Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,31 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
-
from
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
from huggingface_hub import snapshot_download
|
6 |
from safetensors.torch import load_file
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
class ModelInput(BaseModel):
|
9 |
-
prompt: str
|
10 |
-
max_new_tokens: int = 2048
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Define model paths
|
15 |
BASE_MODEL_PATH = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
16 |
ADAPTER_PATH = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
@@ -18,7 +33,7 @@ ADAPTER_PATH = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epoc
|
|
18 |
def load_model_and_tokenizer():
|
19 |
"""Load the model, tokenizer, and adapter weights."""
|
20 |
try:
|
21 |
-
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
BASE_MODEL_PATH,
|
24 |
torch_dtype=torch.float16,
|
@@ -26,31 +41,38 @@ def load_model_and_tokenizer():
|
|
26 |
device_map="auto"
|
27 |
)
|
28 |
|
29 |
-
|
30 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
|
31 |
|
32 |
-
|
33 |
adapter_path_local = snapshot_download(repo_id=ADAPTER_PATH)
|
34 |
|
35 |
-
|
36 |
adapter_file = f"{adapter_path_local}/adapter_model.safetensors"
|
37 |
state_dict = load_file(adapter_file)
|
38 |
|
39 |
-
|
40 |
model.load_state_dict(state_dict, strict=False)
|
41 |
-
|
42 |
|
43 |
return model, tokenizer
|
44 |
except Exception as e:
|
45 |
-
|
46 |
raise
|
47 |
|
48 |
# Load model and tokenizer at startup
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def generate_response(model, tokenizer, instruction, max_new_tokens=2048):
|
52 |
"""Generate a response from the model based on an instruction."""
|
53 |
try:
|
|
|
|
|
54 |
# Encode input with truncation
|
55 |
inputs = tokenizer.encode(
|
56 |
instruction,
|
@@ -59,6 +81,8 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=2048):
|
|
59 |
max_length=tokenizer.model_max_length
|
60 |
).to(model.device)
|
61 |
|
|
|
|
|
62 |
# Create attention mask
|
63 |
attention_mask = torch.ones(inputs.shape, device=model.device)
|
64 |
|
@@ -70,35 +94,59 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=2048):
|
|
70 |
temperature=0.7,
|
71 |
top_p=0.9,
|
72 |
do_sample=True,
|
|
|
|
|
73 |
)
|
74 |
|
|
|
|
|
75 |
# Decode and strip input prompt from response
|
76 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
generated_text = response[len(instruction):].strip()
|
78 |
|
|
|
79 |
return generated_text
|
80 |
except Exception as e:
|
81 |
-
|
82 |
raise ValueError(f"Error generating response: {e}")
|
83 |
|
84 |
@app.post("/generate")
|
85 |
-
async def generate_text(input: ModelInput):
|
86 |
"""Generate text based on the input prompt."""
|
87 |
try:
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
response = generate_response(
|
90 |
model=model,
|
91 |
tokenizer=tokenizer,
|
92 |
instruction=input.prompt,
|
93 |
max_new_tokens=input.max_new_tokens
|
94 |
)
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
return {"generated_text": response}
|
97 |
except Exception as e:
|
98 |
-
|
99 |
raise HTTPException(status_code=500, detail=str(e))
|
100 |
|
101 |
@app.get("/")
|
102 |
async def root():
|
103 |
"""Root endpoint that returns a welcome message."""
|
104 |
-
return {"message": "Welcome to the Model API!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Request
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import torch
|
6 |
from huggingface_hub import snapshot_download
|
7 |
from safetensors.torch import load_file
|
8 |
+
import logging
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
|
14 |
class ModelInput(BaseModel):
|
15 |
+
prompt: str = Field(..., description="The input prompt for text generation")
|
16 |
+
max_new_tokens: int = Field(default=2048, gt=0, le=4096, description="Maximum number of tokens to generate")
|
17 |
|
18 |
app = FastAPI()
|
19 |
|
20 |
+
# Add CORS middleware
|
21 |
+
app.add_middleware(
|
22 |
+
CORSMiddleware,
|
23 |
+
allow_origins=["*"],
|
24 |
+
allow_credentials=True,
|
25 |
+
allow_methods=["*"],
|
26 |
+
allow_headers=["*"],
|
27 |
+
)
|
28 |
+
|
29 |
# Define model paths
|
30 |
BASE_MODEL_PATH = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
31 |
ADAPTER_PATH = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
|
|
33 |
def load_model_and_tokenizer():
|
34 |
"""Load the model, tokenizer, and adapter weights."""
|
35 |
try:
|
36 |
+
logger.info("Loading base model...")
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
BASE_MODEL_PATH,
|
39 |
torch_dtype=torch.float16,
|
|
|
41 |
device_map="auto"
|
42 |
)
|
43 |
|
44 |
+
logger.info("Loading tokenizer...")
|
45 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
|
46 |
|
47 |
+
logger.info("Downloading adapter weights...")
|
48 |
adapter_path_local = snapshot_download(repo_id=ADAPTER_PATH)
|
49 |
|
50 |
+
logger.info("Loading adapter weights...")
|
51 |
adapter_file = f"{adapter_path_local}/adapter_model.safetensors"
|
52 |
state_dict = load_file(adapter_file)
|
53 |
|
54 |
+
logger.info("Applying adapter weights...")
|
55 |
model.load_state_dict(state_dict, strict=False)
|
56 |
+
logger.info("Model and adapter loaded successfully!")
|
57 |
|
58 |
return model, tokenizer
|
59 |
except Exception as e:
|
60 |
+
logger.error(f"Error during model loading: {e}", exc_info=True)
|
61 |
raise
|
62 |
|
63 |
# Load model and tokenizer at startup
|
64 |
+
try:
|
65 |
+
model, tokenizer = load_model_and_tokenizer()
|
66 |
+
except Exception as e:
|
67 |
+
logger.error(f"Failed to load model at startup: {e}", exc_info=True)
|
68 |
+
model = None
|
69 |
+
tokenizer = None
|
70 |
|
71 |
def generate_response(model, tokenizer, instruction, max_new_tokens=2048):
|
72 |
"""Generate a response from the model based on an instruction."""
|
73 |
try:
|
74 |
+
logger.info(f"Generating response for instruction: {instruction[:100]}...")
|
75 |
+
|
76 |
# Encode input with truncation
|
77 |
inputs = tokenizer.encode(
|
78 |
instruction,
|
|
|
81 |
max_length=tokenizer.model_max_length
|
82 |
).to(model.device)
|
83 |
|
84 |
+
logger.info(f"Input shape: {inputs.shape}")
|
85 |
+
|
86 |
# Create attention mask
|
87 |
attention_mask = torch.ones(inputs.shape, device=model.device)
|
88 |
|
|
|
94 |
temperature=0.7,
|
95 |
top_p=0.9,
|
96 |
do_sample=True,
|
97 |
+
pad_token_id=tokenizer.pad_token_id,
|
98 |
+
eos_token_id=tokenizer.eos_token_id,
|
99 |
)
|
100 |
|
101 |
+
logger.info(f"Output shape: {outputs.shape}")
|
102 |
+
|
103 |
# Decode and strip input prompt from response
|
104 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
105 |
generated_text = response[len(instruction):].strip()
|
106 |
|
107 |
+
logger.info(f"Generated text length: {len(generated_text)}")
|
108 |
return generated_text
|
109 |
except Exception as e:
|
110 |
+
logger.error(f"Error generating response: {e}", exc_info=True)
|
111 |
raise ValueError(f"Error generating response: {e}")
|
112 |
|
113 |
@app.post("/generate")
|
114 |
+
async def generate_text(input: ModelInput, request: Request):
|
115 |
"""Generate text based on the input prompt."""
|
116 |
try:
|
117 |
+
if model is None or tokenizer is None:
|
118 |
+
raise HTTPException(status_code=503, detail="Model not loaded")
|
119 |
+
|
120 |
+
logger.info(f"Received request from {request.client.host}")
|
121 |
+
logger.info(f"Prompt: {input.prompt[:100]}...")
|
122 |
+
|
123 |
response = generate_response(
|
124 |
model=model,
|
125 |
tokenizer=tokenizer,
|
126 |
instruction=input.prompt,
|
127 |
max_new_tokens=input.max_new_tokens
|
128 |
)
|
129 |
+
|
130 |
+
if not response:
|
131 |
+
logger.warning("Generated empty response")
|
132 |
+
return {"generated_text": "", "warning": "Empty response generated"}
|
133 |
+
|
134 |
+
logger.info(f"Generated response length: {len(response)}")
|
135 |
return {"generated_text": response}
|
136 |
except Exception as e:
|
137 |
+
logger.error(f"Error in generate_text endpoint: {e}", exc_info=True)
|
138 |
raise HTTPException(status_code=500, detail=str(e))
|
139 |
|
140 |
@app.get("/")
|
141 |
async def root():
|
142 |
"""Root endpoint that returns a welcome message."""
|
143 |
+
return {"message": "Welcome to the Model API!", "status": "running"}
|
144 |
+
|
145 |
+
@app.get("/health")
|
146 |
+
async def health_check():
|
147 |
+
"""Health check endpoint."""
|
148 |
+
return {
|
149 |
+
"status": "healthy",
|
150 |
+
"model_loaded": model is not None and tokenizer is not None,
|
151 |
+
"model_device": str(next(model.parameters()).device) if model else None
|
152 |
+
}
|