File size: 18,543 Bytes
c466cf2
 
 
 
 
 
0228818
14940e1
 
 
 
 
 
0228818
 
 
 
 
 
14940e1
c466cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e80e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14940e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c466cf2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# TutorX MCP Server
from mcp.server.fastmcp import FastMCP
import json
from typing import List, Dict, Any, Optional
from datetime import datetime

# Import utility functions
from utils.multimodal import (
    process_text_query,
    process_voice_input,
    process_handwriting,
    generate_speech_response
)
from utils.assessment import (
    generate_question,
    evaluate_student_answer,
    generate_performance_analytics,
    detect_plagiarism
)

# Create the TutorX MCP server
mcp = FastMCP("TutorX")

# ------------------ Core Features ------------------

# Adaptive Learning Engine
@mcp.tool()
def assess_skill(student_id: str, concept_id: str) -> Dict[str, Any]:
    """
    Assess student's skill level on a specific concept
    
    Args:
        student_id: The unique identifier for the student
        concept_id: The concept to assess
        
    Returns:
        Dictionary containing skill level and recommendations
    """
    # Simulated skill assessment
    return {
        "student_id": student_id,
        "concept_id": concept_id,
        "skill_level": 0.75,
        "confidence": 0.85,
        "recommendations": [
            "Practice more complex problems",
            "Review related concept: algebra_linear_equations"
        ],
        "timestamp": datetime.now().isoformat()
    }

@mcp.resource("concept-graph://")
def get_concept_graph() -> Dict[str, Any]:
    """Get the full knowledge concept graph"""
    return {
        "nodes": [
            {"id": "math_algebra_basics", "name": "Algebra Basics", "difficulty": 1},
            {"id": "math_algebra_linear_equations", "name": "Linear Equations", "difficulty": 2},
            {"id": "math_algebra_quadratic_equations", "name": "Quadratic Equations", "difficulty": 3},
        ],
        "edges": [
            {"from": "math_algebra_basics", "to": "math_algebra_linear_equations", "weight": 1.0},
            {"from": "math_algebra_linear_equations", "to": "math_algebra_quadratic_equations", "weight": 0.8},
        ]
    }

@mcp.resource("learning-path://{student_id}")
def get_learning_path(student_id: str) -> Dict[str, Any]:
    """Get personalized learning path for a student"""
    return {
        "student_id": student_id,
        "current_concepts": ["math_algebra_linear_equations"],
        "recommended_next": ["math_algebra_quadratic_equations"],
        "mastered": ["math_algebra_basics"],
        "estimated_completion_time": "2 weeks"
    }

# Assessment Suite
@mcp.tool()
def generate_quiz(concept_ids: List[str], difficulty: int = 2) -> Dict[str, Any]:
    """
    Generate a quiz based on specified concepts and difficulty
    
    Args:
        concept_ids: List of concept IDs to include in the quiz
        difficulty: Difficulty level from 1-5
        
    Returns:
        Quiz object with questions and answers
    """
    return {
        "quiz_id": "q12345",
        "concept_ids": concept_ids,
        "difficulty": difficulty,
        "questions": [
            {
                "id": "q1",
                "text": "Solve for x: 2x + 3 = 7",
                "type": "algebraic_equation",
                "answer": "x = 2",
                "solution_steps": [
                    "2x + 3 = 7",
                    "2x = 7 - 3",
                    "2x = 4",
                    "x = 4/2 = 2"
                ]
            }
        ]
    }

# Feedback System
@mcp.tool()
def analyze_error_patterns(student_id: str, concept_id: str) -> Dict[str, Any]:
    """
    Analyze common error patterns for a student on a specific concept
    
    Args:
        student_id: The student's unique identifier
        concept_id: The concept to analyze
        
    Returns:
        Error pattern analysis
    """
    return {
        "student_id": student_id,
        "concept_id": concept_id,
        "common_errors": [
            {
                "type": "sign_error",
                "frequency": 0.65,
                "example": "2x - 3 = 5 β†’ 2x = 5 - 3 β†’ 2x = 2 β†’ x = 1 (should be x = 4)"
            },
            {
                "type": "arithmetic_error",
                "frequency": 0.35,
                "example": "2x = 8 β†’ x = 8/2 = 3 (should be x = 4)"
            }
        ],
        "recommendations": [
            "Practice more sign manipulation problems",
            "Review basic arithmetic operations"
        ]
    }

# ------------------ Advanced Features ------------------

# Neurological Engagement Monitor
@mcp.tool()
def analyze_cognitive_state(eeg_data: Dict[str, Any]) -> Dict[str, Any]:
    """
    Analyze EEG data to determine cognitive state
    
    Args:
        eeg_data: Raw or processed EEG data
        
    Returns:
        Analysis of cognitive state
    """
    return {
        "attention_level": 0.82,
        "cognitive_load": 0.65,
        "stress_level": 0.25,
        "recommendations": [
            "Student is engaged but approaching cognitive overload",
            "Consider simplifying next problems slightly"
        ],
        "timestamp": datetime.now().isoformat()
    }

# Cross-Institutional Knowledge Fusion
@mcp.resource("curriculum-standards://{country_code}")
def get_curriculum_standards(country_code: str) -> Dict[str, Any]:
    """Get curriculum standards for a specific country"""
    standards = {
        "us": {
            "name": "Common Core State Standards",
            "math_standards": {
                "algebra_1": [
                    "CCSS.Math.Content.HSA.CED.A.1",
                    "CCSS.Math.Content.HSA.CED.A.2"
                ]
            }
        },
        "uk": {
            "name": "National Curriculum",
            "math_standards": {
                "algebra_1": [
                    "KS3.Algebra.1",
                    "KS3.Algebra.2"
                ]
            }
        }
    }
    
    return standards.get(country_code.lower(), {"error": "Country code not found"})

@mcp.tool()
def align_content_to_standard(content_id: str, standard_id: str) -> Dict[str, Any]:
    """
    Align educational content to a specific curriculum standard
    
    Args:
        content_id: The ID of the content to align
        standard_id: The curriculum standard ID
        
    Returns:
        Alignment information and recommendations
    """
    return {
        "content_id": content_id,
        "standard_id": standard_id,
        "alignment_score": 0.85,
        "gaps": [
            "Missing coverage of polynomial division",
            "Should include more word problems"
        ],
        "recommendations": [
            "Add 2-3 examples of polynomial division",
            "Convert 30% of problems to word problems"
        ]
    }

# Automated Lesson Authoring
@mcp.tool()
def generate_lesson(topic: str, grade_level: int, duration_minutes: int = 45) -> Dict[str, Any]:
    """
    Generate a complete lesson plan on a topic
    
    Args:
        topic: The lesson topic
        grade_level: Target grade level (K-12)
        duration_minutes: Lesson duration in minutes
        
    Returns:
        Complete lesson plan
    """
    return {
        "topic": topic,
        "grade_level": grade_level,
        "duration_minutes": duration_minutes,
        "objectives": [
            "Students will be able to solve linear equations in one variable",
            "Students will be able to check their solutions"
        ],
        "materials": [
            "Whiteboard/projector",
            "Handouts with practice problems",
            "Graphing calculators (optional)"
        ],
        "activities": [
            {
                "name": "Warm-up",
                "duration_minutes": 5,
                "description": "Review of pre-algebra concepts needed for today's lesson"
            },
            {
                "name": "Direct Instruction",
                "duration_minutes": 15,
                "description": "Teacher demonstrates solving linear equations step by step"
            },
            {
                "name": "Guided Practice",
                "duration_minutes": 10,
                "description": "Students solve problems with teacher guidance"
            },
            {
                "name": "Independent Practice",
                "duration_minutes": 10,
                "description": "Students solve problems independently"
            },
            {
                "name": "Closure",
                "duration_minutes": 5,
                "description": "Review key concepts and preview next lesson"
            }
        ],
        "assessment": {
            "formative": "Teacher observation during guided and independent practice",
            "summative": "Exit ticket with 3 problems to solve"
        },
        "differentiation": {
            "struggling": "Provide equation-solving steps reference sheet",
            "advanced": "Offer multi-step equations with fractions and decimals"
        }
    }

# ------------------ User Experience Features ------------------

@mcp.resource("student-dashboard://{student_id}")
def get_student_dashboard(student_id: str) -> Dict[str, Any]:
    """Get dashboard data for a specific student"""
    return {
        "student_id": student_id,
        "knowledge_map": {
            "mastery_percentage": 68,
            "concepts_mastered": 42,
            "concepts_in_progress": 15,
            "concepts_not_started": 25
        },
        "recent_activity": [
            {
                "timestamp": "2025-06-06T15:30:00Z",
                "activity_type": "quiz",
                "description": "Algebra Quiz #3",
                "performance": "85%"
            },
            {
                "timestamp": "2025-06-05T13:45:00Z",
                "activity_type": "lesson",
                "description": "Quadratic Equations Introduction",
                "duration_minutes": 32
            }
        ],
        "recommendations": [
            "Complete Factor Polynomials practice set",
            "Review Linear Systems interactive module"
        ]
    }

@mcp.tool()
def get_accessibility_settings(student_id: str) -> Dict[str, Any]:
    """
    Get accessibility settings for a student
    
    Args:
        student_id: The student's unique identifier
        
    Returns:
        Accessibility settings
    """
    return {
        "student_id": student_id,
        "text_to_speech_enabled": True,
        "font_size": "large",
        "high_contrast_mode": False,
        "screen_reader_compatible": True,
        "keyboard_navigation_enabled": True
    }

@mcp.tool()
def update_accessibility_settings(student_id: str, settings: Dict[str, Any]) -> Dict[str, Any]:
    """
    Update accessibility settings for a student
    
    Args:
        student_id: The student's unique identifier
        settings: Dictionary of settings to update
        
    Returns:
        Updated accessibility settings
    """
    # In a real implementation, this would update a database
    return {
        "student_id": student_id,
        "text_to_speech_enabled": settings.get("text_to_speech_enabled", True),
        "font_size": settings.get("font_size", "large"),
        "high_contrast_mode": settings.get("high_contrast_mode", False),
        "screen_reader_compatible": settings.get("screen_reader_compatible", True),
        "keyboard_navigation_enabled": settings.get("keyboard_navigation_enabled", True),
        "updated_at": datetime.now().isoformat()
    }

# ------------------ Multi-Modal Interaction ------------------

@mcp.tool()
def text_interaction(query: str, student_id: str, session_context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
    """
    Process a text query from the student
    
    Args:
        query: The text query from the student
        student_id: The student's unique identifier
        session_context: Optional context about the current session
        
    Returns:
        Processed response
    """
    # Add student information to context
    context = session_context or {}
    context["student_id"] = student_id
    
    return process_text_query(query, context)

@mcp.tool()
def voice_interaction(audio_data_base64: str, student_id: str) -> Dict[str, Any]:
    """
    Process voice input from the student
    
    Args:
        audio_data_base64: Base64 encoded audio data
        student_id: The student's unique identifier
        
    Returns:
        Transcription and response
    """
    # Process voice input
    result = process_voice_input(audio_data_base64)
    
    # Process the transcription as a text query
    text_response = process_text_query(result["transcription"], {"student_id": student_id})
    
    # Generate speech response
    speech_response = generate_speech_response(
        text_response["response"],
        {"voice_id": "educational_tutor"}
    )
    
    # Combine results
    return {
        "input_transcription": result["transcription"],
        "input_confidence": result["confidence"],
        "detected_emotions": result.get("detected_emotions", {}),
        "text_response": text_response["response"],
        "speech_response": speech_response,
        "timestamp": datetime.now().isoformat()
    }

@mcp.tool()
def handwriting_recognition(image_data_base64: str, student_id: str) -> Dict[str, Any]:
    """
    Process handwritten input from the student
    
    Args:
        image_data_base64: Base64 encoded image data of handwriting
        student_id: The student's unique identifier
        
    Returns:
        Transcription and analysis
    """
    # Process handwriting input
    result = process_handwriting(image_data_base64)
    
    # If it's a math equation, solve it
    if result["detected_content_type"] == "math_equation":
        # In a real implementation, this would use a math engine to solve the equation
        # For demonstration, we'll provide a simulated solution
        if result["equation_type"] == "quadratic":
            solution = {
                "equation": result["transcription"],
                "solution_steps": [
                    "x^2 + 5x + 6 = 0",
                    "Factor: (x + 2)(x + 3) = 0",
                    "x + 2 = 0 or x + 3 = 0",
                    "x = -2 or x = -3"
                ],
                "solutions": [-2, -3]
            }
        else:
            solution = {
                "equation": result["transcription"],
                "note": "Solution not implemented for this equation type"
            }
    else:
        solution = None
    
    return {
        "transcription": result["transcription"],
        "confidence": result["confidence"],
        "detected_content_type": result["detected_content_type"],
        "solution": solution,
        "timestamp": datetime.now().isoformat()
    }

# ------------------ Advanced Assessment Tools ------------------

@mcp.tool()
def create_assessment(concept_ids: List[str], num_questions: int, difficulty: int = 3) -> Dict[str, Any]:
    """
    Create a complete assessment for given concepts
    
    Args:
        concept_ids: List of concept IDs to include
        num_questions: Number of questions to generate
        difficulty: Difficulty level (1-5)
        
    Returns:
        Complete assessment with questions
    """
    questions = []
    
    # Distribute questions evenly among concepts
    questions_per_concept = num_questions // len(concept_ids)
    extra_questions = num_questions % len(concept_ids)
    
    for i, concept_id in enumerate(concept_ids):
        # Determine how many questions for this concept
        concept_questions = questions_per_concept
        if i < extra_questions:
            concept_questions += 1
        
        # Generate questions for this concept
        for _ in range(concept_questions):
            questions.append(generate_question(concept_id, difficulty))
    
    return {
        "assessment_id": f"assessment_{datetime.now().strftime('%Y%m%d%H%M%S')}",
        "concept_ids": concept_ids,
        "difficulty": difficulty,
        "num_questions": len(questions),
        "questions": questions,
        "created_at": datetime.now().isoformat()
    }

@mcp.tool()
def grade_assessment(assessment_id: str, student_answers: Dict[str, str], questions: List[Dict[str, Any]]) -> Dict[str, Any]:
    """
    Grade a completed assessment
    
    Args:
        assessment_id: The ID of the assessment
        student_answers: Dictionary mapping question IDs to student answers
        questions: List of question objects
        
    Returns:
        Grading results
    """
    results = []
    correct_count = 0
    
    for question in questions:
        question_id = question["id"]
        if question_id in student_answers:
            evaluation = evaluate_student_answer(question, student_answers[question_id])
            results.append(evaluation)
            if evaluation["is_correct"]:
                correct_count += 1
    
    # Calculate score
    score = correct_count / len(questions) if questions else 0
    
    # Analyze error patterns
    error_types = {}
    for result in results:
        if result["error_type"]:
            error_type = result["error_type"]
            error_types[error_type] = error_types.get(error_type, 0) + 1
    
    # Find most common error
    most_common_error = None
    if error_types:
        most_common_error = max(error_types.items(), key=lambda x: x[1])
    
    return {
        "assessment_id": assessment_id,
        "score": score,
        "correct_count": correct_count,
        "total_questions": len(questions),
        "results": results,
        "most_common_error": most_common_error,
        "completed_at": datetime.now().isoformat()
    }

@mcp.tool()
def get_student_analytics(student_id: str, timeframe_days: int = 30) -> Dict[str, Any]:
    """
    Get comprehensive analytics for a student
    
    Args:
        student_id: The student's unique identifier
        timeframe_days: Number of days to include in analysis
        
    Returns:
        Performance analytics
    """
    return generate_performance_analytics(student_id, timeframe_days)

@mcp.tool()
def check_submission_originality(submission: str, reference_sources: List[str]) -> Dict[str, Any]:
    """
    Check student submission for potential plagiarism
    
    Args:
        submission: The student's submission text
        reference_sources: List of reference texts to check against
        
    Returns:
        Originality analysis
    """
    return detect_plagiarism(submission, reference_sources)

if __name__ == "__main__":
    mcp.run()