import os import sys import torch import numpy as np import math import cv2 os.environ['CUDA_VISIBLE_DEVICES']='1' from models.liftfeat_wrapper import LiftFeat,MODEL_PATH import argparse parser=argparse.ArgumentParser(description='HPatch dataset evaluation script') parser.add_argument('--name',type=str,default='LiftFeat',help='experiment name') parser.add_argument('--img1',type=str,default='./assert/ref.jpg',help='reference image path') parser.add_argument('--img2',type=str,default='./assert/query.jpg',help='query image path') parser.add_argument('--gpu',type=str,default='0',help='GPU ID') args=parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu def warp_corners_and_draw_matches(ref_points, dst_points, img1, img2): # Calculate the Homography matrix H, mask = cv2.findHomography(ref_points, dst_points, cv2.USAC_MAGSAC, 3.5, maxIters=1_000, confidence=0.999) mask = mask.flatten() # Get corners of the first image (image1) h, w = img1.shape[:2] corners_img1 = np.array([[0, 0], [w-1, 0], [w-1, h-1], [0, h-1]], dtype=np.float32).reshape(-1, 1, 2) # Warp corners to the second image (image2) space warped_corners = cv2.perspectiveTransform(corners_img1, H) # Draw the warped corners in image2 img2_with_corners = img2.copy() # Prepare keypoints and matches for drawMatches function keypoints1 = [cv2.KeyPoint(float(p[0]), float(p[1]), 5) for p in ref_points] keypoints2 = [cv2.KeyPoint(float(p[0]), float(p[1]), 5) for p in dst_points] matches = [cv2.DMatch(i,i,0) for i in range(len(mask)) if mask[i]] # Draw inlier matches img_matches = cv2.drawMatches(img1, keypoints1, img2_with_corners, keypoints2, matches, None, matchColor=(0, 255, 0), flags=2) return img_matches if __name__=="__main__": liftfeat=LiftFeat(weight=MODEL_PATH,detect_threshold=0.05) img1=cv2.imread(args.img1) img2=cv2.imread(args.img2) # import pdb;pdb.set_trace() mkpts1,mkpts2=liftfeat.match_liftfeat(img1,img2) canvas=warp_corners_and_draw_matches(mkpts1,mkpts2,img1,img2) import matplotlib.pyplot as plt plt.figure(figsize=[12,12]) plt.imshow(canvas[...,::-1]) plt.savefig(os.path.join(os.path.dirname(__file__),'match.jpg'), dpi=300, bbox_inches='tight') plt.show()