TEST / app.py
Reality123b's picture
Update app.py
3d08dbc verified
raw
history blame
2.71 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Initialize model and tokenizer
model_name = "Qwen/Qwen2.5-3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def generate_response(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Prepare conversation history
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
# Convert messages to model input format
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Prepare model inputs
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
# Extract generated text
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
yield response
# Custom CSS for the Gradio interface
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif;
}
"""
# System message
system_message = """You are Qwen, created by Alibaba Cloud. You are a helpful assistant."""
# Gradio chat interface
demo = gr.ChatInterface(
generate_response,
additional_inputs=[
gr.Textbox(
value=system_message,
visible=False,
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
css=custom_css
)
# Launch the demo
if __name__ == "__main__":
demo.launch()