Spaces:
Sleeping
Sleeping
File size: 9,655 Bytes
711f069 7184f92 711f069 8090856 7184f92 be67c98 7184f92 1271777 449a90d be67c98 7184f92 be67c98 1271777 7184f92 ba3e6fe 7184f92 ba3e6fe 7184f92 1271777 7184f92 1271777 7184f92 be67c98 ba3e6fe be67c98 7184f92 1271777 7184f92 be67c98 1271777 be67c98 7184f92 1271777 7184f92 1271777 ba3e6fe 1271777 ba3e6fe be67c98 1271777 ba3e6fe be67c98 1271777 ba3e6fe be67c98 1271777 be67c98 1271777 ba3e6fe be67c98 1271777 ba3e6fe be67c98 1271777 d8a976f 1271777 7184f92 ba3e6fe 7184f92 55168fa ba3e6fe 1271777 171db0a 1271777 55168fa 1271777 55168fa 1271777 55168fa 1271777 d8a976f 1271777 55168fa 1271777 f95a698 1271777 55168fa 1271777 f92d4d6 1271777 55168fa 3f20358 1271777 55168fa 1271777 55168fa 1271777 d8a976f 1271777 d8a976f be67c98 1271777 2cf74a7 1271777 7184f92 1271777 7184f92 e1ff28f 7184f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
class XylariaChat:
def __init__(self):
# Securely load HuggingFace token
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize the inference client
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview", # Changed model name
token=self.hf_token
)
# Initialize conversation history and persistent memory
self.conversation_history = []
self.persistent_memory = {}
# System prompt with more detailed instructions
self.system_prompt = """You are Xylaria 1.4 Senoa, Made by Sk Md Saad Amin designed to provide helpful, accurate, and engaging support across a wide range of topics. Key guidelines for our interaction include:
Core Principles:
- Provide accurate and comprehensive assistance
- Maintain a friendly and approachable communication style
- Prioritize the user's needs and context
Communication Style:
- Be conversational and warm
- Use clear, concise language
- Occasionally use light, appropriate emoji to enhance communication
- Adapt communication style to the user's preferences
- Respond in english
Important Notes:
- I am an AI assistant created by an independent developer
- I do not represent OpenAI or any other AI institution
- For image-related queries, I can describe images or provide analysis, or generate or link to images directly
Capabilities:
- Assist with research, writing, analysis, problem-solving, and creative tasks
- Answer questions across various domains
- Provide explanations and insights
- Offer supportive and constructive guidance """
def store_information(self, key, value):
"""Store important information in persistent memory"""
self.persistent_memory[key] = value
def retrieve_information(self, key):
"""Retrieve information from persistent memory"""
return self.persistent_memory.get(key)
def reset_conversation(self):
"""
Completely reset the conversation history and persistent memory
This helps prevent exposing previous users' conversations
"""
self.conversation_history = []
self.persistent_memory = {}
return []
def get_response(self, user_input):
# Prepare messages with conversation context and persistent memory
messages = [
{"role": "system", "content": self.system_prompt},
*self.conversation_history,
{"role": "user", "content": user_input}
]
# Add persistent memory context if available
if self.persistent_memory:
memory_context = "Remembered Information:\n" + "\n".join(
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
)
messages.insert(1, {"role": "system", "content": memory_context})
# Generate response with streaming
try:
response_stream = self.client.text_generation(
prompt=self.messages_to_prompt(messages), # Convert messages to prompt format
max_new_tokens=1024,
temperature=0.5,
top_p=0.7,
stream=True
)
return response_stream
except Exception as e:
return f"Error generating response: {str(e)}"
def messages_to_prompt(self, messages):
"""
Converts a list of messages in OpenAI format to a prompt string.
"""
prompt = ""
for message in messages:
if message["role"] == "system":
prompt += f"<|im_start|>system\n{message['content']}<|im_end|>\n"
elif message["role"] == "user":
prompt += f"<|im_start|>user\n{message['content']}<|im_end|>\n"
elif message["role"] == "assistant":
prompt += f"<|im_start|>assistant\n{message['content']}<|im_end|>\n"
prompt += "<|im_start|>assistant\n"
return prompt
def create_interface(self):
# Local storage JavaScript functions (these are strings, not functions)
load_from_local_storage_js = """
async () => {
const savedHistory = localStorage.getItem('xylaria_chat_history');
return savedHistory ? JSON.parse(savedHistory) : [];
}
"""
save_to_local_storage_js = """
async (chatHistory) => {
localStorage.setItem('xylaria_chat_history', JSON.stringify(chatHistory));
}
"""
clear_local_storage_js = """
async () => {
localStorage.removeItem('xylaria_chat_history');
}
"""
def streaming_response(message, chat_history):
# Clear input textbox
response_stream = self.get_response(message)
# If it's an error, return immediately
if isinstance(response_stream, str):
return "", chat_history + [[message, response_stream]]
# Prepare for streaming response
full_response = ""
updated_history = chat_history + [[message, ""]]
# Streaming output
for response_text in response_stream:
full_response += response_text
# Update the last message in chat history with partial response
updated_history[-1][1] = full_response
yield "", updated_history
# Update conversation history
self.conversation_history.append(
{"role": "user", "content": message}
)
self.conversation_history.append(
{"role": "assistant", "content": full_response}
)
# Limit conversation history to prevent token overflow
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
return "", updated_history
# Custom CSS for Inter font
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif !important;
}
.chatbot-container .message {
font-family: 'Inter', sans-serif !important;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Inter', sans-serif !important;
}
"""
with gr.Blocks(theme='soft', css=custom_css) as demo:
# Chat interface with improved styling
with gr.Column():
chatbot = gr.Chatbot(
label="Xylaria 1.4 Senoa",
height=500,
show_copy_button=True,
# type="messages" # Use the 'messages' format
)
# Input row with improved layout
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False,
scale=4
)
btn = gr.Button("Send", scale=1)
# Clear history and memory buttons
clear = gr.Button("Clear Conversation")
clear_memory = gr.Button("Clear Memory")
# Use `gr.State` to manage initial chatbot value and `demo.load` for initialization
initial_chat_history = gr.State([])
demo.load(
fn=lambda: initial_chat_history.value,
inputs=None,
outputs=[chatbot],
js=load_from_local_storage_js
)
# Submit functionality with local storage save
btn.click(
fn=streaming_response,
inputs=[txt, chatbot],
outputs=[txt, chatbot]
).then(
fn=None,
inputs=[chatbot], # Pass chatbot history to JavaScript
outputs=None,
js=save_to_local_storage_js
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot],
outputs=[txt, chatbot]
).then(
fn=None,
inputs=[chatbot], # Pass chatbot history to JavaScript
outputs=None,
js=save_to_local_storage_js
)
# Clear conversation history with local storage clear
clear.click(
fn=lambda: [],
inputs=None,
outputs=[chatbot]
).then(
fn=None,
inputs=None,
outputs=None,
js=clear_local_storage_js
)
# Clear persistent memory and reset conversation with local storage clear
clear_memory.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot]
).then(
fn=None,
inputs=None,
outputs=None,
js=clear_local_storage_js
)
return demo
# Launch the interface
def main():
chat = XylariaChat()
interface = chat.create_interface()
interface.launch(
share=True, # Optional: create a public link
debug=True # Show detailed errors
)
if __name__ == "__main__":
main() |