Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
4 |
|
5 |
# Initialize model and tokenizer
|
6 |
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
|
|
7 |
model = AutoModelForCausalLM.from_pretrained(
|
8 |
model_name,
|
9 |
torch_dtype="auto",
|
10 |
device_map="auto"
|
11 |
)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def generate_response(
|
15 |
message,
|
@@ -36,32 +52,37 @@ def generate_response(
|
|
36 |
add_generation_prompt=True
|
37 |
)
|
38 |
|
39 |
-
# Prepare model inputs
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
]
|
55 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
56 |
-
|
57 |
-
yield response
|
58 |
|
59 |
-
# Custom CSS
|
60 |
custom_css = """
|
61 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
|
62 |
body, .gradio-container {
|
63 |
font-family: 'Inter', sans-serif;
|
64 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
"""
|
66 |
|
67 |
# System message
|
@@ -102,4 +123,5 @@ demo = gr.ChatInterface(
|
|
102 |
|
103 |
# Launch the demo
|
104 |
if __name__ == "__main__":
|
|
|
105 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
+
import time
|
5 |
|
6 |
# Initialize model and tokenizer
|
7 |
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
8 |
+
print("Loading model and tokenizer...")
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
model_name,
|
11 |
torch_dtype="auto",
|
12 |
device_map="auto"
|
13 |
)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
print("Model and tokenizer loaded!")
|
16 |
+
|
17 |
+
def simulate_typing(text, min_chars_per_sec=20, max_chars_per_sec=60):
|
18 |
+
"""Simulate typing animation with variable speed."""
|
19 |
+
full_text = ""
|
20 |
+
words = text.split()
|
21 |
+
for i, word in enumerate(words):
|
22 |
+
full_text += word
|
23 |
+
if i < len(words) - 1:
|
24 |
+
full_text += " "
|
25 |
+
# Vary typing speed between min and max chars per second
|
26 |
+
delay = 1 / (min_chars_per_sec + (max_chars_per_sec - min_chars_per_sec) * torch.rand(1).item())
|
27 |
+
time.sleep(delay)
|
28 |
+
yield full_text
|
29 |
|
30 |
def generate_response(
|
31 |
message,
|
|
|
52 |
add_generation_prompt=True
|
53 |
)
|
54 |
|
55 |
+
# Prepare model inputs and generate in one go
|
56 |
+
with torch.inference_mode():
|
57 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
58 |
+
generated_ids = model.generate(
|
59 |
+
**model_inputs,
|
60 |
+
max_new_tokens=max_tokens,
|
61 |
+
temperature=temperature,
|
62 |
+
top_p=top_p,
|
63 |
+
do_sample=True,
|
64 |
+
pad_token_id=tokenizer.eos_token_id
|
65 |
+
)
|
66 |
+
generated_ids = generated_ids[0, len(model_inputs.input_ids[0]):]
|
67 |
+
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
68 |
|
69 |
+
# Return response with typing animation
|
70 |
+
for partial_response in simulate_typing(response):
|
71 |
+
yield partial_response
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Custom CSS with typing cursor animation
|
74 |
custom_css = """
|
75 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
|
76 |
body, .gradio-container {
|
77 |
font-family: 'Inter', sans-serif;
|
78 |
}
|
79 |
+
.typing-cursor::after {
|
80 |
+
content: '|';
|
81 |
+
animation: blink 1s step-start infinite;
|
82 |
+
}
|
83 |
+
@keyframes blink {
|
84 |
+
50% { opacity: 0; }
|
85 |
+
}
|
86 |
"""
|
87 |
|
88 |
# System message
|
|
|
123 |
|
124 |
# Launch the demo
|
125 |
if __name__ == "__main__":
|
126 |
+
demo.queue() # Enable queuing for better handling of multiple requests
|
127 |
demo.launch()
|