Reality123b commited on
Commit
050c504
·
verified ·
1 Parent(s): 89c6bec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -57
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
  # Initialize clients
5
- text_client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
6
  image_client = InferenceClient("SG161222/RealVisXL_V3.0")
7
 
8
  def check_custom_responses(message: str) -> str:
@@ -187,6 +187,16 @@ def respond(
187
  yield custom_response
188
  return
189
 
 
 
 
 
 
 
 
 
 
 
190
  # Prepare conversation history
191
  messages = [{"role": "system", "content": system_message}]
192
  for val in history:
@@ -197,61 +207,18 @@ def respond(
197
 
198
  messages.append({"role": "user", "content": message})
199
 
200
- # Check if the user wants a fast or critical response
201
- if "critical" in message.lower():
202
- # Critical thinker logic (like the 'nemo' function)
203
- budget = 3 # Starting budget for steps
204
- step_response = ""
205
- message_critical = f"""[INST] [SYSTEM] You are a helpful assistant in normal conversation.
206
- When given a problem to solve, you are an expert problem-solving assistant.
207
- Your task is to provide a detailed, step-by-step solution to a given question.
208
- Follow these instructions carefully:
209
- 1. Read the given question carefully and reset counter between <count> and </count> to {budget} (maximum 3 steps).
210
- 2. Think critically like a human researcher or scientist. Break down the problem using first principles to conceptually understand and answer the question.
211
- 3. Generate a detailed, logical step-by-step solution.
212
- 4. Enclose each step of your solution within <step> and </step> tags.
213
- 5. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags <count> </count>, STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
214
- 6. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decide whether you need to return to the previous steps.
215
- 7. After completing the solution steps, reorganize and synthesize the steps into the final answer within <answer> and </answer> tags.
216
- 8. Provide a critical, honest, and subjective self-evaluation of your reasoning process within <reflection> and </reflection> tags.
217
- 9. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags.
218
- Example format:
219
- <count> [starting budget] </count>
220
- <step> [Content of step 1] </step>
221
- <count> [remaining budget] </count>
222
- <step> [Content of step 2] </step>
223
- <reflection> [Evaluation of the steps so far] </reflection>
224
- <reward> [Float between 0.0 and 1.0] </reward>
225
- <count> [remaining budget] </count>
226
- <step> [Content of step 3 or Content of some previous step] </step>
227
- <count> [remaining budget] </count>
228
- ...
229
- <step> [Content of final step] </step>
230
- <count> [remaining budget] </count>
231
- <answer> [Final Answer] </answer> (must give final answer in this format)
232
- <reflection> [Evaluation of the solution] </reflection>
233
- <reward> [Float between 0.0 and 1.0] </reward> [/INST] [INST] [QUERY] {message} [/INST] [ASSISTANT] """
234
-
235
- # Send critical thinking message to client and stream response
236
- stream = text_client.text_generation(message_critical, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
237
- critical_response = ""
238
- for response in stream:
239
- critical_response += response.token.text
240
- yield critical_response
241
-
242
- else:
243
- # Standard fast response logic (like 'models')
244
- response = ""
245
- for message in text_client.chat_completion(
246
- messages,
247
- max_tokens=max_tokens,
248
- stream=True,
249
- temperature=temperature,
250
- top_p=top_p,
251
- ):
252
- token = message.choices[0].delta.content
253
- response += token
254
- yield response
255
 
256
  yield response
257
 
@@ -293,6 +260,7 @@ Focus on accuracy, respect for sensitive topics, transparency, and professionali
293
  Version: Xylaria-1.2.9
294
  """
295
 
 
296
  # Gradio chat interface
297
  demo = gr.ChatInterface(
298
  respond,
@@ -325,4 +293,4 @@ demo = gr.ChatInterface(
325
  ],
326
  css=custom_css
327
  )
328
- demo.launch()
 
2
  from huggingface_hub import InferenceClient
3
 
4
  # Initialize clients
5
+ text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
  image_client = InferenceClient("SG161222/RealVisXL_V3.0")
7
 
8
  def check_custom_responses(message: str) -> str:
 
187
  yield custom_response
188
  return
189
 
190
+ if is_image_request(message):
191
+ try:
192
+ image = generate_image(message)
193
+ if image:
194
+ return f"Here's your generated image based on: {message}"
195
+ else:
196
+ return "Sorry, I couldn't generate the image. Please try again."
197
+ except Exception as e:
198
+ return f"An error occurred while generating the image: {str(e)}"
199
+
200
  # Prepare conversation history
201
  messages = [{"role": "system", "content": system_message}]
202
  for val in history:
 
207
 
208
  messages.append({"role": "user", "content": message})
209
 
210
+ # Get response from model
211
+ response = ""
212
+ for message in text_client.chat_completion(
213
+ messages,
214
+ max_tokens=max_tokens,
215
+ stream=True,
216
+ temperature=temperature,
217
+ top_p=top_p,
218
+ ):
219
+ token = message.choices[0].delta.content
220
+ response += token
221
+ yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
 
223
  yield response
224
 
 
260
  Version: Xylaria-1.2.9
261
  """
262
 
263
+
264
  # Gradio chat interface
265
  demo = gr.ChatInterface(
266
  respond,
 
293
  ],
294
  css=custom_css
295
  )
296
+ demo.launch()