import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Initialize model and tokenizer model_name = "Qwen/Qwen2.5-3B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_response( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare conversation history messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # Convert messages to model input format text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Prepare model inputs model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate response generated_ids = model.generate( **model_inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True ) # Extract generated text generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] yield response # Custom CSS for the Gradio interface custom_css = """ @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap'); body, .gradio-container { font-family: 'Inter', sans-serif; } """ # System message system_message = """You are Qwen, created by Alibaba Cloud. You are a helpful assistant.""" # Gradio chat interface demo = gr.ChatInterface( generate_response, additional_inputs=[ gr.Textbox( value=system_message, visible=False, ), gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], css=custom_css ) # Launch the demo if __name__ == "__main__": demo.launch()