""" "LiftFeat: 3D Geometry-Aware Local Feature Matching" """ import sys import os ALIKE_PATH = '/home/yepeng_liu/code_python/multimodal_remote/ALIKE' sys.path.append(ALIKE_PATH) import torch import torch.nn as nn from alike import ALike import cv2 import numpy as np import pdb dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu') configs = { 'alike-t': {'c1': 8, 'c2': 16, 'c3': 32, 'c4': 64, 'dim': 64, 'single_head': True, 'radius': 2, 'model_path': os.path.join(ALIKE_PATH, 'models', 'alike-t.pth')}, 'alike-s': {'c1': 8, 'c2': 16, 'c3': 48, 'c4': 96, 'dim': 96, 'single_head': True, 'radius': 2, 'model_path': os.path.join(ALIKE_PATH, 'models', 'alike-s.pth')}, 'alike-n': {'c1': 16, 'c2': 32, 'c3': 64, 'c4': 128, 'dim': 128, 'single_head': True, 'radius': 2, 'model_path': os.path.join(ALIKE_PATH, 'models', 'alike-n.pth')}, 'alike-l': {'c1': 32, 'c2': 64, 'c3': 128, 'c4': 128, 'dim': 128, 'single_head': False, 'radius': 2, 'model_path': os.path.join(ALIKE_PATH, 'models', 'alike-l.pth')}, } class ALikeExtractor(nn.Module): def __init__(self,model_type,device) -> None: super().__init__() self.net=ALike(**configs[model_type],device=device,top_k=4096,scores_th=0.1,n_limit=8000) @torch.inference_mode() def extract_alike_kpts(self,img): pred0=self.net(img,sub_pixel=True) return pred0['keypoints']