute reprojection error
        dist01 = compute_keypoints_distance(kpts0_wh, kpts10_wh)
        dist10 = compute_keypoints_distance(kpts1_wh, kpts01_wh)

        dist_l2 = (dist01 + dist10.t()) / 2.
        # find mutual correspondences by calculating the distance
        # between keypoints (I1) and warpped keypoints (I2->I1)
        mutual_min_indices = mutual_argmin(dist_l2)

        dist_mutual_min = dist_l2[mutual_min_indices]
        valid_dist_mutual_min = dist_mutual_min.detach() < train_gt_th

        ids0_d = mutual_min_indices[0][valid_dist_mutual_min]
        ids1_d = mutual_min_indices[1][valid_dist_mutual_min]

        correspondence0 = ids0[ids0_d]
        correspondence1 = ids1[ids1_d]

        # L1 distance
        dist01_l1 = compute_keypoints_distance(kpts0_wh, kpts10_wh, p=1)
        dist10_l1 = compute_keypoints_distance(kpts1_wh, kpts01_wh, p=1)

        dist_l1 = (dist01_l1 + dist10_l1.t()) / 2.

        # =========================== compute cross image descriptor similarity_map
        similarity_map_01 = (desc0 @ descriptor_map1.reshape(h*w, 256).t()) * 20
        similarity_map_01 = similarity_map_01.softmax(dim = -2) * similarity_map_01.softmax(dim= -1)
        similarity_map_01 = similarity_map_01.reshape(desc0.shape[0], h, w)
        similarity_map_01 = torch.clamp(similarity_map_01, 1e-6, 1-1e-6)
        
        similarity_map_10 = (desc1 @ descriptor_map0.reshape(h*w, 256).t()) * 20
        similarity_map_10 = similarity_map_10.softmax(dim = -2) * similarity_map_10.softmax(dim= -1)
        similarity_map_10 = similarity_map_10.reshape(desc1.shape[0], h, w)
        similarity_map_10 = torch.clamp(similarity_map_10, 1e-6, 1-1e-6)

        similarity_map_01_valid = similarity_map_01[ids0]  # valid descriptors
        similarity_map_10_valid = similarity_map_10[ids1]

        kpts01 = 2 * kpts01_wh.detach() / wh - 1  # N0x2, (x,y), [-1,1]
        kpts10 = 2 * kpts10_wh.detach() / wh - 1  # N0x2, (x,y), [-1,1]

        correspondences.append({'correspondence0': correspondence0,  # indices of matched kpts0 in all kpts
                                'correspondence1': correspondence1,  # indices of matched kpts1 in all kpts
                                'scores0': scores_kpts0[ids0],
                                'scores1': scores_kpts1[ids1],
                                'kpts01': kpts01, 'kpts10': kpts10,  # warped valid kpts
                                'ids0': ids0, 'ids1': ids1,  # valid indices of kpts0 and kpts1
                                'ids0_out': ids0_out, 'ids1_out': ids1_out,
                                'ids0_d': ids0_d, 'ids1_d': ids1_d,  # match indices of valid kpts0 and kpts1
                                'dist_l1': dist_l1,  # cross distance matrix of valid kpts using L1 norm
                                'dist': dist_l2,  # cross distance matrix of valid kpts using L2 norm
                                'similarity_map_01': similarity_map_01,  # all
                                'similarity_map_10': similarity_map_10,  # all
                                'similarity_map_01_valid': similarity_map_01_valid,  # valid
                                'similarity_map_10_valid': similarity_map_10_valid,  # valid
                                })

    return correspondences, pred0_with_rand, pred1_with_rand


class EmptyTensorError(Exception):
    pass