Spaces:
Sleeping
Sleeping
File size: 15,124 Bytes
0228818 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
"""
Assessment and analytics utilities for the TutorX MCP server.
"""
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
import random
import json
def generate_question(concept_id: str, difficulty: int) -> Dict[str, Any]:
"""
Generate a question for a specific concept at the given difficulty level
Args:
concept_id: The concept identifier
difficulty: Difficulty level from 1-5
Returns:
Question object
"""
# In a real implementation, this would use templates and context to generate appropriate questions
# Here we'll simulate with some hardcoded examples
question_templates = {
"math_algebra_basics": [
{
"text": "Simplify: {a}x + {b}x",
"variables": {"a": (1, 10), "b": (1, 10)},
"solution_template": "{a}x + {b}x = {sum}x",
"answer_template": "{sum}x"
},
{
"text": "Solve: x + {a} = {b}",
"variables": {"a": (1, 20), "b": (5, 30)},
"solution_template": "x + {a} = {b}\nx = {b} - {a}\nx = {answer}",
"answer_template": "x = {answer}"
}
],
"math_algebra_linear_equations": [
{
"text": "Solve for x: {a}x + {b} = {c}",
"variables": {"a": (2, 5), "b": (1, 10), "c": (10, 30)},
"solution_template": "{a}x + {b} = {c}\n{a}x = {c} - {b}\n{a}x = {c_minus_b}\nx = {c_minus_b} / {a}\nx = {answer}",
"answer_template": "x = {answer}"
}
],
"math_algebra_quadratic_equations": [
{
"text": "Solve: x² + {b}x + {c} = 0",
"variables": {"b": (-10, 10), "c": (-20, 20)},
"solution_template": "Using the quadratic formula: x = (-b ± √(b² - 4ac)) / 2a\nWith a=1, b={b}, c={c}:\nx = (-({b}) ± √(({b})² - 4(1)({c}))) / 2(1)\nx = (-{b} ± √({b_squared} - {four_c})) / 2\nx = (-{b} ± √{discriminant}) / 2\nx = (-{b} ± {sqrt_discriminant}) / 2\nx = ({neg_b_plus_sqrt} / 2) or x = ({neg_b_minus_sqrt} / 2)\nx = {answer1} or x = {answer2}",
"answer_template": "x = {answer1} or x = {answer2}"
}
]
}
# Select a template based on concept_id or return a default
templates = question_templates.get(concept_id, [
{
"text": "Define the term: {concept}",
"variables": {"concept": concept_id.replace("_", " ")},
"solution_template": "Definition of {concept}",
"answer_template": "Definition varies"
}
])
# Select a template based on difficulty
template_index = min(int(difficulty / 2), len(templates) - 1)
template = templates[template_index]
# Fill in template variables
variables = {}
for var_name, var_range in template.get("variables", {}).items():
if isinstance(var_range, tuple) and len(var_range) == 2:
# For numeric ranges
variables[var_name] = random.randint(var_range[0], var_range[1])
else:
# For non-numeric values
variables[var_name] = var_range
# Process the variables further for the solution
solution_vars = dict(variables)
# For algebra basics
if concept_id == "math_algebra_basics" and "a" in variables and "b" in variables:
solution_vars["sum"] = variables["a"] + variables["b"]
solution_vars["answer"] = variables["b"] - variables["a"]
# For linear equations
if concept_id == "math_algebra_linear_equations" and all(k in variables for k in ["a", "b", "c"]):
solution_vars["c_minus_b"] = variables["c"] - variables["b"]
solution_vars["answer"] = (variables["c"] - variables["b"]) / variables["a"]
# For quadratic equations
if concept_id == "math_algebra_quadratic_equations" and all(k in variables for k in ["b", "c"]):
a = 1 # Assuming a=1 for simplicity
b = variables["b"]
c = variables["c"]
solution_vars["b_squared"] = b**2
solution_vars["four_c"] = 4 * c
solution_vars["discriminant"] = b**2 - 4*a*c
if solution_vars["discriminant"] >= 0:
solution_vars["sqrt_discriminant"] = round(solution_vars["discriminant"] ** 0.5, 3)
solution_vars["neg_b_plus_sqrt"] = -b + solution_vars["sqrt_discriminant"]
solution_vars["neg_b_minus_sqrt"] = -b - solution_vars["sqrt_discriminant"]
solution_vars["answer1"] = round((-b + solution_vars["sqrt_discriminant"]) / (2*a), 3)
solution_vars["answer2"] = round((-b - solution_vars["sqrt_discriminant"]) / (2*a), 3)
else:
# Complex roots
solution_vars["sqrt_discriminant"] = f"{round((-solution_vars['discriminant']) ** 0.5, 3)}i"
solution_vars["answer1"] = f"{round(-b/(2*a), 3)} + {round(((-solution_vars['discriminant']) ** 0.5)/(2*a), 3)}i"
solution_vars["answer2"] = f"{round(-b/(2*a), 3)} - {round(((-solution_vars['discriminant']) ** 0.5)/(2*a), 3)}i"
# Format text and solution
text = template["text"].format(**variables)
solution = template["solution_template"].format(**solution_vars) if "solution_template" in template else ""
answer = template["answer_template"].format(**solution_vars) if "answer_template" in template else ""
return {
"id": f"q_{concept_id}_{random.randint(1000, 9999)}",
"concept_id": concept_id,
"difficulty": difficulty,
"text": text,
"solution": solution,
"answer": answer,
"variables": variables
}
def evaluate_student_answer(question: Dict[str, Any], student_answer: str) -> Dict[str, Any]:
"""
Evaluate a student's answer to a question
Args:
question: The question object
student_answer: The student's answer as a string
Returns:
Evaluation results
"""
# In a real implementation, this would use NLP and math parsing to evaluate the answer
# Here we'll do a simple string comparison with some basic normalization
def normalize_answer(answer):
"""Normalize an answer string for comparison"""
return (answer.lower()
.replace(" ", "")
.replace("x=", "")
.replace("y=", ""))
correct_answer = normalize_answer(question["answer"])
student_answer_norm = normalize_answer(student_answer)
# Simple exact match for now
is_correct = student_answer_norm == correct_answer
# In a real implementation, we would have partial matching and error analysis
error_type = None
if not is_correct:
# Try to guess error type - very simplified example
if question["concept_id"] == "math_algebra_linear_equations":
# Check for sign error
if "-" in correct_answer and "+" in student_answer_norm:
error_type = "sign_error"
# Check for arithmetic error (within 20% of correct value)
elif student_answer_norm.replace("-", "").isdigit() and correct_answer.replace("-", "").isdigit():
try:
student_val = float(student_answer_norm)
correct_val = float(correct_answer)
if abs((student_val - correct_val) / correct_val) < 0.2:
error_type = "arithmetic_error"
except (ValueError, ZeroDivisionError):
pass
return {
"question_id": question["id"],
"is_correct": is_correct,
"error_type": error_type,
"correct_answer": question["answer"],
"student_answer": student_answer,
"timestamp": datetime.now().isoformat()
}
def generate_performance_analytics(student_id: str, timeframe_days: int = 30) -> Dict[str, Any]:
"""
Generate performance analytics for a student
Args:
student_id: The student's unique identifier
timeframe_days: Number of days to include in the analysis
Returns:
Performance analytics
"""
# In a real implementation, this would query a database
# Here we'll generate sample data
# Generate some sample data points over the timeframe
start_date = datetime.now() - timedelta(days=timeframe_days)
data_points = []
# Simulate an improving learning curve
accuracy_base = 0.65
speed_base = 120 # seconds
for day in range(timeframe_days):
current_date = start_date + timedelta(days=day)
# Simulate improvement over time with some random variation
improvement_factor = min(day / timeframe_days * 0.3, 0.3) # Max 30% improvement
random_variation = random.uniform(-0.05, 0.05)
accuracy = min(accuracy_base + improvement_factor + random_variation, 0.98)
speed = max(speed_base * (1 - improvement_factor) + random.uniform(-10, 10), 30)
# Generate 1-3 data points per day
daily_points = random.randint(1, 3)
for _ in range(daily_points):
hour = random.randint(9, 20) # Between 9 AM and 8 PM
timestamp = current_date.replace(hour=hour, minute=random.randint(0, 59))
data_points.append({
"timestamp": timestamp.isoformat(),
"accuracy": round(accuracy, 2),
"speed_seconds": round(speed),
"difficulty": random.randint(1, 5),
"concepts": [f"concept_{random.randint(1, 10)}" for _ in range(random.randint(1, 3))]
})
# Calculate aggregate metrics
if data_points:
avg_accuracy = sum(point["accuracy"] for point in data_points) / len(data_points)
avg_speed = sum(point["speed_seconds"] for point in data_points) / len(data_points)
# Calculate improvement
first_week = [p for p in data_points if datetime.fromisoformat(p["timestamp"]) < start_date + timedelta(days=7)]
last_week = [p for p in data_points if datetime.fromisoformat(p["timestamp"]) > datetime.now() - timedelta(days=7)]
accuracy_improvement = 0
speed_improvement = 0
if first_week and last_week:
first_week_acc = sum(p["accuracy"] for p in first_week) / len(first_week)
last_week_acc = sum(p["accuracy"] for p in last_week) / len(last_week)
accuracy_improvement = round((last_week_acc - first_week_acc) * 100, 1)
first_week_speed = sum(p["speed_seconds"] for p in first_week) / len(first_week)
last_week_speed = sum(p["speed_seconds"] for p in last_week) / len(last_week)
speed_improvement = round((first_week_speed - last_week_speed) / first_week_speed * 100, 1)
else:
avg_accuracy = 0
avg_speed = 0
accuracy_improvement = 0
speed_improvement = 0
# Compile strengths and weaknesses
concept_performance = {}
for point in data_points:
for concept in point["concepts"]:
if concept not in concept_performance:
concept_performance[concept] = {"total": 0, "correct": 0}
concept_performance[concept]["total"] += 1
concept_performance[concept]["correct"] += point["accuracy"]
strengths = []
weaknesses = []
for concept, perf in concept_performance.items():
avg = perf["correct"] / perf["total"] if perf["total"] > 0 else 0
if avg > 0.85 and perf["total"] >= 3:
strengths.append(concept)
elif avg < 0.7 and perf["total"] >= 3:
weaknesses.append(concept)
return {
"student_id": student_id,
"timeframe_days": timeframe_days,
"metrics": {
"avg_accuracy": round(avg_accuracy * 100, 1),
"avg_speed_seconds": round(avg_speed, 1),
"accuracy_improvement": accuracy_improvement, # percentage points
"speed_improvement": speed_improvement, # percentage
"total_questions_attempted": len(data_points),
"study_sessions": len(set(p["timestamp"].split("T")[0] for p in data_points))
},
"strengths": strengths[:3], # Top 3 strengths
"weaknesses": weaknesses[:3], # Top 3 weaknesses
"learning_style": "visual" if random.random() > 0.5 else "interactive",
"recommendations": [
"Focus on quadratic equations",
"Try more word problems",
"Schedule a tutoring session for challenging topics"
],
"generated_at": datetime.now().isoformat()
}
def detect_plagiarism(submission: str, reference_sources: List[str]) -> Dict[str, Any]:
"""
Check for potential plagiarism in a student's submission
Args:
submission: The student's submission
reference_sources: List of reference sources to check against
Returns:
Plagiarism analysis
"""
# In a real implementation, this would use sophisticated text comparison
# Here we'll do a simple similarity check
def normalize_text(text):
return text.lower().replace(" ", "")
norm_submission = normalize_text(submission)
matches = []
for i, source in enumerate(reference_sources):
norm_source = normalize_text(source)
# Check for exact substring matches of significant length
min_match_length = 30 # Characters
for start in range(len(norm_submission) - min_match_length + 1):
chunk = norm_submission[start:start + min_match_length]
if chunk in norm_source:
source_start = norm_source.find(chunk)
# Try to extend the match
match_length = min_match_length
while (start + match_length < len(norm_submission) and
source_start + match_length < len(norm_source) and
norm_submission[start + match_length] == norm_source[source_start + match_length]):
match_length += 1
matches.append({
"source_index": i,
"source_start": source_start,
"submission_start": start,
"length": match_length,
"match_text": submission[start:start + match_length]
})
# Calculate overall similarity
total_matched_chars = sum(match["length"] for match in matches)
similarity_score = min(total_matched_chars / len(submission) if submission else 0, 1.0)
return {
"similarity_score": round(similarity_score, 2),
"plagiarism_detected": similarity_score > 0.2,
"suspicious_threshold": 0.2,
"matches": matches,
"recommendation": "Review academic integrity guidelines" if similarity_score > 0.2 else "No issues detected",
"timestamp": datetime.now().isoformat()
}
|