import argparse import shutil from typing import Optional, List, Dict, Any import multiprocessing from pathlib import Path import pycolmap from . import logger from .utils.database import COLMAPDatabase from .triangulation import ( import_features, import_matches, estimation_and_geometric_verification, OutputCapture, parse_option_args) def create_empty_db(database_path: Path): if database_path.exists(): logger.warning('The database already exists, deleting it.') database_path.unlink() logger.info('Creating an empty database...') db = COLMAPDatabase.connect(database_path) db.create_tables() db.commit() db.close() def import_images(image_dir: Path, database_path: Path, camera_mode: pycolmap.CameraMode, image_list: Optional[List[str]] = None, options: Optional[Dict[str, Any]] = None): logger.info('Importing images into the database...') if options is None: options = {} images = list(image_dir.iterdir()) if len(images) == 0: raise IOError(f'No images found in {image_dir}.') with pycolmap.ostream(): pycolmap.import_images(database_path, image_dir, camera_mode, image_list=image_list or [], options=options) def get_image_ids(database_path: Path) -> Dict[str, int]: db = COLMAPDatabase.connect(database_path) images = {} for name, image_id in db.execute("SELECT name, image_id FROM images;"): images[name] = image_id db.close() return images def run_reconstruction(sfm_dir: Path, database_path: Path, image_dir: Path, verbose: bool = False, options: Optional[Dict[str, Any]] = None, ) -> pycolmap.Reconstruction: models_path = sfm_dir / 'models' models_path.mkdir(exist_ok=True, parents=True) logger.info('Running 3D reconstruction...') if options is None: options = {} options = {'num_threads': min(multiprocessing.cpu_count(), 16), **options} with OutputCapture(verbose): with pycolmap.ostream(): reconstructions = pycolmap.incremental_mapping( database_path, image_dir, models_path, options=options) if len(reconstructions) == 0: logger.error('Could not reconstruct any model!') return None logger.info(f'Reconstructed {len(reconstructions)} model(s).') largest_index = None largest_num_images = 0 for index, rec in reconstructions.items(): num_images = rec.num_reg_images() if num_images > largest_num_images: largest_index = index largest_num_images = num_images assert largest_index is not None logger.info(f'Largest model is #{largest_index} ' f'with {largest_num_images} images.') for filename in ['images.bin', 'cameras.bin', 'points3D.bin']: if (sfm_dir / filename).exists(): (sfm_dir / filename).unlink() shutil.move( str(models_path / str(largest_index) / filename), str(sfm_dir)) return reconstructions[largest_index] def main(sfm_dir: Path, image_dir: Path, pairs: Path, features: Path, matches: Path, camera_mode: pycolmap.CameraMode = pycolmap.CameraMode.AUTO, verbose: bool = False, skip_geometric_verification: bool = False, min_match_score: Optional[float] = None, image_list: Optional[List[str]] = None, image_options: Optional[Dict[str, Any]] = None, mapper_options: Optional[Dict[str, Any]] = None, ) -> pycolmap.Reconstruction: assert features.exists(), features assert pairs.exists(), pairs assert matches.exists(), matches sfm_dir.mkdir(parents=True, exist_ok=True) database = sfm_dir / 'database.db' create_empty_db(database) import_images(image_dir, database, camera_mode, image_list, image_options) image_ids = get_image_ids(database) import_features(image_ids, database, features) import_matches(image_ids, database, pairs, matches, min_match_score, skip_geometric_verification) if not skip_geometric_verification: estimation_and_geometric_verification(database, pairs, verbose) reconstruction = run_reconstruction( sfm_dir, database, image_dir, verbose, mapper_options) if reconstruction is not None: logger.info(f'Reconstruction statistics:\n{reconstruction.summary()}' + f'\n\tnum_input_images = {len(image_ids)}') return reconstruction if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--sfm_dir', type=Path, required=True) parser.add_argument('--image_dir', type=Path, required=True) parser.add_argument('--pairs', type=Path, required=True) parser.add_argument('--features', type=Path, required=True) parser.add_argument('--matches', type=Path, required=True) parser.add_argument('--camera_mode', type=str, default="AUTO", choices=list(pycolmap.CameraMode.__members__.keys())) parser.add_argument('--skip_geometric_verification', action='store_true') parser.add_argument('--min_match_score', type=float) parser.add_argument('--verbose', action='store_true') parser.add_argument('--image_options', nargs='+', default=[], help='List of key=value from {}'.format( pycolmap.ImageReaderOptions().todict())) parser.add_argument('--mapper_options', nargs='+', default=[], help='List of key=value from {}'.format( pycolmap.IncrementalMapperOptions().todict())) args = parser.parse_args().__dict__ image_options = parse_option_args( args.pop("image_options"), pycolmap.ImageReaderOptions()) mapper_options = parse_option_args( args.pop("mapper_options"), pycolmap.IncrementalMapperOptions()) main(**args, image_options=image_options, mapper_options=mapper_options)