File size: 4,339 Bytes
14940e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
Utility functions for multi-modal interactions including text processing,
voice recognition and handwriting recognition for the TutorX MCP server.
"""

from typing import Dict, Any, List, Optional
import base64
import json
from datetime import datetime


def process_text_query(query: str, context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
    """
    Process a text query from the student
    
    Args:
        query: The text query from the student
        context: Optional context about the student and current session
        
    Returns:
        Processed response
    """
    # In a real implementation, this would use NLP to understand the query
    # and generate an appropriate response
    
    # Simple keyword-based response for demonstration
    keywords = {
        "solve": {
            "type": "math_solution",
            "response": "To solve this equation, first isolate the variable by..."
        },
        "what is": {
            "type": "definition",
            "response": "This concept refers to..."
        },
        "how do i": {
            "type": "procedure",
            "response": "Follow these steps: 1)..."
        },
        "help": {
            "type": "assistance",
            "response": "I'm here to help! You can ask me questions about..."
        }
    }
    
    for key, value in keywords.items():
        if key in query.lower():
            return {
                "query": query,
                "response_type": value["type"],
                "response": value["response"],
                "confidence": 0.85,
                "timestamp": datetime.now().isoformat()
            }
    
    # Default response if no keywords match
    return {
        "query": query,
        "response_type": "general",
        "response": "That's an interesting question. Let me think about how to help you with that.",
        "confidence": 0.6,
        "timestamp": datetime.now().isoformat()
    }


def process_voice_input(audio_data_base64: str) -> Dict[str, Any]:
    """
    Process voice input from the student
    
    Args:
        audio_data_base64: Base64 encoded audio data
        
    Returns:
        Transcription and analysis
    """
    # In a real implementation, this would use ASR to transcribe the audio
    # and then process the transcribed text
    
    # For demonstration purposes, we'll simulate a transcription
    return {
        "transcription": "What is the quadratic formula?",
        "confidence": 0.92,
        "detected_emotions": {
            "confusion": 0.7,
            "interest": 0.9,
            "frustration": 0.2
        },
        "audio_quality": "good",
        "background_noise": "low",
        "timestamp": datetime.now().isoformat()
    }


def process_handwriting(image_data_base64: str) -> Dict[str, Any]:
    """
    Process handwritten input from the student
    
    Args:
        image_data_base64: Base64 encoded image data of handwriting
        
    Returns:
        Transcription and analysis
    """
    # In a real implementation, this would use OCR/handwriting recognition
    # to transcribe the handwritten text or equations
    
    # For demonstration purposes, we'll simulate a transcription
    return {
        "transcription": "x^2 + 5x + 6 = 0",
        "confidence": 0.85,
        "detected_content_type": "math_equation",
        "equation_type": "quadratic",
        "parsed_latex": "x^2 + 5x + 6 = 0",
        "timestamp": datetime.now().isoformat()
    }


def generate_speech_response(text: str, voice_params: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
    """
    Generate speech response from text
    
    Args:
        text: The text to convert to speech
        voice_params: Parameters for the voice (gender, age, accent, etc.)
        
    Returns:
        Speech data and metadata
    """
    # In a real implementation, this would use TTS to generate audio
    
    # For demonstration, we'll simulate audio generation metadata
    return {
        "text": text,
        "audio_format": "mp3",
        "audio_data_base64": "SIMULATED_BASE64_AUDIO_DATA",
        "voice_id": voice_params.get("voice_id", "default"),
        "duration_seconds": len(text) / 15,  # Rough estimate of speech duration
        "sample_rate": 24000,
        "timestamp": datetime.now().isoformat()
    }