Spaces:
Sleeping
Sleeping
File size: 18,543 Bytes
c466cf2 0228818 14940e1 0228818 14940e1 c466cf2 5e80e3b 14940e1 0228818 c466cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# TutorX MCP Server
from mcp.server.fastmcp import FastMCP
import json
from typing import List, Dict, Any, Optional
from datetime import datetime
# Import utility functions
from utils.multimodal import (
process_text_query,
process_voice_input,
process_handwriting,
generate_speech_response
)
from utils.assessment import (
generate_question,
evaluate_student_answer,
generate_performance_analytics,
detect_plagiarism
)
# Create the TutorX MCP server
mcp = FastMCP("TutorX")
# ------------------ Core Features ------------------
# Adaptive Learning Engine
@mcp.tool()
def assess_skill(student_id: str, concept_id: str) -> Dict[str, Any]:
"""
Assess student's skill level on a specific concept
Args:
student_id: The unique identifier for the student
concept_id: The concept to assess
Returns:
Dictionary containing skill level and recommendations
"""
# Simulated skill assessment
return {
"student_id": student_id,
"concept_id": concept_id,
"skill_level": 0.75,
"confidence": 0.85,
"recommendations": [
"Practice more complex problems",
"Review related concept: algebra_linear_equations"
],
"timestamp": datetime.now().isoformat()
}
@mcp.resource("concept-graph://")
def get_concept_graph() -> Dict[str, Any]:
"""Get the full knowledge concept graph"""
return {
"nodes": [
{"id": "math_algebra_basics", "name": "Algebra Basics", "difficulty": 1},
{"id": "math_algebra_linear_equations", "name": "Linear Equations", "difficulty": 2},
{"id": "math_algebra_quadratic_equations", "name": "Quadratic Equations", "difficulty": 3},
],
"edges": [
{"from": "math_algebra_basics", "to": "math_algebra_linear_equations", "weight": 1.0},
{"from": "math_algebra_linear_equations", "to": "math_algebra_quadratic_equations", "weight": 0.8},
]
}
@mcp.resource("learning-path://{student_id}")
def get_learning_path(student_id: str) -> Dict[str, Any]:
"""Get personalized learning path for a student"""
return {
"student_id": student_id,
"current_concepts": ["math_algebra_linear_equations"],
"recommended_next": ["math_algebra_quadratic_equations"],
"mastered": ["math_algebra_basics"],
"estimated_completion_time": "2 weeks"
}
# Assessment Suite
@mcp.tool()
def generate_quiz(concept_ids: List[str], difficulty: int = 2) -> Dict[str, Any]:
"""
Generate a quiz based on specified concepts and difficulty
Args:
concept_ids: List of concept IDs to include in the quiz
difficulty: Difficulty level from 1-5
Returns:
Quiz object with questions and answers
"""
return {
"quiz_id": "q12345",
"concept_ids": concept_ids,
"difficulty": difficulty,
"questions": [
{
"id": "q1",
"text": "Solve for x: 2x + 3 = 7",
"type": "algebraic_equation",
"answer": "x = 2",
"solution_steps": [
"2x + 3 = 7",
"2x = 7 - 3",
"2x = 4",
"x = 4/2 = 2"
]
}
]
}
# Feedback System
@mcp.tool()
def analyze_error_patterns(student_id: str, concept_id: str) -> Dict[str, Any]:
"""
Analyze common error patterns for a student on a specific concept
Args:
student_id: The student's unique identifier
concept_id: The concept to analyze
Returns:
Error pattern analysis
"""
return {
"student_id": student_id,
"concept_id": concept_id,
"common_errors": [
{
"type": "sign_error",
"frequency": 0.65,
"example": "2x - 3 = 5 β 2x = 5 - 3 β 2x = 2 β x = 1 (should be x = 4)"
},
{
"type": "arithmetic_error",
"frequency": 0.35,
"example": "2x = 8 β x = 8/2 = 3 (should be x = 4)"
}
],
"recommendations": [
"Practice more sign manipulation problems",
"Review basic arithmetic operations"
]
}
# ------------------ Advanced Features ------------------
# Neurological Engagement Monitor
@mcp.tool()
def analyze_cognitive_state(eeg_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Analyze EEG data to determine cognitive state
Args:
eeg_data: Raw or processed EEG data
Returns:
Analysis of cognitive state
"""
return {
"attention_level": 0.82,
"cognitive_load": 0.65,
"stress_level": 0.25,
"recommendations": [
"Student is engaged but approaching cognitive overload",
"Consider simplifying next problems slightly"
],
"timestamp": datetime.now().isoformat()
}
# Cross-Institutional Knowledge Fusion
@mcp.resource("curriculum-standards://{country_code}")
def get_curriculum_standards(country_code: str) -> Dict[str, Any]:
"""Get curriculum standards for a specific country"""
standards = {
"us": {
"name": "Common Core State Standards",
"math_standards": {
"algebra_1": [
"CCSS.Math.Content.HSA.CED.A.1",
"CCSS.Math.Content.HSA.CED.A.2"
]
}
},
"uk": {
"name": "National Curriculum",
"math_standards": {
"algebra_1": [
"KS3.Algebra.1",
"KS3.Algebra.2"
]
}
}
}
return standards.get(country_code.lower(), {"error": "Country code not found"})
@mcp.tool()
def align_content_to_standard(content_id: str, standard_id: str) -> Dict[str, Any]:
"""
Align educational content to a specific curriculum standard
Args:
content_id: The ID of the content to align
standard_id: The curriculum standard ID
Returns:
Alignment information and recommendations
"""
return {
"content_id": content_id,
"standard_id": standard_id,
"alignment_score": 0.85,
"gaps": [
"Missing coverage of polynomial division",
"Should include more word problems"
],
"recommendations": [
"Add 2-3 examples of polynomial division",
"Convert 30% of problems to word problems"
]
}
# Automated Lesson Authoring
@mcp.tool()
def generate_lesson(topic: str, grade_level: int, duration_minutes: int = 45) -> Dict[str, Any]:
"""
Generate a complete lesson plan on a topic
Args:
topic: The lesson topic
grade_level: Target grade level (K-12)
duration_minutes: Lesson duration in minutes
Returns:
Complete lesson plan
"""
return {
"topic": topic,
"grade_level": grade_level,
"duration_minutes": duration_minutes,
"objectives": [
"Students will be able to solve linear equations in one variable",
"Students will be able to check their solutions"
],
"materials": [
"Whiteboard/projector",
"Handouts with practice problems",
"Graphing calculators (optional)"
],
"activities": [
{
"name": "Warm-up",
"duration_minutes": 5,
"description": "Review of pre-algebra concepts needed for today's lesson"
},
{
"name": "Direct Instruction",
"duration_minutes": 15,
"description": "Teacher demonstrates solving linear equations step by step"
},
{
"name": "Guided Practice",
"duration_minutes": 10,
"description": "Students solve problems with teacher guidance"
},
{
"name": "Independent Practice",
"duration_minutes": 10,
"description": "Students solve problems independently"
},
{
"name": "Closure",
"duration_minutes": 5,
"description": "Review key concepts and preview next lesson"
}
],
"assessment": {
"formative": "Teacher observation during guided and independent practice",
"summative": "Exit ticket with 3 problems to solve"
},
"differentiation": {
"struggling": "Provide equation-solving steps reference sheet",
"advanced": "Offer multi-step equations with fractions and decimals"
}
}
# ------------------ User Experience Features ------------------
@mcp.resource("student-dashboard://{student_id}")
def get_student_dashboard(student_id: str) -> Dict[str, Any]:
"""Get dashboard data for a specific student"""
return {
"student_id": student_id,
"knowledge_map": {
"mastery_percentage": 68,
"concepts_mastered": 42,
"concepts_in_progress": 15,
"concepts_not_started": 25
},
"recent_activity": [
{
"timestamp": "2025-06-06T15:30:00Z",
"activity_type": "quiz",
"description": "Algebra Quiz #3",
"performance": "85%"
},
{
"timestamp": "2025-06-05T13:45:00Z",
"activity_type": "lesson",
"description": "Quadratic Equations Introduction",
"duration_minutes": 32
}
],
"recommendations": [
"Complete Factor Polynomials practice set",
"Review Linear Systems interactive module"
]
}
@mcp.tool()
def get_accessibility_settings(student_id: str) -> Dict[str, Any]:
"""
Get accessibility settings for a student
Args:
student_id: The student's unique identifier
Returns:
Accessibility settings
"""
return {
"student_id": student_id,
"text_to_speech_enabled": True,
"font_size": "large",
"high_contrast_mode": False,
"screen_reader_compatible": True,
"keyboard_navigation_enabled": True
}
@mcp.tool()
def update_accessibility_settings(student_id: str, settings: Dict[str, Any]) -> Dict[str, Any]:
"""
Update accessibility settings for a student
Args:
student_id: The student's unique identifier
settings: Dictionary of settings to update
Returns:
Updated accessibility settings
"""
# In a real implementation, this would update a database
return {
"student_id": student_id,
"text_to_speech_enabled": settings.get("text_to_speech_enabled", True),
"font_size": settings.get("font_size", "large"),
"high_contrast_mode": settings.get("high_contrast_mode", False),
"screen_reader_compatible": settings.get("screen_reader_compatible", True),
"keyboard_navigation_enabled": settings.get("keyboard_navigation_enabled", True),
"updated_at": datetime.now().isoformat()
}
# ------------------ Multi-Modal Interaction ------------------
@mcp.tool()
def text_interaction(query: str, student_id: str, session_context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""
Process a text query from the student
Args:
query: The text query from the student
student_id: The student's unique identifier
session_context: Optional context about the current session
Returns:
Processed response
"""
# Add student information to context
context = session_context or {}
context["student_id"] = student_id
return process_text_query(query, context)
@mcp.tool()
def voice_interaction(audio_data_base64: str, student_id: str) -> Dict[str, Any]:
"""
Process voice input from the student
Args:
audio_data_base64: Base64 encoded audio data
student_id: The student's unique identifier
Returns:
Transcription and response
"""
# Process voice input
result = process_voice_input(audio_data_base64)
# Process the transcription as a text query
text_response = process_text_query(result["transcription"], {"student_id": student_id})
# Generate speech response
speech_response = generate_speech_response(
text_response["response"],
{"voice_id": "educational_tutor"}
)
# Combine results
return {
"input_transcription": result["transcription"],
"input_confidence": result["confidence"],
"detected_emotions": result.get("detected_emotions", {}),
"text_response": text_response["response"],
"speech_response": speech_response,
"timestamp": datetime.now().isoformat()
}
@mcp.tool()
def handwriting_recognition(image_data_base64: str, student_id: str) -> Dict[str, Any]:
"""
Process handwritten input from the student
Args:
image_data_base64: Base64 encoded image data of handwriting
student_id: The student's unique identifier
Returns:
Transcription and analysis
"""
# Process handwriting input
result = process_handwriting(image_data_base64)
# If it's a math equation, solve it
if result["detected_content_type"] == "math_equation":
# In a real implementation, this would use a math engine to solve the equation
# For demonstration, we'll provide a simulated solution
if result["equation_type"] == "quadratic":
solution = {
"equation": result["transcription"],
"solution_steps": [
"x^2 + 5x + 6 = 0",
"Factor: (x + 2)(x + 3) = 0",
"x + 2 = 0 or x + 3 = 0",
"x = -2 or x = -3"
],
"solutions": [-2, -3]
}
else:
solution = {
"equation": result["transcription"],
"note": "Solution not implemented for this equation type"
}
else:
solution = None
return {
"transcription": result["transcription"],
"confidence": result["confidence"],
"detected_content_type": result["detected_content_type"],
"solution": solution,
"timestamp": datetime.now().isoformat()
}
# ------------------ Advanced Assessment Tools ------------------
@mcp.tool()
def create_assessment(concept_ids: List[str], num_questions: int, difficulty: int = 3) -> Dict[str, Any]:
"""
Create a complete assessment for given concepts
Args:
concept_ids: List of concept IDs to include
num_questions: Number of questions to generate
difficulty: Difficulty level (1-5)
Returns:
Complete assessment with questions
"""
questions = []
# Distribute questions evenly among concepts
questions_per_concept = num_questions // len(concept_ids)
extra_questions = num_questions % len(concept_ids)
for i, concept_id in enumerate(concept_ids):
# Determine how many questions for this concept
concept_questions = questions_per_concept
if i < extra_questions:
concept_questions += 1
# Generate questions for this concept
for _ in range(concept_questions):
questions.append(generate_question(concept_id, difficulty))
return {
"assessment_id": f"assessment_{datetime.now().strftime('%Y%m%d%H%M%S')}",
"concept_ids": concept_ids,
"difficulty": difficulty,
"num_questions": len(questions),
"questions": questions,
"created_at": datetime.now().isoformat()
}
@mcp.tool()
def grade_assessment(assessment_id: str, student_answers: Dict[str, str], questions: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Grade a completed assessment
Args:
assessment_id: The ID of the assessment
student_answers: Dictionary mapping question IDs to student answers
questions: List of question objects
Returns:
Grading results
"""
results = []
correct_count = 0
for question in questions:
question_id = question["id"]
if question_id in student_answers:
evaluation = evaluate_student_answer(question, student_answers[question_id])
results.append(evaluation)
if evaluation["is_correct"]:
correct_count += 1
# Calculate score
score = correct_count / len(questions) if questions else 0
# Analyze error patterns
error_types = {}
for result in results:
if result["error_type"]:
error_type = result["error_type"]
error_types[error_type] = error_types.get(error_type, 0) + 1
# Find most common error
most_common_error = None
if error_types:
most_common_error = max(error_types.items(), key=lambda x: x[1])
return {
"assessment_id": assessment_id,
"score": score,
"correct_count": correct_count,
"total_questions": len(questions),
"results": results,
"most_common_error": most_common_error,
"completed_at": datetime.now().isoformat()
}
@mcp.tool()
def get_student_analytics(student_id: str, timeframe_days: int = 30) -> Dict[str, Any]:
"""
Get comprehensive analytics for a student
Args:
student_id: The student's unique identifier
timeframe_days: Number of days to include in analysis
Returns:
Performance analytics
"""
return generate_performance_analytics(student_id, timeframe_days)
@mcp.tool()
def check_submission_originality(submission: str, reference_sources: List[str]) -> Dict[str, Any]:
"""
Check student submission for potential plagiarism
Args:
submission: The student's submission text
reference_sources: List of reference texts to check against
Returns:
Originality analysis
"""
return detect_plagiarism(submission, reference_sources)
if __name__ == "__main__":
mcp.run() |