Spaces:
Sleeping
Sleeping
File size: 1,329 Bytes
6e0397b 3003014 6e0397b 9172b86 6e0397b 3003014 5879220 1e49580 3003014 6e0397b 3003014 6e0397b 5205e2c 6e0397b 3003014 6e0397b 3003014 6e0397b 3003014 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline, TextStreamer
import torch
class ModelInput(BaseModel):
prompt: str
max_new_tokens: int = 128000
app = FastAPI()
# Initialize text generation pipeline
generator = pipeline(
"text-generation",
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
device="cpu" # Use CPU (change to device=0 for GPU)
)
# Create text streamer
streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
def generate_response(prompt: str, max_new_tokens: int = 64000):
try:
messages = [{"role": "user", "content": prompt}]
output = generator(messages, max_new_tokens=max_new_tokens, do_sample=False, streamer=streamer)
return output[0]["generated_text"][-1]["content"]
except Exception as e:
raise ValueError(f"Error generating response: {e}")
@app.post("/generate")
async def generate_text(input: ModelInput):
try:
response = generate_response(
prompt=input.prompt,
max_new_tokens=input.max_new_tokens
)
return {"generated_text": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome to the Streaming Model API!"}
|