File size: 13,805 Bytes
6d69218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import os
import sys
from pathlib import Path

import cv2
import numpy as np
import torch
from PIL import Image

try:
    from .omni_processor import OmniVideoProcessor
except ImportError:
    print(
        "Warning: omni_processor not found, some functionality may be limited",
        file=sys.stderr,
    )
try:
    from .read_write_model import read_model
except ImportError:
    print(
        "Warning: read_write_model not found, some functionality may be limited",
        file=sys.stderr,
    )


class OmniParameterControls:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "frame_interval": (
                    "INT",
                    {"default": 24, "min": 1, "max": 100},
                ),
                "width": ("INT", {"default": 640, "min": 100, "max": 2000}),
                "height": ("INT", {"default": 640, "min": 100, "max": 2000}),
                "cx": ("FLOAT", {"default": 320.0, "min": 0.0, "max": 2000.0}),
                "cy": ("FLOAT", {"default": 320.0, "min": 0.0, "max": 2000.0}),
                "fov_h": (
                    "FLOAT",
                    {"default": 90.0, "min": 30.0, "max": 180.0},
                ),
                "fov_v": (
                    "FLOAT",
                    {"default": 90.0, "min": 30.0, "max": 180.0},
                ),
                "base_pitch": (
                    "FLOAT",
                    {"default": 35.0, "min": -90.0, "max": 90.0},
                ),
                "yaw_steps": ("INT", {"default": 4, "min": 1, "max": 12}),
                "yaw_offset": (
                    "FLOAT",
                    {"default": 0.0, "min": -180.0, "max": 180.0},
                ),
            },
            "optional": {
                "pano_projection": (
                    ["equirectangular", "cubemap"],
                    {"default": "equirectangular"},
                ),
                "pano_quality": (
                    ["low", "medium", "high"],
                    {"default": "medium"},
                ),
                "stabilize": ("BOOLEAN", {"default": True}),
            },
        }

    RETURN_TYPES = ("OMNI_PARAMS",)
    FUNCTION = "get_params"
    CATEGORY = "Omnidirectional Video"

    def get_params(
        self,
        frame_interval,
        width,
        height,
        fov_h,
        fov_v,
        base_pitch,
        yaw_steps,
        yaw_offset,
        **kwargs,
    ):
        # Generate views based on parameters
        views = {}
        yaw_step = 360.0 / yaw_steps

        # Add positive pitch views
        for i in range(yaw_steps):
            yaw = (i * yaw_step + yaw_offset) % 360
            if yaw > 180:
                yaw -= 360
            views[f"pitch_{base_pitch}_yaw_{round(yaw,1)}"] = (base_pitch, yaw)

        # Add negative pitch views
        for i in range(yaw_steps):
            yaw = (i * yaw_step + yaw_offset) % 360
            if yaw > 180:
                yaw -= 360
            views[f"pitch_{-base_pitch}_yaw_{round(yaw,1)}"] = (
                -base_pitch,
                yaw,
            )

        params = {
            "frame_interval": frame_interval,
            "width": width,
            "height": height,
            "fov_h": fov_h,
            "fov_v": fov_v,
            "views": views,
        }
        params.update(kwargs)
        return (params,)


class OmniVideoProcessorNode:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "omni_video": ("IMAGE",),
                "omni_params": ("OMNI_PARAMS",),
            }
        }

    RETURN_TYPES = ("OMNI_PROCESSED",)
    FUNCTION = "process_video"
    CATEGORY = "Omnidirectional Video"

    def process_video(self, omni_video, omni_params):
        import tempfile
        import time
        from tempfile import gettempdir

        # VideoFromFile

        run_timestamp = time.strftime("%Y%m%d-%H%M%S")
        output_dir = Path(gettempdir()) / f"omni_output_{run_timestamp}"
        output_dir.mkdir(parents=True, exist_ok=True)

        processor = OmniVideoProcessor(omni_params)
        panoramic_frames, pinhole_images_data = processor.process_video(omni_video, output_dir)
        result = {
            "output_dir": str(output_dir),
            "panoramic_frames": panoramic_frames,
            "pinhole_views": pinhole_images_data,
        }

        return (result,)


class OmniReconstructionNode:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "omni_processed": ("OMNI_PROCESSED",),
                "colmap_path": ("STRING", {"default": "colmap"}),
                "quality": (
                    ["low", "medium", "high", "extreme"],
                    {"default": "medium"},
                ),
            }
        }

    RETURN_TYPES = ("RECONSTRUCTION", "model_file")
    RETURN_NAMES = ("reconstruction", "model_file")
    FUNCTION = "run_reconstruction"
    CATEGORY = "Omnidirectional Video"

    def run_reconstruction(self, omni_processed, colmap_path, quality):
        output_dir = Path(omni_processed["output_dir"])
        image_dir = output_dir / "pinhole_images" / "images"
        db_path = output_dir / "database.db"
        rig_config_path = output_dir / "pinhole_images" / "rig_config.json"
        sparse_dir = output_dir / "sparse"
        dense_dir = output_dir / "dense"

        # Create necessary directories
        sparse_dir.mkdir(exist_ok=True)
        dense_dir.mkdir(exist_ok=True)

        cmds = [
            f'"{colmap_path}" feature_extractor --database_path "{db_path}" --image_path "{image_dir}" --ImageReader.camera_model PINHOLE --ImageReader.single_camera_per_folder 1',
            f'"{colmap_path}" sequential_matcher --database_path "{db_path}" --SequentialMatching.loop_detection 1',
            f'"{colmap_path}" mapper --database_path "{db_path}" --image_path "{image_dir}" --output_path "{sparse_dir}" --Mapper.ba_refine_focal_length 0 --Mapper.ba_refine_principal_point 0 --Mapper.ba_refine_extra_params 0',
        ]

        for cmd in cmds:
            print(f"Executing: {cmd}")
            ret = os.system(cmd)
            if ret != 0:
                raise RuntimeError(f"Command failed with exit code {ret}: {cmd}")
        # generate mesh and point cloud
        cameras, images, points3D = read_model(sparse_dir / "0")
        sparse_ply_path = sparse_dir / "0" / "sparse.ply"
        # points3d_data = []
        # for pts in points3D.values():
        #     # pts.rgb = pts.rgb.astype(np.float32) / 255.0
        #     points3d_data.append(
        #         (
        #             pts.xyz[0],
        #             pts.xyz[1],
        #             pts.xyz[2],
        #             pts.rgb[0],
        #             pts.rgb[1],
        #             pts.rgb[2],
        #         )
        #     )

        # with open(sparse_ply_path, "w") as f:
        #     f.write("ply\n")
        #     f.write("format ascii 1.0\n")
        #     f.write(f"element vertex {len(points3d_data)}\n")
        #     f.write("property float x\n")
        #     f.write("property float y\n")
        #     f.write("property float z\n")
        #     f.write("property uchar red\n")
        #     f.write("property uchar green\n")
        #     f.write("property uchar blue\n")
        #     f.write("end_header\n")
        #     for p in points3d_data:
        #         f.write(f"{p[0]} {p[1]} {p[2]} {int(p[3])} {int(p[4])} {int(p[5])}\n")
        print(f"Generated sparse point cloud at: {sparse_ply_path}")
        return (
            str(sparse_dir / "0"),
            str(sparse_ply_path),
        )


class OmniPreviewNode:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "reconstruction": ("RECONSTRUCTION",),
                "model_file": ("model_file",),
            },
            "optional": {
                "show_type": (
                    ["input_frame", "reconstruction", "mesh", "model_file"],
                    {"default": "input_frame"},
                ),
                "view_yaw": (
                    "FLOAT",
                    {"default": 0.0, "min": -180.0, "max": 180.0},
                ),
                "view_pitch": (
                    "FLOAT",
                    {"default": 0.0, "min": -90.0, "max": 90.0},
                ),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate_preview"
    CATEGORY = "Omnidirectional Video"

    def _create_placeholder_preview(self, text):
        img = Image.new("RGB", (640, 480), (30, 30, 50))
        try:
            from PIL import ImageDraw, ImageFont

            draw = ImageDraw.Draw(img)
            try:
                font = ImageFont.truetype("Arial.ttf", 40)
            except:
                font = ImageFont.load_default()
            text_width = draw.textlength(text, font=font)
            position = ((640 - text_width) // 2, 220)
            draw.text(position, text, fill=(200, 200, 255), font=font)
        except ImportError:
            pass
        return img

    def generate_preview(self, show_type="input_frame", view_yaw=0.0, view_pitch=0.0, **kwargs):
        blank_image = self._create_placeholder_preview("No Preview Available")

        def to_tensor(img):
            img = img.convert("RGB").resize((640, 480))
            return torch.from_numpy(np.array(img).astype(np.float32) / 255.0)[None,]

        if show_type in ["reconstruction", "mesh", "model_file"]:
            file_path = kwargs.get(show_type)
            if file_path and Path(file_path).exists():
                text = f"{show_type.replace('_', ' ').title()} Ready"
                image = self._create_placeholder_preview(text)
                return (to_tensor(image),)

        return (to_tensor(blank_image),)


# NEW NODE FOR ADVANCED VISUALIZATION
class OmniAdvancedPreviewNode:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "omni_processed": ("OMNI_PROCESSED",),
                "show_type": (["Pinhole Images", "Panoramic Frames"],),
                "max_items_to_show": (
                    "INT",
                    {"default": 8, "min": 1, "max": 64},
                ),
                "start_index": ("INT", {"default": 0, "min": 0}),
                "enable_annotation": ("BOOLEAN", {"default": True}),
            }
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generate_preview_batch"
    CATEGORY = "Omnidirectional Video"

    def generate_preview_batch(
        self,
        omni_processed,
        show_type,
        max_items_to_show,
        start_index,
        enable_annotation,
    ):
        images_to_process = []
        if show_type == "Pinhole Images" and "pinhole_views" in omni_processed:
            images_to_process = omni_processed["pinhole_views"]
        elif show_type == "Panoramic Frames" and "panoramic_frames" in omni_processed:
            images_to_process = omni_processed["panoramic_frames"]

        if not images_to_process:
            blank_image = Image.new("RGB", (256, 256), "black")
            return (torch.from_numpy(np.array(blank_image).astype(np.float32) / 255.0)[None,],)

        # 分页逻辑
        end_index = start_index + max_items_to_show
        subset = images_to_process[start_index:end_index]

        output_images = []
        for item in subset:
            if isinstance(item, dict) and "image" in item:
                img_data = item["image"]
            if isinstance(item, dict) and "frame" in item:
                img_data = item["frame"]
            if isinstance(img_data, str):
                img_data = cv2.imread(img_data)
                img_data = cv2.cvtColor(img_data, cv2.COLOR_BGR2RGB)
            if img_data is None:
                print(f"Warning: Image data is None for item {item}")
                continue
            pil_img = Image.fromarray(img_data)

            if show_type == "Pinhole Images" and enable_annotation:
                from PIL import ImageDraw, ImageFont

                draw = ImageDraw.Draw(pil_img)
                try:
                    font = ImageFont.truetype("arial.ttf", 20)
                except IOError:
                    font = ImageFont.load_default()

                text = (
                    f"P: {item['pitch']:.1f}, Y: {item['yaw']:.1f}\n"
                    f"Size: {item['width']}x{item['height']}\n"
                    f"Pano Idx: {item['pano_index']}"
                )

                draw.text((10, 10), text, font=font, fill="yellow")

            img_tensor = torch.from_numpy(np.array(pil_img).astype(np.float32) / 255.0)
            output_images.append(img_tensor)

        if not output_images:
            blank_image = Image.new("RGB", (256, 256), "black")
            return (torch.from_numpy(np.array(blank_image).astype(np.float32) / 255.0)[None,],)

        return (torch.stack(output_images),)


# UPDATE THE NODE MAPPINGS
NODE_CLASS_MAPPINGS = {
    # "OmniLoadVideoUpload": OmniLoadVideoUpload,
    "OmniParameterControls": OmniParameterControls,
    "OmniVideoProcessor": OmniVideoProcessorNode,
    "OmniReconstruction": OmniReconstructionNode,
    "OmniPreview": OmniPreviewNode,  # Keeping the old one for simple previews
    "OmniAdvancedPreview": OmniAdvancedPreviewNode,  # Adding the new one
}

NODE_DISPLAY_NAME_MAPPINGS = {
    # "OmniLoadVideoUpload": "Load Omni Video Upload",
    "OmniParameterControls": "Omnidirectional Parameters",
    "OmniVideoProcessor": "Process Omnidirectional Video",
    "OmniReconstruction": "Run COLMAP Reconstruction",
    "OmniPreview": "Omni Model Preview",  # Renamed for clarity
    "OmniAdvancedPreview": "Omni Advanced Preview",  # New node's display name
}