Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,661 Bytes
1b369eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import torch
import torch.nn.functional as F
from torch import nn
import cv2
import numpy as np
from copy import deepcopy
from RDD.dataset.megadepth.utils import warp
def plot_keypoints(image, kpts, radius=2, color=(255, 0, 0)):
image = image.cpu().detach().numpy() if isinstance(image, torch.Tensor) else image
kpts = kpts.cpu().detach().numpy() if isinstance(kpts, torch.Tensor) else kpts
if image.dtype is not np.dtype('uint8'):
image = image * 255
image = image.astype(np.uint8)
if len(image.shape) == 2 or image.shape[2] == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
out = np.ascontiguousarray(deepcopy(image))
kpts = np.round(kpts).astype(int)
for kpt in kpts:
y0, x0 = kpt
cv2.drawMarker(out, (x0, y0), color, cv2.MARKER_CROSS, radius)
# cv2.circle(out, (x0, y0), radius, color, -1, lineType=cv2.LINE_4)
return out
class DetectorLoss(nn.Module):
def __init__(self, temperature = 0.1, scores_th = 0.1, peaky_weight = 0.5, reprojection_weight = 1, scoremap_weight = 0.5):
super().__init__()
self.temperature = temperature
self.scores_th = scores_th
self.peaky_weight = peaky_weight
self.reprojection_weight = reprojection_weight
self.scoremap_weight = scoremap_weight
self.PeakyLoss = PeakyLoss(scores_th = scores_th)
self.ReprojectionLocLoss = ReprojectionLocLoss(scores_th = scores_th)
self.ScoreMapRepLoss = ScoreMapRepLoss(temperature = temperature)
def forward(self, correspondences, pred0_with_rand, pred1_with_rand):
loss_peaky0 = self.PeakyLoss(pred0_with_rand)
loss_peaky1 = self.PeakyLoss(pred1_with_rand)
loss_peaky = (loss_peaky0 + loss_peaky1) / 2.
loss_reprojection = self.ReprojectionLocLoss(pred0_with_rand, pred1_with_rand, correspondences)
loss_score_map_rp = self.ScoreMapRepLoss(pred0_with_rand, pred1_with_rand, correspondences)
loss_kp = loss_peaky * self.peaky_weight + loss_reprojection * self.reprojection_weight + loss_score_map_rp * self.scoremap_weight
return loss_kp
class PeakyLoss(object):
""" PeakyLoss to avoid an uniform score map """
def __init__(self, scores_th: float = 0.1):
super().__init__()
self.scores_th = scores_th
def __call__(self, pred):
b, c, h, w = pred['scores_map'].shape
loss_mean = 0
CNT = 0
for idx in range(b):
n_original = len(pred['score_dispersity'][idx])
scores_kpts = pred['scores'][idx][:n_original]
valid = scores_kpts > self.scores_th
loss_peaky = pred['score_dispersity'][idx][valid]
loss_mean = loss_mean + loss_peaky.sum()
CNT = CNT + len(loss_peaky)
loss_mean = loss_mean / CNT if CNT != 0 else pred['scores_map'].new_tensor(0)
assert not torch.isnan(loss_mean)
return loss_mean
class ReprojectionLocLoss(object):
"""
Reprojection location errors of keypoints to train repeatable detector.
"""
def __init__(self, norm: int = 1, scores_th: float = 0.1):
super().__init__()
self.norm = norm
self.scores_th = scores_th
def __call__(self, pred0, pred1, correspondences):
b, c, h, w = pred0['scores_map'].shape
loss_mean = 0
CNT = 0
for idx in range(b):
if correspondences[idx]['correspondence0'] is None:
continue
if self.norm == 2:
dist = correspondences[idx]['dist']
elif self.norm == 1:
dist = correspondences[idx]['dist_l1']
else:
raise TypeError('No such norm in correspondence.')
ids0_d = correspondences[idx]['ids0_d']
ids1_d = correspondences[idx]['ids1_d']
scores0 = correspondences[idx]['scores0'].detach()[ids0_d]
scores1 = correspondences[idx]['scores1'].detach()[ids1_d]
valid = (scores0 > self.scores_th) * (scores1 > self.scores_th)
reprojection_errors = dist[ids0_d, ids1_d][valid]
loss_mean = loss_mean + reprojection_errors.sum()
CNT = CNT + len(reprojection_errors)
loss_mean = loss_mean / CNT if CNT != 0 else correspondences[0]['dist'].new_tensor(0)
assert not torch.isnan(loss_mean)
return loss_mean
def local_similarity(descriptor_map, descriptors, kpts_wh, radius):
"""
:param descriptor_map: CxHxW
:param descriptors: NxC
:param kpts_wh: Nx2 (W,H)
:return:
"""
_, h, w = descriptor_map.shape
ksize = 2 * radius + 1
descriptor_map_unflod = torch.nn.functional.unfold(descriptor_map.unsqueeze(0),
kernel_size=(ksize, ksize),
padding=(radius, radius))
descriptor_map_unflod = descriptor_map_unflod[0].t().reshape(h * w, -1, ksize * ksize)
# find the correspondence patch
kpts_wh_long = kpts_wh.detach().long()
patch_ids = kpts_wh_long[:, 0] + kpts_wh_long[:, 1] * h
desc_patches = descriptor_map_unflod[patch_ids].permute(0, 2, 1).detach() # N_kpts x s*s x 128
local_sim = torch.einsum('nsd,nd->ns', desc_patches, descriptors)
local_sim_sort = torch.sort(local_sim, dim=1, descending=True).values
local_sim_sort_mean = local_sim_sort[:, 4:].mean(dim=1) # 4 is safe radius for bilinear interplation
return local_sim_sort_mean
class ScoreMapRepLoss(object):
""" Scoremap repetability"""
def __init__(self, temperature: float = 0.1):
super().__init__()
self.temperature = temperature
self.radius = 2
def __call__(self, pred0, pred1, correspondences):
b, c, h, w = pred0['scores_map'].shape
wh = pred0['keypoints'][0].new_tensor([[w - 1, h - 1]])
loss_mean = 0
CNT = 0
for idx in range(b):
if correspondences[idx]['correspondence0'] is None:
continue
scores_map0 = pred0['scores_map'][idx]
scores_map1 = pred1['scores_map'][idx]
kpts01 = correspondences[idx]['kpts01']
kpts10 = correspondences[idx]['kpts10'] # valid warped keypoints
# =====================
scores_kpts10 = torch.nn.functional.grid_sample(scores_map0.unsqueeze(0), kpts10.view(1, 1, -1, 2),
mode='bilinear', align_corners=True)[0, 0, 0, :]
scores_kpts01 = torch.nn.functional.grid_sample(scores_map1.unsqueeze(0), kpts01.view(1, 1, -1, 2),
mode='bilinear', align_corners=True)[0, 0, 0, :]
s0 = scores_kpts01 * correspondences[idx]['scores0'] # repeatability
s1 = scores_kpts10 * correspondences[idx]['scores1'] # repeatability
# ===================== repetability
similarity_map_01 = correspondences[idx]['similarity_map_01_valid']
similarity_map_10 = correspondences[idx]['similarity_map_10_valid']
pmf01 = ((similarity_map_01.detach() - 1) / self.temperature).exp()
pmf10 = ((similarity_map_10.detach() - 1) / self.temperature).exp()
kpts01 = kpts01.detach()
kpts10 = kpts10.detach()
pmf01_kpts = torch.nn.functional.grid_sample(pmf01.unsqueeze(0), kpts01.view(1, 1, -1, 2),
mode='bilinear', align_corners=True)[0, :, 0, :]
pmf10_kpts = torch.nn.functional.grid_sample(pmf10.unsqueeze(0), kpts10.view(1, 1, -1, 2),
mode='bilinear', align_corners=True)[0, :, 0, :]
repetability01 = torch.diag(pmf01_kpts)
repetability10 = torch.diag(pmf10_kpts)
# ===================== reliability
# ids0, ids1 = correspondences[idx]['ids0'], correspondences[idx]['ids1']
# descriptor_map0 = pred0['descriptor_map'][idx].detach()
# descriptor_map1 = pred1['descriptor_map'][idx].detach()
# descriptors0 = pred0['descriptors'][idx][ids0].detach()
# descriptors1 = pred1['descriptors'][idx][ids1].detach()
# kpts0 = pred0['keypoints'][idx][ids0].detach()
# kpts1 = pred1['keypoints'][idx][ids1].detach()
# kpts0_wh = (kpts0 / 2 + 0.5) * wh
# kpts1_wh = (kpts1 / 2 + 0.5) * wh
# ls0 = local_similarity(descriptor_map0, descriptors0, kpts0_wh, self.radius)
# ls1 = local_similarity(descriptor_map1, descriptors1, kpts1_wh, self.radius)
# reliability0 = 1 - ((ls0 - 1) / self.temperature).exp()
# reliability1 = 1 - ((ls1 - 1) / self.temperature).exp()
fs0 = repetability01 # * reliability0
fs1 = repetability10 # * reliability1
if s0.sum() != 0:
loss01 = (1 - fs0) * s0 * len(s0) / s0.sum()
loss_mean = loss_mean + loss01.sum()
CNT = CNT + len(loss01)
if s1.sum() != 0:
loss10 = (1 - fs1) * s1 * len(s1) / s1.sum()
loss_mean = loss_mean + loss10.sum()
CNT = CNT + len(loss10)
loss_mean = loss_mean / CNT if CNT != 0 else pred0['scores_map'].new_tensor(0)
assert not torch.isnan(loss_mean)
return loss_mean
#+++++++++++++++++++++++++++++++++++++++++++++++++++Taken from ALIKE+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def compute_keypoints_distance(kpts0, kpts1, p=2, debug=False):
"""
Args:
kpts0: torch.tensor [M,2]
kpts1: torch.tensor [N,2]
p: (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm
Returns:
dist, torch.tensor [N,M]
"""
dist = kpts0[:, None, :] - kpts1[None, :, :] # [M,N,2]
dist = torch.norm(dist, p=p, dim=2) # [M,N]
return dist
def mutual_argmax(value, mask=None, as_tuple=True):
"""
Args:
value: MxN
mask: MxN
Returns:
"""
value = value - value.min() # convert to non-negative tensor
if mask is not None:
value = value * mask
max0 = value.max(dim=1, keepdim=True) # the col index the max value in each row
max1 = value.max(dim=0, keepdim=True)
valid_max0 = value == max0[0]
valid_max1 = value == max1[0]
mutual = valid_max0 * valid_max1
if mask is not None:
mutual = mutual * mask
return mutual.nonzero(as_tuple=as_tuple)
def mutual_argmin(value, mask=None):
return mutual_argmax(-value, mask)
def compute_correspondence(model, pred0, pred1, batch, radius = 2, rand=True, train_gt_th = 5, debug=False):
b, c, h, w = pred0['scores_map'].shape
wh = pred0['scores_map'][0].new_tensor([[w - 1, h - 1]])
pred0_with_rand = pred0
pred1_with_rand = pred1
pred0_with_rand['scores'] = []
pred1_with_rand['scores'] = []
pred0_with_rand['descriptors'] = []
pred1_with_rand['descriptors'] = []
pred0_with_rand['num_det'] = []
pred1_with_rand['num_det'] = []
kps, score_dispersity, scores = model.softdetect.detect_keypoints(pred0['scores_map'])
pred0_with_rand['keypoints'] = kps
pred0_with_rand['score_dispersity'] = score_dispersity
kps, score_dispersity, scores = model.softdetect.detect_keypoints(pred1['scores_map'])
pred1_with_rand['keypoints'] = kps
pred1_with_rand['score_dispersity'] = score_dispersity
correspondences = []
for idx in range(b):
# =========================== prepare keypoints
kpts0, kpts1 = pred0['keypoints'][idx], pred1['keypoints'][idx] # (x,y), shape: Nx2
# additional random keypoints
if rand:
rand0 = torch.rand(len(kpts0), 2, device=kpts0.device) * 2 - 1 # -1~1
rand1 = torch.rand(len(kpts1), 2, device=kpts1.device) * 2 - 1 # -1~1
kpts0 = torch.cat([kpts0, rand0])
kpts1 = torch.cat([kpts1, rand1])
pred0_with_rand['keypoints'][idx] = kpts0
pred1_with_rand['keypoints'][idx] = kpts1
scores_map0 = pred0['scores_map'][idx]
scores_map1 = pred1['scores_map'][idx]
scores_kpts0 = torch.nn.functional.grid_sample(scores_map0.unsqueeze(0), kpts0.view(1, 1, -1, 2),
mode='bilinear', align_corners=True).squeeze()
scores_kpts1 = torch.nn.functional.grid_sample(scores_map1.unsqueeze(0), kpts1.view(1, 1, -1, 2),
mode='bilinear', align_corners=True).squeeze()
kpts0_wh_ = (kpts0 / 2 + 0.5) * wh # N0x2, (w,h)
kpts1_wh_ = (kpts1 / 2 + 0.5) * wh # N1x2, (w,h)
# ========================= nms
dist = compute_keypoints_distance(kpts0_wh_.detach(), kpts0_wh_.detach())
local_mask = dist < radius
valid_cnt = torch.sum(local_mask, dim=1)
indices_need_nms = torch.where(valid_cnt > 1)[0]
for i in indices_need_nms:
if valid_cnt[i] > 0:
kpt_indices = torch.where(local_mask[i])[0]
scs_max_idx = scores_kpts0[kpt_indices].argmax()
tmp_mask = kpt_indices.new_ones(len(kpt_indices)).bool()
tmp_mask[scs_max_idx] = False
suppressed_indices = kpt_indices[tmp_mask]
valid_cnt[suppressed_indices] = 0
valid_mask = valid_cnt > 0
kpts0_wh = kpts0_wh_[valid_mask]
kpts0 = kpts0[valid_mask]
scores_kpts0 = scores_kpts0[valid_mask]
pred0_with_rand['keypoints'][idx] = kpts0
valid_mask = valid_mask[:len(pred0_with_rand['score_dispersity'][idx])]
pred0_with_rand['score_dispersity'][idx] = pred0_with_rand['score_dispersity'][idx][valid_mask]
pred0_with_rand['num_det'].append(valid_mask.sum())
dist = compute_keypoints_distance(kpts1_wh_.detach(), kpts1_wh_.detach())
local_mask = dist < radius
valid_cnt = torch.sum(local_mask, dim=1)
indices_need_nms = torch.where(valid_cnt > 1)[0]
for i in indices_need_nms:
if valid_cnt[i] > 0:
kpt_indices = torch.where(local_mask[i])[0]
scs_max_idx = scores_kpts1[kpt_indices].argmax()
tmp_mask = kpt_indices.new_ones(len(kpt_indices)).bool()
tmp_mask[scs_max_idx] = False
suppressed_indices = kpt_indices[tmp_mask]
valid_cnt[suppressed_indices] = 0
valid_mask = valid_cnt > 0
kpts1_wh = kpts1_wh_[valid_mask]
kpts1 = kpts1[valid_mask]
scores_kpts1 = scores_kpts1[valid_mask]
pred1_with_rand['keypoints'][idx] = kpts1
valid_mask = valid_mask[:len(pred1_with_rand['score_dispersity'][idx])]
pred1_with_rand['score_dispersity'][idx] = pred1_with_rand['score_dispersity'][idx][valid_mask]
pred1_with_rand['num_det'].append(valid_mask.sum())
# del dist, local_mask, valid_cnt, indices_need_nms, scs_max_idx, tmp_mask, suppressed_indices, valid_mask
# torch.cuda.empty_cache()
# ========================= nms
pred0_with_rand['scores'].append(scores_kpts0)
pred1_with_rand['scores'].append(scores_kpts1)
descriptor_map0, descriptor_map1 = pred0['descriptor_map'][idx], pred1['descriptor_map'][idx]
descriptor_map0 = F.normalize(descriptor_map0, dim=0)
descriptor_map1 = F.normalize(descriptor_map1, dim=0)
desc0 = torch.nn.functional.grid_sample(descriptor_map0.unsqueeze(0), kpts0.view(1, 1, -1, 2),
mode='bilinear', align_corners=True)[0, :, 0, :].t()
desc1 = torch.nn.functional.grid_sample(descriptor_map1.unsqueeze(0), kpts1.view(1, 1, -1, 2),
mode='bilinear', align_corners=True)[0, :, 0, :].t()
desc0 = F.normalize(desc0, dim=-1)
desc1 = F.normalize(desc1, dim=-1)
pred0_with_rand['descriptors'].append(desc0)
pred1_with_rand['descriptors'].append(desc1)
# =========================== prepare warp parameters
warp01_params = {}
for k, v in batch['warp01_params'].items():
warp01_params[k] = v[idx]
warp10_params = {}
for k, v in batch['warp10_params'].items():
warp10_params[k] = v[idx]
# =========================== warp keypoints across images
try:
kpts0_wh, kpts01_wh, ids0, ids0_out = warp(kpts0_wh, warp01_params)
kpts1_wh, kpts10_wh, ids1, ids1_out = warp(kpts1_wh, warp10_params)
except:
correspondences.append({'correspondence0': None, 'correspondence1': None,
'dist': kpts0_wh.new_tensor(0),
})
continue
if debug:
from training.utils import save_image_in_actual_size
image0 = batch['image0'][idx].cpu().detach().numpy().transpose(1, 2, 0)
image1 = batch['image1'][idx].cpu().detach().numpy().transpose(1, 2, 0)
p0 = kpts0_wh[:, [1, 0]].cpu().detach().numpy()
img_kpts0 = plot_keypoints(image0, p0, radius=5, color=(255, 0, 0))
# display_image_in_actual_size(img_kpts0)
p1 = kpts1_wh[:, [1, 0]].cpu().detach().numpy()
img_kpts1 = plot_keypoints(image1, p1, radius=5, color=(255, 0, 0))
# display_image_in_actual_size(img_kpts1)
p01 = kpts01_wh[:, [1, 0]].cpu().detach().numpy()
img_kpts01 = plot_keypoints(img_kpts1, p01, radius=5, color=(0, 255, 0))
save_image_in_actual_size(img_kpts01, name='kpts01.png')
p10 = kpts10_wh[:, [1, 0]].cpu().detach().numpy()
img_kpts10 = plot_keypoints(img_kpts0, p10, radius=5, color=(0, 255, 0))
save_image_in_actual_size(img_kpts10, name='kpts10.png')
# ============================= compute reprojection error
dist01 = compute_keypoints_distance(kpts0_wh, kpts10_wh)
dist10 = compute_keypoints_distance(kpts1_wh, kpts01_wh)
dist_l2 = (dist01 + dist10.t()) / 2.
# find mutual correspondences by calculating the distance
# between keypoints (I1) and warpped keypoints (I2->I1)
mutual_min_indices = mutual_argmin(dist_l2)
dist_mutual_min = dist_l2[mutual_min_indices]
valid_dist_mutual_min = dist_mutual_min.detach() < train_gt_th
ids0_d = mutual_min_indices[0][valid_dist_mutual_min]
ids1_d = mutual_min_indices[1][valid_dist_mutual_min]
correspondence0 = ids0[ids0_d]
correspondence1 = ids1[ids1_d]
# L1 distance
dist01_l1 = compute_keypoints_distance(kpts0_wh, kpts10_wh, p=1)
dist10_l1 = compute_keypoints_distance(kpts1_wh, kpts01_wh, p=1)
dist_l1 = (dist01_l1 + dist10_l1.t()) / 2.
# =========================== compute cross image descriptor similarity_map
similarity_map_01 = (desc0 @ descriptor_map1.reshape(h*w, 256).t()) * 20
similarity_map_01 = similarity_map_01.softmax(dim = -2) * similarity_map_01.softmax(dim= -1)
similarity_map_01 = similarity_map_01.reshape(desc0.shape[0], h, w)
similarity_map_01 = torch.clamp(similarity_map_01, 1e-6, 1-1e-6)
similarity_map_10 = (desc1 @ descriptor_map0.reshape(h*w, 256).t()) * 20
similarity_map_10 = similarity_map_10.softmax(dim = -2) * similarity_map_10.softmax(dim= -1)
similarity_map_10 = similarity_map_10.reshape(desc1.shape[0], h, w)
similarity_map_10 = torch.clamp(similarity_map_10, 1e-6, 1-1e-6)
similarity_map_01_valid = similarity_map_01[ids0] # valid descriptors
similarity_map_10_valid = similarity_map_10[ids1]
kpts01 = 2 * kpts01_wh.detach() / wh - 1 # N0x2, (x,y), [-1,1]
kpts10 = 2 * kpts10_wh.detach() / wh - 1 # N0x2, (x,y), [-1,1]
correspondences.append({'correspondence0': correspondence0, # indices of matched kpts0 in all kpts
'correspondence1': correspondence1, # indices of matched kpts1 in all kpts
'scores0': scores_kpts0[ids0],
'scores1': scores_kpts1[ids1],
'kpts01': kpts01, 'kpts10': kpts10, # warped valid kpts
'ids0': ids0, 'ids1': ids1, # valid indices of kpts0 and kpts1
'ids0_out': ids0_out, 'ids1_out': ids1_out,
'ids0_d': ids0_d, 'ids1_d': ids1_d, # match indices of valid kpts0 and kpts1
'dist_l1': dist_l1, # cross distance matrix of valid kpts using L1 norm
'dist': dist_l2, # cross distance matrix of valid kpts using L2 norm
'similarity_map_01': similarity_map_01, # all
'similarity_map_10': similarity_map_10, # all
'similarity_map_01_valid': similarity_map_01_valid, # valid
'similarity_map_10_valid': similarity_map_10_valid, # valid
})
return correspondences, pred0_with_rand, pred1_with_rand
class EmptyTensorError(Exception):
pass |