Update app.py
Browse files
app.py
CHANGED
@@ -7,176 +7,575 @@ from typing import List, Dict, Optional
|
|
7 |
import time
|
8 |
from datetime import datetime
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def __init__(self):
|
|
|
|
|
12 |
self.hf_token = os.getenv("HF_TOKEN")
|
|
|
13 |
if not self.hf_token:
|
14 |
-
raise ValueError("HF_TOKEN environment variable is required")
|
15 |
|
16 |
self.headers = {"Authorization": f"Bearer {self.hf_token}"}
|
17 |
-
self.base_url = "https://huggingface.co/api"
|
18 |
|
19 |
-
def
|
20 |
-
"""
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
params = {
|
25 |
-
"pipeline_tag": None,
|
26 |
-
"library": None,
|
27 |
-
"sort": "downloads",
|
28 |
-
"direction": -1,
|
29 |
-
"limit": 100,
|
30 |
-
"full": True,
|
31 |
-
"config": True
|
32 |
-
}
|
33 |
-
|
34 |
-
response = requests.get(url, headers=self.headers, params=params)
|
35 |
-
response.raise_for_status()
|
36 |
-
|
37 |
-
models = response.json()
|
38 |
-
|
39 |
-
# Filter models that support inference API
|
40 |
-
inference_models = []
|
41 |
-
for model in models:
|
42 |
-
if self._supports_inference_api(model):
|
43 |
-
inference_models.append({
|
44 |
-
"id": model.get("id", "Unknown"),
|
45 |
-
"pipeline_tag": model.get("pipeline_tag", "Unknown"),
|
46 |
-
"library_name": model.get("library_name", "Unknown"),
|
47 |
-
"downloads": model.get("downloads", 0),
|
48 |
-
"likes": model.get("likes", 0),
|
49 |
-
"created_at": model.get("createdAt", "Unknown"),
|
50 |
-
"updated_at": model.get("lastModified", "Unknown"),
|
51 |
-
"tags": model.get("tags", []),
|
52 |
-
"inference_status": self._check_inference_status(model.get("id"))
|
53 |
-
})
|
54 |
-
|
55 |
-
return inference_models
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
"translation", "text-classification", "conversational",
|
68 |
-
"image-classification", "object-detection", "image-segmentation",
|
69 |
-
"text-to-image", "image-to-text", "automatic-speech-recognition",
|
70 |
-
"audio-classification", "voice-activity-detection",
|
71 |
-
"depth-estimation", "feature-extraction"
|
72 |
-
}
|
73 |
|
74 |
-
|
75 |
-
return pipeline_tag in supported_pipelines
|
76 |
|
77 |
-
def
|
78 |
-
"""Check if
|
79 |
try:
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
try:
|
95 |
-
url = f"{self.base_url}/inference-endpoints"
|
96 |
-
response = requests.get(url, headers=self.headers)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
"model_id": ep.get("model", {}).get("repository", "Unknown"),
|
103 |
-
"status": ep.get("status", "Unknown"),
|
104 |
-
"created_at": ep.get("created_at", "Unknown"),
|
105 |
-
"updated_at": ep.get("updated_at", "Unknown"),
|
106 |
-
"compute": ep.get("compute", {}),
|
107 |
-
"url": ep.get("url", "")
|
108 |
-
} for ep in endpoints]
|
109 |
-
else:
|
110 |
-
return []
|
111 |
-
except Exception as e:
|
112 |
-
print(f"Error fetching dedicated endpoints: {e}")
|
113 |
-
return []
|
114 |
|
115 |
-
def test_model_inference(self, model_id: str, input_text: str
|
116 |
-
"""Test inference on a specific model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
try:
|
118 |
-
|
119 |
-
|
120 |
-
# Determine appropriate payload based on model type
|
121 |
-
payload = {"inputs": input_text}
|
122 |
-
|
123 |
-
response = requests.post(url, headers=self.headers, json=payload, timeout=30)
|
124 |
|
125 |
-
if
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
132 |
else:
|
133 |
return {
|
134 |
"status": "error",
|
135 |
-
"error": f"
|
136 |
-
"response_time":
|
137 |
}
|
|
|
|
|
|
|
138 |
|
139 |
except Exception as e:
|
140 |
return {
|
141 |
-
"status": "error",
|
142 |
"error": str(e),
|
143 |
-
"response_time": None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
def create_interface():
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
def
|
150 |
-
"""
|
151 |
-
models = explorer.
|
|
|
|
|
|
|
|
|
152 |
if not models:
|
153 |
-
return "No models found
|
154 |
|
155 |
df = pd.DataFrame(models)
|
156 |
return df
|
157 |
|
158 |
-
def
|
159 |
-
"""
|
160 |
-
|
161 |
-
if not endpoints:
|
162 |
-
return "No dedicated endpoints found (requires paid plan) or error occurred"
|
163 |
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
return df
|
166 |
|
167 |
def test_model(model_id: str, test_input: str):
|
168 |
"""Test inference on a selected model"""
|
169 |
-
if not model_id.strip():
|
170 |
-
return "Please
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
if not test_input.strip():
|
173 |
test_input = "Hello, how are you today?"
|
174 |
|
175 |
result = explorer.test_model_inference(model_id, test_input)
|
176 |
|
|
|
|
|
177 |
if result["status"] == "success":
|
178 |
return f"""
|
179 |
**Model:** {model_id}
|
|
|
|
|
|
|
180 |
**Status:** ✅ Success
|
181 |
**Response Time:** {result['response_time']:.2f}s
|
182 |
|
@@ -184,101 +583,142 @@ def create_interface():
|
|
184 |
```json
|
185 |
{json.dumps(result['result'], indent=2)}
|
186 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
"""
|
188 |
else:
|
189 |
return f"""
|
190 |
**Model:** {model_id}
|
|
|
|
|
191 |
**Status:** ❌ Error
|
192 |
-
**Response Time:** {result['response_time'] if result['response_time'] else 'N/A'
|
193 |
|
194 |
**Error:**
|
195 |
{result['error']}
|
196 |
"""
|
197 |
|
198 |
-
def
|
199 |
-
"""
|
200 |
-
|
201 |
-
|
202 |
-
if query:
|
203 |
-
models = [m for m in models if query.lower() in m['id'].lower() or
|
204 |
-
any(query.lower() in tag.lower() for tag in m['tags'])]
|
205 |
-
|
206 |
-
if pipeline_filter != "All":
|
207 |
-
models = [m for m in models if m['pipeline_tag'] == pipeline_filter]
|
208 |
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
214 |
|
215 |
# Create Gradio interface
|
216 |
-
with gr.Blocks(title="🤗 HuggingFace Inference
|
217 |
gr.Markdown("""
|
218 |
-
# 🤗 HuggingFace Inference
|
219 |
|
220 |
-
|
221 |
|
222 |
-
|
223 |
-
- **
|
224 |
-
- **
|
225 |
-
- **
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
---
|
228 |
""")
|
229 |
|
230 |
with gr.Tabs():
|
231 |
-
#
|
232 |
-
with gr.TabItem("
|
233 |
-
gr.Markdown("###
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
headers=["Model ID", "
|
251 |
-
label="
|
252 |
)
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
inputs=
|
257 |
-
outputs=
|
258 |
)
|
259 |
-
refresh_serverless_btn.click(refresh_serverless_models, outputs=serverless_output)
|
260 |
|
261 |
-
#
|
262 |
-
with gr.TabItem("
|
263 |
-
gr.Markdown("###
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
label="
|
269 |
)
|
270 |
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
# Model Testing Tab
|
274 |
with gr.TabItem("🧪 Test Models"):
|
275 |
-
gr.Markdown("### Test Model Inference")
|
276 |
|
277 |
with gr.Row():
|
278 |
-
|
279 |
-
|
280 |
-
label="Model
|
281 |
-
info="
|
282 |
)
|
283 |
test_input = gr.Textbox(
|
284 |
placeholder="Hello, how are you today?",
|
@@ -287,77 +727,55 @@ def create_interface():
|
|
287 |
)
|
288 |
|
289 |
test_btn = gr.Button("🚀 Test Model", variant="primary")
|
290 |
-
test_output = gr.Markdown(label="
|
291 |
|
292 |
test_btn.click(
|
293 |
test_model,
|
294 |
-
inputs=[
|
295 |
outputs=test_output
|
296 |
)
|
297 |
|
298 |
-
#
|
299 |
-
with gr.TabItem("📊
|
300 |
-
gr.Markdown("###
|
301 |
-
|
302 |
-
stats_btn = gr.Button("📈 Generate Statistics", variant="primary")
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
total_models = len(models)
|
310 |
-
pipelines = {}
|
311 |
-
libraries = {}
|
312 |
-
statuses = {}
|
313 |
-
|
314 |
-
for model in models:
|
315 |
-
# Count pipelines
|
316 |
-
pipeline = model['pipeline_tag']
|
317 |
-
pipelines[pipeline] = pipelines.get(pipeline, 0) + 1
|
318 |
-
|
319 |
-
# Count libraries
|
320 |
-
library = model['library_name']
|
321 |
-
libraries[library] = libraries.get(library, 0) + 1
|
322 |
-
|
323 |
-
# Count statuses
|
324 |
-
status = model['inference_status']
|
325 |
-
statuses[status] = statuses.get(status, 0) + 1
|
326 |
-
|
327 |
-
# Sort by count
|
328 |
-
top_pipelines = sorted(pipelines.items(), key=lambda x: x[1], reverse=True)[:10]
|
329 |
-
top_libraries = sorted(libraries.items(), key=lambda x: x[1], reverse=True)[:10]
|
330 |
-
|
331 |
-
stats_text = f"""
|
332 |
-
## 📊 HuggingFace Inference API Statistics
|
333 |
-
|
334 |
-
**Total Models Available:** {total_models}
|
335 |
-
|
336 |
-
### Top Pipeline Tags:
|
337 |
-
{chr(10).join([f"- **{pipeline}**: {count} models" for pipeline, count in top_pipelines])}
|
338 |
-
|
339 |
-
### Top Libraries:
|
340 |
-
{chr(10).join([f"- **{library}**: {count} models" for library, count in top_libraries])}
|
341 |
-
|
342 |
-
### Inference Status Distribution:
|
343 |
-
{chr(10).join([f"- **{status}**: {count} models" for status, count in statuses.items()])}
|
344 |
-
|
345 |
-
*Last updated: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}*
|
346 |
-
"""
|
347 |
-
return stats_text
|
348 |
|
349 |
-
|
350 |
-
|
|
|
|
|
351 |
|
352 |
# Footer
|
353 |
-
gr.Markdown("""
|
354 |
---
|
355 |
|
356 |
-
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
""")
|
362 |
|
363 |
return demo
|
@@ -370,6 +788,6 @@ if __name__ == "__main__":
|
|
370 |
server_port=7860,
|
371 |
share=False
|
372 |
)
|
373 |
-
except
|
374 |
-
print(f"Error: {e}")
|
375 |
-
print("Please
|
|
|
7 |
import time
|
8 |
from datetime import datetime
|
9 |
|
10 |
+
# Updated dictionary of allowed models with current HF Inference Providers
|
11 |
+
ALLOWED_MODELS = {
|
12 |
+
# Text Generation Models - HF Inference API
|
13 |
+
"microsoft/DialoGPT-medium": {
|
14 |
+
"provider": "HF Inference",
|
15 |
+
"pipeline": "text-generation",
|
16 |
+
"description": "Conversational AI model for dialog generation",
|
17 |
+
"endpoint": "https://api-inference.huggingface.co/models/microsoft/DialoGPT-medium",
|
18 |
+
"api_format": "hf_inference"
|
19 |
+
},
|
20 |
+
"meta-llama/Llama-3.1-8B-Instruct": {
|
21 |
+
"provider": "HF Inference",
|
22 |
+
"pipeline": "text-generation",
|
23 |
+
"description": "Meta's Llama 3.1 8B Instruct model",
|
24 |
+
"endpoint": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.1-8B-Instruct",
|
25 |
+
"api_format": "hf_inference"
|
26 |
+
},
|
27 |
+
"deepseek-ai/DeepSeek-V3-0324": {
|
28 |
+
"provider": "HF Inference",
|
29 |
+
"pipeline": "text-generation",
|
30 |
+
"description": "DeepSeek V3 state-of-the-art conversational model",
|
31 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
32 |
+
"api_format": "openai_compatible"
|
33 |
+
},
|
34 |
+
|
35 |
+
# Cerebras Models (Chat completion LLM only)
|
36 |
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
37 |
+
"provider": "Cerebras",
|
38 |
+
"pipeline": "text-generation",
|
39 |
+
"description": "Meta's Llama 3.3 70B Instruct model via Cerebras ultra-fast LPUs",
|
40 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
41 |
+
"api_format": "openai_compatible"
|
42 |
+
},
|
43 |
+
|
44 |
+
# Cohere Models (Chat completion LLM + VLM)
|
45 |
+
"cohere/command-r-plus": {
|
46 |
+
"provider": "Cohere",
|
47 |
+
"pipeline": "text-generation",
|
48 |
+
"description": "Cohere's Command R+ enterprise-grade NLP model",
|
49 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
50 |
+
"api_format": "openai_compatible"
|
51 |
+
},
|
52 |
+
|
53 |
+
# Fal AI Models (Text-to-Image, Text-to-Video, Speech-to-Text)
|
54 |
+
"black-forest-labs/FLUX.1-schnell": {
|
55 |
+
"provider": "Fal AI",
|
56 |
+
"pipeline": "text-to-image",
|
57 |
+
"description": "FLUX.1 schnell model for fast image generation via Fal AI",
|
58 |
+
"endpoint": "https://router.huggingface.co/v1/text-to-image",
|
59 |
+
"api_format": "hf_router"
|
60 |
+
},
|
61 |
+
|
62 |
+
# Featherless AI Models (Chat completion LLM + VLM)
|
63 |
+
"meta-llama/Llama-3.1-70B-Instruct": {
|
64 |
+
"provider": "Featherless AI",
|
65 |
+
"pipeline": "text-generation",
|
66 |
+
"description": "Meta's Llama 3.1 70B Instruct via Featherless AI",
|
67 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
68 |
+
"api_format": "openai_compatible"
|
69 |
+
},
|
70 |
+
|
71 |
+
# Fireworks Models (Chat completion LLM + VLM)
|
72 |
+
"accounts/fireworks/models/llama-v3p1-8b-instruct": {
|
73 |
+
"provider": "Fireworks",
|
74 |
+
"pipeline": "text-generation",
|
75 |
+
"description": "Llama 3.1 8B Instruct via Fireworks AI production-ready serving",
|
76 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
77 |
+
"api_format": "openai_compatible"
|
78 |
+
},
|
79 |
+
|
80 |
+
# Groq Models (Chat completion LLM only)
|
81 |
+
"deepseek-ai/DeepSeek-R1": {
|
82 |
+
"provider": "Groq",
|
83 |
+
"pipeline": "text-generation",
|
84 |
+
"description": "DeepSeek R1 model via Groq hardware acceleration",
|
85 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
86 |
+
"api_format": "openai_compatible"
|
87 |
+
},
|
88 |
+
|
89 |
+
# Hyperbolic Models (Chat completion LLM + VLM)
|
90 |
+
"meta-llama/Meta-Llama-3-8B-Instruct": {
|
91 |
+
"provider": "Hyperbolic",
|
92 |
+
"pipeline": "text-generation",
|
93 |
+
"description": "Meta's Llama 3 8B Instruct via Hyperbolic",
|
94 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
95 |
+
"api_format": "openai_compatible"
|
96 |
+
},
|
97 |
+
|
98 |
+
# Nebius Models (Chat completion LLM + VLM, Feature Extraction, Text-to-Image)
|
99 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
100 |
+
"provider": "Nebius",
|
101 |
+
"pipeline": "text-generation",
|
102 |
+
"description": "Mistral's Mixtral 8x7B Instruct via Nebius cloud platform",
|
103 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
104 |
+
"api_format": "openai_compatible"
|
105 |
+
},
|
106 |
+
|
107 |
+
# Novita Models (Chat completion LLM + VLM, Text-to-Video)
|
108 |
+
"Qwen/Qwen2.5-72B-Instruct": {
|
109 |
+
"provider": "Novita",
|
110 |
+
"pipeline": "text-generation",
|
111 |
+
"description": "Qwen 2.5 72B Instruct via Novita",
|
112 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
113 |
+
"api_format": "openai_compatible"
|
114 |
+
},
|
115 |
+
|
116 |
+
# Nscale Models (Chat completion LLM + VLM, Feature Extraction, Text-to-Image)
|
117 |
+
"microsoft/Phi-3-medium-4k-instruct": {
|
118 |
+
"provider": "Nscale",
|
119 |
+
"pipeline": "text-generation",
|
120 |
+
"description": "Microsoft Phi-3 Medium via Nscale",
|
121 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
122 |
+
"api_format": "openai_compatible"
|
123 |
+
},
|
124 |
+
|
125 |
+
# Replicate Models (Text-to-Image, Text-to-Video, Speech-to-Text)
|
126 |
+
"stabilityai/stable-diffusion-xl-base-1.0": {
|
127 |
+
"provider": "Replicate",
|
128 |
+
"pipeline": "text-to-image",
|
129 |
+
"description": "Stable Diffusion XL via Replicate cloud platform",
|
130 |
+
"endpoint": "https://router.huggingface.co/v1/text-to-image",
|
131 |
+
"api_format": "hf_router"
|
132 |
+
},
|
133 |
+
|
134 |
+
# SambaNova Models (Chat completion LLM, Feature Extraction)
|
135 |
+
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
136 |
+
"provider": "SambaNova",
|
137 |
+
"pipeline": "text-generation",
|
138 |
+
"description": "Meta's Llama 3.1 405B Instruct via SambaNova",
|
139 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
140 |
+
"api_format": "openai_compatible"
|
141 |
+
},
|
142 |
+
|
143 |
+
# Together AI Models (Chat completion LLM + VLM, Text-to-Image)
|
144 |
+
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
145 |
+
"provider": "Together",
|
146 |
+
"pipeline": "text-generation",
|
147 |
+
"description": "Meta's Llama 3 70B Instruct via Together AI high-performance inference",
|
148 |
+
"endpoint": "https://router.huggingface.co/v1/chat/completions",
|
149 |
+
"api_format": "openai_compatible"
|
150 |
+
},
|
151 |
+
|
152 |
+
# HF Inference - Additional Models for various tasks
|
153 |
+
"black-forest-labs/FLUX.1-dev": {
|
154 |
+
"provider": "HF Inference",
|
155 |
+
"pipeline": "text-to-image",
|
156 |
+
"description": "FLUX.1 development model for high-quality text-to-image generation",
|
157 |
+
"endpoint": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev",
|
158 |
+
"api_format": "hf_inference"
|
159 |
+
},
|
160 |
+
"openai/whisper-large-v3": {
|
161 |
+
"provider": "HF Inference",
|
162 |
+
"pipeline": "automatic-speech-recognition",
|
163 |
+
"description": "Whisper Large V3 for speech recognition",
|
164 |
+
"endpoint": "https://api-inference.huggingface.co/models/openai/whisper-large-v3",
|
165 |
+
"api_format": "hf_inference"
|
166 |
+
},
|
167 |
+
"sentence-transformers/all-MiniLM-L6-v2": {
|
168 |
+
"provider": "HF Inference",
|
169 |
+
"pipeline": "feature-extraction",
|
170 |
+
"description": "Sentence transformer for embeddings and semantic search",
|
171 |
+
"endpoint": "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2",
|
172 |
+
"api_format": "hf_inference"
|
173 |
+
},
|
174 |
+
"cardiffnlp/twitter-roberta-base-sentiment-latest": {
|
175 |
+
"provider": "HF Inference",
|
176 |
+
"pipeline": "text-classification",
|
177 |
+
"description": "Sentiment analysis model trained on Twitter data",
|
178 |
+
"endpoint": "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment-latest",
|
179 |
+
"api_format": "hf_inference"
|
180 |
+
}
|
181 |
+
}
|
182 |
+
|
183 |
+
# Updated provider configuration for current HF Inference Providers ecosystem
|
184 |
+
PROVIDER_CONFIG = {
|
185 |
+
"HF Inference": {
|
186 |
+
"description": "HuggingFace's native serverless inference API",
|
187 |
+
"auth_header": "Authorization",
|
188 |
+
"auth_format": "Bearer {token}",
|
189 |
+
"env_var": "HF_TOKEN",
|
190 |
+
"base_url": "https://api-inference.huggingface.co",
|
191 |
+
"pricing": "Free tier + pay-per-use",
|
192 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/hf-inference",
|
193 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image", "Speech to text"]
|
194 |
+
},
|
195 |
+
"Cerebras": {
|
196 |
+
"description": "Ultra-fast inference with Language Processing Units (LPUs)",
|
197 |
+
"auth_header": "Authorization",
|
198 |
+
"auth_format": "Bearer {token}",
|
199 |
+
"env_var": "HF_TOKEN",
|
200 |
+
"base_url": "https://router.huggingface.co/v1",
|
201 |
+
"pricing": "Pay-per-token via HF routing",
|
202 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/cerebras",
|
203 |
+
"capabilities": ["Chat completion (LLM)"]
|
204 |
+
},
|
205 |
+
"Cohere": {
|
206 |
+
"description": "Enterprise-grade NLP models and APIs",
|
207 |
+
"auth_header": "Authorization",
|
208 |
+
"auth_format": "Bearer {token}",
|
209 |
+
"env_var": "HF_TOKEN",
|
210 |
+
"base_url": "https://router.huggingface.co/v1",
|
211 |
+
"pricing": "Pay-per-token via HF routing",
|
212 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/cohere",
|
213 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
214 |
+
},
|
215 |
+
"Fal AI": {
|
216 |
+
"description": "Fast and reliable model inference platform",
|
217 |
+
"auth_header": "Authorization",
|
218 |
+
"auth_format": "Bearer {token}",
|
219 |
+
"env_var": "HF_TOKEN",
|
220 |
+
"base_url": "https://router.huggingface.co/v1",
|
221 |
+
"pricing": "Pay-per-token via HF routing",
|
222 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/fal-ai",
|
223 |
+
"capabilities": ["Text to Image", "Text to video", "Speech to text"]
|
224 |
+
},
|
225 |
+
"Featherless AI": {
|
226 |
+
"description": "Optimized inference for open-source models",
|
227 |
+
"auth_header": "Authorization",
|
228 |
+
"auth_format": "Bearer {token}",
|
229 |
+
"env_var": "HF_TOKEN",
|
230 |
+
"base_url": "https://router.huggingface.co/v1",
|
231 |
+
"pricing": "Pay-per-token via HF routing",
|
232 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/featherless-ai",
|
233 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
234 |
+
},
|
235 |
+
"Fireworks": {
|
236 |
+
"description": "Production-ready inference with fast model serving",
|
237 |
+
"auth_header": "Authorization",
|
238 |
+
"auth_format": "Bearer {token}",
|
239 |
+
"env_var": "HF_TOKEN",
|
240 |
+
"base_url": "https://router.huggingface.co/v1",
|
241 |
+
"pricing": "Pay-per-token via HF routing",
|
242 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/fireworks-ai",
|
243 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
244 |
+
},
|
245 |
+
"Groq": {
|
246 |
+
"description": "Fast inference with specialized hardware acceleration",
|
247 |
+
"auth_header": "Authorization",
|
248 |
+
"auth_format": "Bearer {token}",
|
249 |
+
"env_var": "HF_TOKEN",
|
250 |
+
"base_url": "https://router.huggingface.co/v1",
|
251 |
+
"pricing": "Pay-per-token via HF routing",
|
252 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/groq",
|
253 |
+
"capabilities": ["Chat completion (LLM)"]
|
254 |
+
},
|
255 |
+
"Hyperbolic": {
|
256 |
+
"description": "GPU-accelerated inference platform",
|
257 |
+
"auth_header": "Authorization",
|
258 |
+
"auth_format": "Bearer {token}",
|
259 |
+
"env_var": "HF_TOKEN",
|
260 |
+
"base_url": "https://router.huggingface.co/v1",
|
261 |
+
"pricing": "Pay-per-token via HF routing",
|
262 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/hyperbolic",
|
263 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)"]
|
264 |
+
},
|
265 |
+
"Nebius": {
|
266 |
+
"description": "Cloud-based AI infrastructure platform",
|
267 |
+
"auth_header": "Authorization",
|
268 |
+
"auth_format": "Bearer {token}",
|
269 |
+
"env_var": "HF_TOKEN",
|
270 |
+
"base_url": "https://router.huggingface.co/v1",
|
271 |
+
"pricing": "Pay-per-token via HF routing",
|
272 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/nebius",
|
273 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image"]
|
274 |
+
},
|
275 |
+
"Novita": {
|
276 |
+
"description": "AI inference platform with video generation",
|
277 |
+
"auth_header": "Authorization",
|
278 |
+
"auth_format": "Bearer {token}",
|
279 |
+
"env_var": "HF_TOKEN",
|
280 |
+
"base_url": "https://router.huggingface.co/v1",
|
281 |
+
"pricing": "Pay-per-token via HF routing",
|
282 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/novita",
|
283 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Text to video"]
|
284 |
+
},
|
285 |
+
"Nscale": {
|
286 |
+
"description": "Scalable AI model deployment platform",
|
287 |
+
"auth_header": "Authorization",
|
288 |
+
"auth_format": "Bearer {token}",
|
289 |
+
"env_var": "HF_TOKEN",
|
290 |
+
"base_url": "https://router.huggingface.co/v1",
|
291 |
+
"pricing": "Pay-per-token via HF routing",
|
292 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/nscale",
|
293 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Feature Extraction", "Text to Image"]
|
294 |
+
},
|
295 |
+
"Replicate": {
|
296 |
+
"description": "Run models in the cloud with simple API",
|
297 |
+
"auth_header": "Authorization",
|
298 |
+
"auth_format": "Bearer {token}",
|
299 |
+
"env_var": "HF_TOKEN",
|
300 |
+
"base_url": "https://router.huggingface.co/v1",
|
301 |
+
"pricing": "Pay-per-token via HF routing",
|
302 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/replicate",
|
303 |
+
"capabilities": ["Text to Image", "Text to video", "Speech to text"]
|
304 |
+
},
|
305 |
+
"SambaNova": {
|
306 |
+
"description": "Enterprise AI platform with DataFlow architecture",
|
307 |
+
"auth_header": "Authorization",
|
308 |
+
"auth_format": "Bearer {token}",
|
309 |
+
"env_var": "HF_TOKEN",
|
310 |
+
"base_url": "https://router.huggingface.co/v1",
|
311 |
+
"pricing": "Pay-per-token via HF routing",
|
312 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/sambanova",
|
313 |
+
"capabilities": ["Chat completion (LLM)", "Feature Extraction"]
|
314 |
+
},
|
315 |
+
"Together": {
|
316 |
+
"description": "High-performance inference for open-source models",
|
317 |
+
"auth_header": "Authorization",
|
318 |
+
"auth_format": "Bearer {token}",
|
319 |
+
"env_var": "HF_TOKEN",
|
320 |
+
"base_url": "https://router.huggingface.co/v1",
|
321 |
+
"pricing": "Pay-per-token via HF routing",
|
322 |
+
"docs_url": "https://huggingface.co/docs/inference-providers/providers/together",
|
323 |
+
"capabilities": ["Chat completion (LLM)", "Chat completion (VLM)", "Text to Image"]
|
324 |
+
}
|
325 |
+
}
|
326 |
+
|
327 |
+
class ModernHFInferenceExplorer:
|
328 |
def __init__(self):
|
329 |
+
self.allowed_models = ALLOWED_MODELS
|
330 |
+
self.provider_config = PROVIDER_CONFIG
|
331 |
self.hf_token = os.getenv("HF_TOKEN")
|
332 |
+
|
333 |
if not self.hf_token:
|
334 |
+
raise ValueError("HF_TOKEN environment variable is required for HuggingFace Inference Providers")
|
335 |
|
336 |
self.headers = {"Authorization": f"Bearer {self.hf_token}"}
|
|
|
337 |
|
338 |
+
def get_available_models(self) -> List[Dict]:
|
339 |
+
"""Get the predefined allowed models with provider info and live status"""
|
340 |
+
models = []
|
341 |
+
for model_id, model_info in self.allowed_models.items():
|
342 |
+
provider = model_info["provider"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
+
models.append({
|
345 |
+
"model_id": model_id,
|
346 |
+
"provider": provider,
|
347 |
+
"pipeline": model_info["pipeline"],
|
348 |
+
"description": model_info["description"],
|
349 |
+
"endpoint": model_info["endpoint"],
|
350 |
+
"api_format": model_info["api_format"],
|
351 |
+
"status": self._check_model_status(model_id, provider),
|
352 |
+
"pricing": self.provider_config[provider]["pricing"]
|
353 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
+
return models
|
|
|
356 |
|
357 |
+
def _check_model_status(self, model_id: str, provider: str) -> str:
|
358 |
+
"""Check if a specific model is currently available via HF Inference Providers"""
|
359 |
try:
|
360 |
+
# For models using the new HF Router API
|
361 |
+
if provider in ["Cerebras", "Groq", "Together", "Fireworks", "Replicate", "Cohere", "Fal AI"]:
|
362 |
+
# Use the models endpoint to check availability
|
363 |
+
url = "https://router.huggingface.co/v1/models"
|
364 |
+
response = requests.get(url, headers=self.headers, timeout=5)
|
365 |
+
|
366 |
+
if response.status_code == 200:
|
367 |
+
available_models = response.json()
|
368 |
+
if isinstance(available_models, dict) and "data" in available_models:
|
369 |
+
model_ids = [m["id"] for m in available_models["data"]]
|
370 |
+
return "✅ Available" if model_id in model_ids else "❓ Check Provider"
|
371 |
+
return "✅ Available"
|
372 |
+
else:
|
373 |
+
return "❓ Unknown"
|
374 |
|
375 |
+
# For traditional HF Inference API models
|
376 |
+
elif provider == "HF Inference":
|
377 |
+
url = f"https://api-inference.huggingface.co/models/{model_id}"
|
378 |
+
response = requests.get(url, headers=self.headers, timeout=5)
|
379 |
+
|
380 |
+
if response.status_code == 200:
|
381 |
+
return "✅ Available"
|
382 |
+
elif response.status_code == 503:
|
383 |
+
return "🔄 Loading"
|
384 |
+
else:
|
385 |
+
return "❌ Unavailable"
|
|
|
|
|
|
|
386 |
|
387 |
+
return "❓ Unknown"
|
388 |
+
|
389 |
+
except Exception:
|
390 |
+
return "❓ Connection Error"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
+
def test_model_inference(self, model_id: str, input_text: str) -> Dict:
|
393 |
+
"""Test inference on a specific allowed model using current HF Inference Providers API"""
|
394 |
+
if model_id not in self.allowed_models:
|
395 |
+
return {
|
396 |
+
"status": "error",
|
397 |
+
"error": f"Model '{model_id}' is not in the allowed models list",
|
398 |
+
"response_time": None
|
399 |
+
}
|
400 |
+
|
401 |
+
model_info = self.allowed_models[model_id]
|
402 |
+
api_format = model_info["api_format"]
|
403 |
+
|
404 |
try:
|
405 |
+
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
+
if api_format == "openai_compatible":
|
408 |
+
# Use the new OpenAI-compatible chat completions endpoint
|
409 |
+
result = self._test_openai_compatible_model(model_id, input_text)
|
410 |
+
elif api_format == "hf_inference":
|
411 |
+
# Use traditional HF Inference API
|
412 |
+
result = self._test_hf_inference_model(model_id, input_text, model_info)
|
413 |
+
elif api_format == "hf_router":
|
414 |
+
# Use HF Router for other tasks
|
415 |
+
result = self._test_hf_router_model(model_id, input_text, model_info)
|
416 |
else:
|
417 |
return {
|
418 |
"status": "error",
|
419 |
+
"error": f"Unsupported API format: {api_format}",
|
420 |
+
"response_time": None
|
421 |
}
|
422 |
+
|
423 |
+
result["response_time"] = time.time() - start_time
|
424 |
+
return result
|
425 |
|
426 |
except Exception as e:
|
427 |
return {
|
428 |
+
"status": "error",
|
429 |
"error": str(e),
|
430 |
+
"response_time": time.time() - start_time if 'start_time' in locals() else None
|
431 |
+
}
|
432 |
+
|
433 |
+
def _test_openai_compatible_model(self, model_id: str, input_text: str) -> Dict:
|
434 |
+
"""Test model using OpenAI-compatible chat completions API"""
|
435 |
+
url = "https://router.huggingface.co/v1/chat/completions"
|
436 |
+
|
437 |
+
payload = {
|
438 |
+
"model": model_id,
|
439 |
+
"messages": [
|
440 |
+
{"role": "user", "content": input_text}
|
441 |
+
],
|
442 |
+
"max_tokens": 100,
|
443 |
+
"temperature": 0.7
|
444 |
+
}
|
445 |
+
|
446 |
+
response = requests.post(url, headers=self.headers, json=payload, timeout=30)
|
447 |
+
|
448 |
+
if response.status_code == 200:
|
449 |
+
return {
|
450 |
+
"status": "success",
|
451 |
+
"result": response.json()
|
452 |
+
}
|
453 |
+
else:
|
454 |
+
return {
|
455 |
+
"status": "error",
|
456 |
+
"error": f"HTTP {response.status_code}: {response.text}"
|
457 |
+
}
|
458 |
+
|
459 |
+
def _test_hf_inference_model(self, model_id: str, input_text: str, model_info: Dict) -> Dict:
|
460 |
+
"""Test model using traditional HF Inference API"""
|
461 |
+
url = model_info["endpoint"]
|
462 |
+
|
463 |
+
# Adjust payload based on pipeline type
|
464 |
+
pipeline = model_info["pipeline"]
|
465 |
+
if pipeline in ["text-generation", "text2text-generation"]:
|
466 |
+
payload = {"inputs": input_text, "parameters": {"max_new_tokens": 100}}
|
467 |
+
elif pipeline == "text-to-image":
|
468 |
+
payload = {"inputs": input_text}
|
469 |
+
elif pipeline == "feature-extraction":
|
470 |
+
payload = {"inputs": input_text}
|
471 |
+
else:
|
472 |
+
payload = {"inputs": input_text}
|
473 |
+
|
474 |
+
response = requests.post(url, headers=self.headers, json=payload, timeout=30)
|
475 |
+
|
476 |
+
if response.status_code == 200:
|
477 |
+
return {
|
478 |
+
"status": "success",
|
479 |
+
"result": response.json()
|
480 |
}
|
481 |
+
else:
|
482 |
+
return {
|
483 |
+
"status": "error",
|
484 |
+
"error": f"HTTP {response.status_code}: {response.text}"
|
485 |
+
}
|
486 |
+
|
487 |
+
def _test_hf_router_model(self, model_id: str, input_text: str, model_info: Dict) -> Dict:
|
488 |
+
"""Test model using HF Router API for specialized tasks"""
|
489 |
+
pipeline = model_info["pipeline"]
|
490 |
+
|
491 |
+
if pipeline == "text-to-image":
|
492 |
+
# Use the text-to-image endpoint via HF Router
|
493 |
+
payload = {
|
494 |
+
"model": model_id,
|
495 |
+
"prompt": input_text,
|
496 |
+
"num_inference_steps": 20
|
497 |
+
}
|
498 |
+
# Note: This would need to be implemented based on actual HF Router text-to-image API
|
499 |
+
return {
|
500 |
+
"status": "info",
|
501 |
+
"result": "Text-to-image testing via HF Router not fully implemented in demo"
|
502 |
+
}
|
503 |
+
|
504 |
+
return {
|
505 |
+
"status": "error",
|
506 |
+
"error": f"HF Router testing not implemented for pipeline: {pipeline}"
|
507 |
+
}
|
508 |
|
509 |
def create_interface():
|
510 |
+
try:
|
511 |
+
explorer = ModernHFInferenceExplorer()
|
512 |
+
except ValueError as e:
|
513 |
+
# Create a dummy interface that shows the error
|
514 |
+
with gr.Blocks(title="❌ Configuration Error") as demo:
|
515 |
+
gr.Markdown(f"""
|
516 |
+
# ❌ Configuration Error
|
517 |
+
|
518 |
+
**Error:** {str(e)}
|
519 |
+
|
520 |
+
Please set the `HF_TOKEN` environment variable with your HuggingFace token.
|
521 |
+
|
522 |
+
You can get a token from: https://huggingface.co/settings/tokens
|
523 |
+
""")
|
524 |
+
return demo
|
525 |
|
526 |
+
def get_models_by_provider(provider_filter: str = "All"):
|
527 |
+
"""Get models filtered by provider"""
|
528 |
+
models = explorer.get_available_models()
|
529 |
+
|
530 |
+
if provider_filter != "All":
|
531 |
+
models = [m for m in models if m['provider'] == provider_filter]
|
532 |
+
|
533 |
if not models:
|
534 |
+
return "No models found for the selected provider"
|
535 |
|
536 |
df = pd.DataFrame(models)
|
537 |
return df
|
538 |
|
539 |
+
def get_models_by_pipeline(pipeline_filter: str = "All"):
|
540 |
+
"""Get models filtered by pipeline"""
|
541 |
+
models = explorer.get_available_models()
|
|
|
|
|
542 |
|
543 |
+
if pipeline_filter != "All":
|
544 |
+
models = [m for m in models if m['pipeline'] == pipeline_filter]
|
545 |
+
|
546 |
+
if not models:
|
547 |
+
return "No models found for the selected pipeline"
|
548 |
+
|
549 |
+
df = pd.DataFrame(models)
|
550 |
return df
|
551 |
|
552 |
def test_model(model_id: str, test_input: str):
|
553 |
"""Test inference on a selected model"""
|
554 |
+
if not model_id or model_id.strip() == "":
|
555 |
+
return "Please select a model ID from the dropdown"
|
556 |
+
|
557 |
+
if model_id not in explorer.allowed_models:
|
558 |
+
available_models = "\n".join([f"- {mid}" for mid in explorer.allowed_models.keys()])
|
559 |
+
return f"""
|
560 |
+
**Error:** Model '{model_id}' is not in the allowed models list.
|
561 |
+
|
562 |
+
**Available models:**
|
563 |
+
{available_models}
|
564 |
+
"""
|
565 |
|
566 |
if not test_input.strip():
|
567 |
test_input = "Hello, how are you today?"
|
568 |
|
569 |
result = explorer.test_model_inference(model_id, test_input)
|
570 |
|
571 |
+
model_info = explorer.allowed_models[model_id]
|
572 |
+
|
573 |
if result["status"] == "success":
|
574 |
return f"""
|
575 |
**Model:** {model_id}
|
576 |
+
**Provider:** {model_info['provider']}
|
577 |
+
**Pipeline:** {model_info['pipeline']}
|
578 |
+
**API Format:** {model_info['api_format']}
|
579 |
**Status:** ✅ Success
|
580 |
**Response Time:** {result['response_time']:.2f}s
|
581 |
|
|
|
583 |
```json
|
584 |
{json.dumps(result['result'], indent=2)}
|
585 |
```
|
586 |
+
"""
|
587 |
+
elif result["status"] == "info":
|
588 |
+
return f"""
|
589 |
+
**Model:** {model_id}
|
590 |
+
**Provider:** {model_info['provider']}
|
591 |
+
**Pipeline:** {model_info['pipeline']}
|
592 |
+
**Status:** ℹ️ Info
|
593 |
+
**Response Time:** {result['response_time']:.2f}s if result['response_time'] else 'N/A'
|
594 |
+
|
595 |
+
**Info:**
|
596 |
+
{result['result']}
|
597 |
"""
|
598 |
else:
|
599 |
return f"""
|
600 |
**Model:** {model_id}
|
601 |
+
**Provider:** {model_info['provider']}
|
602 |
+
**Pipeline:** {model_info['pipeline']}
|
603 |
**Status:** ❌ Error
|
604 |
+
**Response Time:** {result['response_time']:.2f}s if result['response_time'] else 'N/A'
|
605 |
|
606 |
**Error:**
|
607 |
{result['error']}
|
608 |
"""
|
609 |
|
610 |
+
def get_provider_status():
|
611 |
+
"""Get comprehensive status of all providers"""
|
612 |
+
status_info = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
|
614 |
+
for provider, config in explorer.provider_config.items():
|
615 |
+
model_count = len([m for m in explorer.allowed_models.values() if m["provider"] == provider])
|
616 |
+
capabilities_str = ", ".join(config.get("capabilities", ["N/A"]))
|
617 |
+
|
618 |
+
status_info.append({
|
619 |
+
"Provider": provider,
|
620 |
+
"Description": config["description"],
|
621 |
+
"Capabilities": capabilities_str,
|
622 |
+
"Models Available": model_count,
|
623 |
+
"Pricing": config["pricing"],
|
624 |
+
"Documentation": config["docs_url"]
|
625 |
+
})
|
626 |
|
627 |
+
return pd.DataFrame(status_info)
|
628 |
+
|
629 |
+
# Get unique providers and pipelines for filters
|
630 |
+
providers = ["All"] + list(set(model["provider"] for model in explorer.allowed_models.values()))
|
631 |
+
pipelines = ["All"] + list(set(model["pipeline"] for model in explorer.allowed_models.values()))
|
632 |
+
model_ids = list(explorer.allowed_models.keys())
|
633 |
|
634 |
# Create Gradio interface
|
635 |
+
with gr.Blocks(title="🤗 HuggingFace Inference Providers Explorer", theme=gr.themes.Soft()) as demo:
|
636 |
gr.Markdown("""
|
637 |
+
# 🤗 HuggingFace Inference Providers Explorer
|
638 |
|
639 |
+
**Modern Inference Ecosystem**: Explore models from HuggingFace's unified inference providers platform!
|
640 |
|
641 |
+
## 🚀 Current Inference Providers:
|
642 |
+
- **HF Inference**: Native serverless inference API (free tier available)
|
643 |
+
- **Cerebras**: Ultra-fast LPU-powered inference
|
644 |
+
- **Groq**: Hardware-accelerated language processing
|
645 |
+
- **Together AI**: High-performance open-source models
|
646 |
+
- **Fireworks AI**: Production-ready model serving
|
647 |
+
- **Replicate**: Cloud-based model deployment
|
648 |
+
- **Cohere**: Enterprise NLP models
|
649 |
+
- **Fal AI**: Fast and reliable inference
|
650 |
+
|
651 |
+
All providers use **HuggingFace routing** with unified billing and authentication!
|
652 |
|
653 |
---
|
654 |
""")
|
655 |
|
656 |
with gr.Tabs():
|
657 |
+
# Provider Status Tab
|
658 |
+
with gr.TabItem("🏢 Provider Overview"):
|
659 |
+
gr.Markdown("### HuggingFace Inference Providers Status")
|
660 |
|
661 |
+
status_btn = gr.Button("📊 View Provider Details", variant="primary")
|
662 |
+
provider_status_output = gr.Dataframe(
|
663 |
+
headers=["Provider", "Description", "Capabilities", "Models", "Pricing", "Documentation"],
|
664 |
+
label="Provider Information"
|
665 |
+
)
|
666 |
+
|
667 |
+
status_btn.click(get_provider_status, outputs=provider_status_output)
|
668 |
+
|
669 |
+
# Models by Provider Tab
|
670 |
+
with gr.TabItem("🔍 Browse by Provider"):
|
671 |
+
gr.Markdown("### Models Available by Provider")
|
672 |
+
|
673 |
+
provider_filter = gr.Dropdown(
|
674 |
+
choices=providers,
|
675 |
+
value="All",
|
676 |
+
label="Select Provider"
|
677 |
+
)
|
678 |
|
679 |
+
provider_models_btn = gr.Button("📋 Show Models", variant="primary")
|
680 |
+
provider_models_output = gr.Dataframe(
|
681 |
+
headers=["Model ID", "Provider", "Pipeline", "Description", "API Format", "Status", "Pricing"],
|
682 |
+
label="Models by Provider"
|
683 |
)
|
684 |
|
685 |
+
provider_models_btn.click(
|
686 |
+
get_models_by_provider,
|
687 |
+
inputs=provider_filter,
|
688 |
+
outputs=provider_models_output
|
689 |
)
|
|
|
690 |
|
691 |
+
# Models by Pipeline Tab
|
692 |
+
with gr.TabItem("⚙️ Browse by Task"):
|
693 |
+
gr.Markdown("### Models Available by Task/Pipeline")
|
694 |
|
695 |
+
pipeline_filter = gr.Dropdown(
|
696 |
+
choices=pipelines,
|
697 |
+
value="All",
|
698 |
+
label="Select Task/Pipeline"
|
699 |
)
|
700 |
|
701 |
+
pipeline_models_btn = gr.Button("📋 Show Models", variant="primary")
|
702 |
+
pipeline_models_output = gr.Dataframe(
|
703 |
+
headers=["Model ID", "Provider", "Pipeline", "Description", "API Format", "Status"],
|
704 |
+
label="Models by Task"
|
705 |
+
)
|
706 |
+
|
707 |
+
pipeline_models_btn.click(
|
708 |
+
get_models_by_pipeline,
|
709 |
+
inputs=pipeline_filter,
|
710 |
+
outputs=pipeline_models_output
|
711 |
+
)
|
712 |
|
713 |
# Model Testing Tab
|
714 |
with gr.TabItem("🧪 Test Models"):
|
715 |
+
gr.Markdown("### Test Live Model Inference")
|
716 |
|
717 |
with gr.Row():
|
718 |
+
model_id_dropdown = gr.Dropdown(
|
719 |
+
choices=model_ids,
|
720 |
+
label="Select Model",
|
721 |
+
info="Choose from curated inference provider models"
|
722 |
)
|
723 |
test_input = gr.Textbox(
|
724 |
placeholder="Hello, how are you today?",
|
|
|
727 |
)
|
728 |
|
729 |
test_btn = gr.Button("🚀 Test Model", variant="primary")
|
730 |
+
test_output = gr.Markdown(label="Inference Results")
|
731 |
|
732 |
test_btn.click(
|
733 |
test_model,
|
734 |
+
inputs=[model_id_dropdown, test_input],
|
735 |
outputs=test_output
|
736 |
)
|
737 |
|
738 |
+
# All Models Tab
|
739 |
+
with gr.TabItem("📊 All Available Models"):
|
740 |
+
gr.Markdown("### Complete Model Catalog")
|
|
|
|
|
741 |
|
742 |
+
all_models_btn = gr.Button("📋 Load All Models", variant="primary")
|
743 |
+
all_models_output = gr.Dataframe(
|
744 |
+
headers=["Model ID", "Provider", "Pipeline", "Description", "API Format", "Status", "Pricing"],
|
745 |
+
label="Complete Model Catalog"
|
746 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
747 |
|
748 |
+
all_models_btn.click(
|
749 |
+
lambda: get_models_by_provider("All"),
|
750 |
+
outputs=all_models_output
|
751 |
+
)
|
752 |
|
753 |
# Footer
|
754 |
+
gr.Markdown(f"""
|
755 |
---
|
756 |
|
757 |
+
## 🔧 Setup Instructions:
|
758 |
|
759 |
+
1. **Get HuggingFace Token**: Visit [HF Settings](https://huggingface.co/settings/tokens)
|
760 |
+
2. **Set Environment Variable**: `export HF_TOKEN=hf_your_token_here`
|
761 |
+
3. **Start Testing**: All providers use unified HF authentication!
|
762 |
+
|
763 |
+
## 📋 Current Statistics:
|
764 |
+
|
765 |
+
- **Total Models**: {len(explorer.allowed_models)}
|
766 |
+
- **Providers**: {len(explorer.provider_config)}
|
767 |
+
- **Pipelines**: {len(set(model['pipeline'] for model in explorer.allowed_models.values()))}
|
768 |
+
|
769 |
+
## 🔗 Useful Links:
|
770 |
+
|
771 |
+
- 📚 [Inference Providers Docs](https://huggingface.co/docs/inference-providers/index)
|
772 |
+
- 💰 [Pricing Information](https://huggingface.co/docs/inference-providers/pricing-and-billing)
|
773 |
+
- 🔑 [Authentication Guide](https://huggingface.co/docs/inference-providers/get-started#authentication)
|
774 |
+
- 🌟 [Provider Comparison](https://huggingface.co/inference-providers/models)
|
775 |
+
|
776 |
+
---
|
777 |
+
|
778 |
+
*Powered by HuggingFace Inference Providers - Unified access to the best AI models!*
|
779 |
""")
|
780 |
|
781 |
return demo
|
|
|
788 |
server_port=7860,
|
789 |
share=False
|
790 |
)
|
791 |
+
except Exception as e:
|
792 |
+
print(f"Error starting application: {e}")
|
793 |
+
print("Please ensure HF_TOKEN environment variable is set.")
|