File size: 36,112 Bytes
8372659
d4df2a7
8372659
 
15710ed
8372659
def69a7
9a6c98c
ff522ab
d4df2a7
9a6c98c
 
 
35bb43f
9a6c98c
 
 
8372659
9a6c98c
1af10cc
9a6c98c
8372659
d4df2a7
d6a63a3
d4df2a7
8372659
15710ed
35bb43f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66fc7d8
 
 
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66fc7d8
 
 
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66fc7d8
35bb43f
8372659
9a6c98c
bbd9cd6
 
 
 
9a6c98c
 
 
bbd9cd6
 
 
9a6c98c
 
bbd9cd6
1af10cc
 
 
9a6c98c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af10cc
 
9a6c98c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af10cc
9a6c98c
 
 
 
 
 
 
 
1af10cc
9a6c98c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af10cc
9a6c98c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd9cd6
 
9a6c98c
 
bbd9cd6
9a6c98c
 
 
 
 
 
 
 
 
 
 
 
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66fc7d8
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efc786d
ff522ab
 
 
 
 
 
efc786d
 
 
ff522ab
efc786d
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8372659
 
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f8bb1
ff522ab
 
 
 
 
 
b0f8bb1
ff522ab
 
b0f8bb1
ff522ab
 
 
 
 
bbd9cd6
9a6c98c
bbd9cd6
9a6c98c
 
 
 
 
 
 
ff522ab
 
bbd9cd6
9a6c98c
 
 
 
 
ff522ab
9a6c98c
 
 
 
 
 
 
 
ff522ab
 
bbd9cd6
ff522ab
 
 
 
 
 
 
9a6c98c
 
 
 
 
bbd9cd6
ff522ab
9a6c98c
 
 
 
 
ff522ab
9a6c98c
 
 
 
 
 
 
 
 
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af10cc
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8372659
ff522ab
b0f8bb1
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8372659
ff522ab
b0f8bb1
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8372659
ff522ab
b0f8bb1
ff522ab
bbd9cd6
ff522ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8372659
ff522ab
 
8372659
 
ff522ab
 
 
 
8372659
ff522ab
 
b0f8bb1
 
 
ff522ab
8372659
b0f8bb1
 
 
 
8372659
ff522ab
8372659
def69a7
8372659
ff522ab
d4df2a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
"""
Gradio web interface for the TutorX MCP Server with SSE support
"""

import os
import json
import asyncio
import gradio as gr
from typing import Optional, Dict,  List, Tuple
import requests
import networkx as nx
import matplotlib
import matplotlib.pyplot as plt
from datetime import datetime

# Set matplotlib to use 'Agg' backend to avoid GUI issues in Gradio
matplotlib.use('Agg')

# Import MCP client components
from mcp.client.sse import sse_client
from mcp.client.session import ClientSession

# Server configuration
SERVER_URL = "https://tutorx-mcp.onrender.com/sse"  # Ensure this is the SSE endpoint

# Utility functions

async def ping_mcp_server() -> None:
    """Send a ping request to the MCP server"""
    try:
        async with sse_client(SERVER_URL) as (sse, write):
            async with ClientSession(sse, write) as session:
                await session.initialize()
                print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Successfully pinged MCP server")
    except Exception as e:
        print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Error pinging MCP server: {str(e)}")

async def start_periodic_ping(interval_minutes: int = 10) -> None:
    """Start a background task to ping the MCP server periodically"""
    while True:
        await ping_mcp_server()
        await asyncio.sleep(interval_minutes * 60)

# Store the ping task reference
ping_task = None

async def check_plagiarism_async(submission, reference):
    """Check submission for plagiarism against reference sources"""
    async with sse_client(SERVER_URL) as (sse, write):
        async with ClientSession(sse, write) as session:
            await session.initialize()
            response = await session.call_tool(
                "check_submission_originality", 
                {
                    "submission": submission, 
                    "reference_sources": [reference] if isinstance(reference, str) else reference
                }
            )
            if hasattr(response, 'content') and isinstance(response.content, list):
                for item in response.content:
                    if hasattr(item, 'text') and item.text:
                        try:
                            data = json.loads(item.text)
                            return data
                        except Exception:
                            return {"raw_pretty": json.dumps(item.text, indent=2)}
            if isinstance(response, dict):
                return response
            if isinstance(response, str):
                try:
                    return json.loads(response)
                except Exception:
                    return {"raw_pretty": json.dumps(response, indent=2)}
            return {"raw_pretty": json.dumps(str(response), indent=2)}

def start_ping_task():
    """Start the ping task when the Gradio app launches"""
    global ping_task
    try:
        if ping_task is None:
            try:
                loop = asyncio.get_event_loop()
            except RuntimeError:
                loop = asyncio.new_event_loop()
                asyncio.set_event_loop(loop)
                
            if loop.is_running():
                ping_task = loop.create_task(start_periodic_ping())
                print("Started periodic ping task")
            else:
                # If loop is not running, we'll start it in a separate thread
                import threading
                def start_loop():
                    asyncio.set_event_loop(loop)
                    loop.run_forever()
                
                thread = threading.Thread(target=start_loop, daemon=True)
                thread.start()
                ping_task = asyncio.run_coroutine_threadsafe(start_periodic_ping(), loop)
                print("Started periodic ping task in new thread")
    except Exception as e:
        print(f"Error starting ping task: {e}")

# Only run this code when the module is executed directly
if __name__ == "__main__" and not hasattr(gr, 'blocks'):
    # This ensures we don't start the task when imported by Gradio
    start_ping_task()



async def load_concept_graph(concept_id: str = None) -> Tuple[Optional[plt.Figure], Dict, List]:
    """
    Load and visualize the concept graph for a given concept ID.
    If no concept_id is provided, returns the first available concept.
    
    Args:
        concept_id: The ID or name of the concept to load
        
    Returns:
        tuple: (figure, concept_details, related_concepts) or (None, error_dict, [])
    """
    print(f"[DEBUG] Loading concept graph for concept_id: {concept_id}")
    
    try:
        async with sse_client(SERVER_URL) as (sse, write):
            async with ClientSession(sse, write) as session:
                await session.initialize()
                
                # Call the concept graph tool
                result = await session.call_tool(
                    "get_concept_graph_tool", 
                    {"concept_id": concept_id} if concept_id else {}
                )
                print(f"[DEBUG] Raw tool response type: {type(result)}")
                
                # Extract content if it's a TextContent object
                if hasattr(result, 'content') and isinstance(result.content, list):
                    for item in result.content:
                        if hasattr(item, 'text') and item.text:
                            try:
                                result = json.loads(item.text)
                                print("[DEBUG] Successfully parsed JSON from TextContent")
                                break
                            except json.JSONDecodeError as e:
                                print(f"[ERROR] Failed to parse JSON from TextContent: {e}")
                
                # If result is a string, try to parse it as JSON
                if isinstance(result, str):
                    try:
                        result = json.loads(result)
                    except json.JSONDecodeError as e:
                        print(f"[ERROR] Failed to parse result as JSON: {e}")
                        return None, {"error": f"Failed to parse concept graph data: {str(e)}"}, []
                
                # Debug print for the raw backend response
                print(f"[DEBUG] Raw backend response: {result}")
                
                # Handle backend error response
                if isinstance(result, dict) and "error" in result:
                    error_msg = f"Backend error: {result['error']}"
                    print(f"[ERROR] {error_msg}")
                    return None, {"error": error_msg}, []
                
                concept = None
                
                # Handle different response formats
                if isinstance(result, dict):
                    # Case 1: Direct concept object
                    if "id" in result or "name" in result:
                        concept = result
                    # Case 2: Response with 'concepts' list
                    elif "concepts" in result:
                        if result["concepts"]:
                            concept = result["concepts"][0] if not concept_id else None
                            # Try to find the requested concept by ID or name
                            if concept_id:
                                for c in result["concepts"]:
                                    if (isinstance(c, dict) and 
                                        (c.get("id") == concept_id or 
                                         str(c.get("name", "")).lower() == concept_id.lower())):
                                        concept = c
                                        break
                                if not concept:
                                    error_msg = f"Concept '{concept_id}' not found in the concept graph"
                                    print(f"[ERROR] {error_msg}")
                                    return None, {"error": error_msg}, []
                        else:
                            error_msg = "No concepts found in the concept graph"
                            print(f"[ERROR] {error_msg}")
                            return None, {"error": error_msg}, []
                
                # If we still don't have a valid concept
                if not concept or not isinstance(concept, dict):
                    error_msg = "Could not extract valid concept data from response"
                    print(f"[ERROR] {error_msg}")
                    return None, {"error": error_msg}, []
                
                # Ensure required fields exist with defaults
                concept.setdefault('related_concepts', [])
                concept.setdefault('prerequisites', [])
                
                print(f"[DEBUG] Final concept data: {concept}")
                
                # Create a new directed graph
                G = nx.DiGraph()
                
                # Add the main concept node
                main_node_id = concept["id"]
                G.add_node(main_node_id, 
                          label=concept["name"], 
                          type="main",
                          description=concept["description"])
                
                # Add related concepts and edges
                all_related = []
                
                # Process related concepts
                for rel in concept.get('related_concepts', []):
                    if isinstance(rel, dict):
                        rel_id = rel.get('id', str(hash(str(rel.get('name', '')))))
                        rel_name = rel.get('name', 'Unnamed')
                        rel_desc = rel.get('description', 'Related concept')
                        
                        G.add_node(rel_id, 
                                 label=rel_name, 
                                 type="related",
                                 description=rel_desc)
                        G.add_edge(main_node_id, rel_id, type="related_to")
                        
                        all_related.append(["Related", rel_name, rel_desc])
                
                # Process prerequisites
                for prereq in concept.get('prerequisites', []):
                    if isinstance(prereq, dict):
                        prereq_id = prereq.get('id', str(hash(str(prereq.get('name', '')))))
                        prereq_name = f"[Prerequisite] {prereq.get('name', 'Unnamed')}"
                        prereq_desc = prereq.get('description', 'Prerequisite concept')
                        
                        G.add_node(prereq_id,
                                 label=prereq_name,
                                 type="prerequisite",
                                 description=prereq_desc)
                        G.add_edge(prereq_id, main_node_id, type="prerequisite_for")
                        
                        all_related.append(["Prerequisite", prereq_name, prereq_desc])
                
                # Create the plot
                plt.figure(figsize=(14, 10))
                
                # Calculate node positions using spring layout
                pos = nx.spring_layout(G, k=0.5, iterations=50, seed=42)
                
                # Define node colors and sizes based on type
                node_colors = []
                node_sizes = []
                for node, data in G.nodes(data=True):
                    if data.get('type') == 'main':
                        node_colors.append('#4e79a7')  # Blue for main concept
                        node_sizes.append(1500)
                    elif data.get('type') == 'prerequisite':
                        node_colors.append('#59a14f')  # Green for prerequisites
                        node_sizes.append(1000)
                    else:  # related
                        node_colors.append('#e15759')  # Red for related concepts
                        node_sizes.append(1000)
                
                # Draw nodes
                nx.draw_networkx_nodes(
                    G, pos,
                    node_color=node_colors,
                    node_size=node_sizes,
                    alpha=0.9,
                    edgecolors='white',
                    linewidths=2
                )
                
                # Draw edges with different styles for different relationships
                related_edges = [(u, v) for u, v, d in G.edges(data=True) 
                              if d.get('type') == 'related_to']
                prereq_edges = [(u, v) for u, v, d in G.edges(data=True) 
                             if d.get('type') == 'prerequisite_for']
                
                # Draw related edges
                nx.draw_networkx_edges(
                    G, pos,
                    edgelist=related_edges,
                    width=1.5,
                    alpha=0.7,
                    edge_color="#e15759",
                    style="solid",
                    arrowsize=15,
                    arrowstyle='-|>',
                    connectionstyle='arc3,rad=0.1'
                )
                
                # Draw prerequisite edges
                nx.draw_networkx_edges(
                    G, pos,
                    edgelist=prereq_edges,
                    width=1.5,
                    alpha=0.7,
                    edge_color="#59a14f",
                    style="dashed",
                    arrowsize=15,
                    arrowstyle='-|>',
                    connectionstyle='arc3,rad=0.1'
                )
                
                # Draw node labels with white background for better readability
                node_labels = {node: data["label"] 
                             for node, data in G.nodes(data=True) 
                             if "label" in data}
                
                nx.draw_networkx_labels(
                    G, pos,
                    labels=node_labels,
                    font_size=10,
                    font_weight="bold",
                    font_family="sans-serif",
                    bbox=dict(
                        facecolor="white",
                        edgecolor='none',
                        alpha=0.8,
                        boxstyle='round,pad=0.3',
                        linewidth=0
                    )
                )
                
                # Add a legend
                import matplotlib.patches as mpatches
                legend_elements = [
                    mpatches.Patch(facecolor='#4e79a7', label='Main Concept', alpha=0.9),
                    mpatches.Patch(facecolor='#e15759', label='Related Concept', alpha=0.9),
                    mpatches.Patch(facecolor='#59a14f', label='Prerequisite', alpha=0.9)
                ]
                
                plt.legend(
                    handles=legend_elements, 
                    loc='upper right',
                    bbox_to_anchor=(1.0, 1.0),
                    frameon=True,
                    framealpha=0.9
                )
                
                plt.axis('off')
                plt.tight_layout()
                
                # Create concept details dictionary
                concept_details = {
                    'name': concept['name'],
                    'id': concept['id'],
                    'description': concept['description']
                }
                
                # Return the figure, concept details, and related concepts
                return plt.gcf(), concept_details, all_related
                
    except Exception as e:
        import traceback
        error_msg = f"Error in load_concept_graph: {str(e)}\n\n{traceback.format_exc()}"
        print(f"[ERROR] {error_msg}")
        return None, {"error": f"Failed to load concept graph: {str(e)}"}, []

def sync_load_concept_graph(concept_id):
    """Synchronous wrapper for async load_concept_graph, always returns 3 outputs."""
    try:
        result = asyncio.run(load_concept_graph(concept_id))
        if result and len(result) == 3:
            return result
        else:
            return None, {"error": "Unexpected result format"}, []
    except Exception as e:
        return None, {"error": str(e)}, []

# Define async functions outside the interface
async def on_generate_quiz(concept, difficulty):
    try:
        if not concept or not str(concept).strip():
            return {"error": "Please enter a concept"}
        try:
            difficulty = int(float(difficulty))
            difficulty = max(1, min(5, difficulty))
        except (ValueError, TypeError):
            difficulty = 3
        if difficulty <= 2:
            difficulty_str = "easy"
        elif difficulty == 3:
            difficulty_str = "medium"
        else:
            difficulty_str = "hard"
        async with sse_client(SERVER_URL) as (sse, write):
            async with ClientSession(sse, write) as session:
                await session.initialize()
                response = await session.call_tool("generate_quiz_tool", {"concept": concept.strip(), "difficulty": difficulty_str})
                if hasattr(response, 'content') and isinstance(response.content, list):
                    for item in response.content:
                        if hasattr(item, 'text') and item.text:
                            try:
                                quiz_data = json.loads(item.text)
                                return quiz_data
                            except Exception:
                                return {"raw_pretty": json.dumps(item.text, indent=2)}
                if isinstance(response, dict):
                    return response
                if isinstance(response, str):
                    try:
                        return json.loads(response)
                    except Exception:
                        return {"raw_pretty": json.dumps(response, indent=2)}
                return {"raw_pretty": json.dumps(str(response), indent=2)}
    except Exception as e:
        import traceback
        return {
            "error": f"Error generating quiz: {str(e)}\n\n{traceback.format_exc()}"
        }

async def generate_lesson_async(topic, grade, duration):
    async with sse_client(SERVER_URL) as (sse, write):
        async with ClientSession(sse, write) as session:
            await session.initialize()
            response = await session.call_tool("generate_lesson_tool", {"topic": topic, "grade_level": grade, "duration_minutes": duration})
            if hasattr(response, 'content') and isinstance(response.content, list):
                for item in response.content:
                    if hasattr(item, 'text') and item.text:
                        try:
                            lesson_data = json.loads(item.text)
                            return lesson_data
                        except Exception:
                            return {"raw_pretty": json.dumps(item.text, indent=2)}
            if isinstance(response, dict):
                return response
            if isinstance(response, str):
                try:
                    return json.loads(response)
                except Exception:
                    return {"raw_pretty": json.dumps(response, indent=2)}
            return {"raw_pretty": json.dumps(str(response), indent=2)}

async def on_generate_learning_path(student_id, concept_ids, student_level):
    try:
        async with sse_client(SERVER_URL) as (sse, write):
            async with ClientSession(sse, write) as session:
                await session.initialize()
                result = await session.call_tool("get_learning_path", {
                    "student_id": student_id,
                    "concept_ids": [c.strip() for c in concept_ids.split(",") if c.strip()],
                    "student_level": student_level
                })
                if hasattr(result, 'content') and isinstance(result.content, list):
                    for item in response.content:
                        if hasattr(item, 'text') and item.text:
                            try:
                                lp_data = json.loads(item.text)
                                return lp_data
                            except Exception:
                                return {"raw_pretty": json.dumps(item.text, indent=2)}
                if isinstance(response, dict):
                    return response
                if isinstance(response, str):
                    try:
                        return json.loads(response)
                    except Exception:
                        return {"raw_pretty": json.dumps(result, indent=2)}
                return {"raw_pretty": json.dumps(str(result), indent=2)}
    except Exception as e:
        return {"error": str(e)}

async def text_interaction_async(text, student_id):
    async with sse_client(SERVER_URL) as (sse, write):
        async with ClientSession(sse, write) as session:
            await session.initialize()
            response = await session.call_tool("text_interaction", {"query": text, "student_id": student_id})
            if hasattr(response, 'content') and isinstance(response.content, list):
                for item in response.content:
                    if hasattr(item, 'text') and item.text:
                        try:
                            data = json.loads(item.text)
                            return data
                        except Exception:
                            return {"raw_pretty": json.dumps(item.text, indent=2)}
            if isinstance(response, dict):
                return response
            if isinstance(response, str):
                try:
                    return json.loads(response)
                except Exception:
                    return {"raw_pretty": json.dumps(response, indent=2)}
            return {"raw_pretty": json.dumps(str(response), indent=2)}

async def upload_file_to_storage(file_path):
    """Helper function to upload file to storage API"""
    try:
        url = "https://storage-bucket-api.vercel.app/upload"
        with open(file_path, 'rb') as f:
            files = {'file': (os.path.basename(file_path), f)}
            response = requests.post(url, files=files)
            response.raise_for_status()
            return response.json()
    except Exception as e:
        return {"error": f"Error uploading file to storage: {str(e)}", "success": False}

async def document_ocr_async(file):
    if not file:
        return {"error": "No file provided", "success": False}
    try:
        if isinstance(file, dict):
            file_path = file.get("path", "")
        else:
            file_path = file
        if not file_path or not os.path.exists(file_path):
            return {"error": "File not found", "success": False}
        upload_result = await upload_file_to_storage(file_path)
        if not upload_result.get("success"):
            return upload_result
        storage_url = upload_result.get("storage_url")
        if not storage_url:
            return {"error": "No storage URL returned from upload", "success": False}
        async with sse_client(SERVER_URL) as (sse, write):
            async with ClientSession(sse, write) as session:
                await session.initialize()
                response = await session.call_tool("mistral_document_ocr", {"document_url": storage_url})
                if hasattr(response, 'content') and isinstance(response.content, list):
                    for item in response.content:
                        if hasattr(item, 'text') and item.text:
                            try:
                                data = json.loads(item.text)
                                return data
                            except Exception:
                                return {"raw_pretty": json.dumps(item.text, indent=2)}
                if isinstance(response, dict):
                    return response
                if isinstance(response, str):
                    try:
                        return json.loads(response)
                    except Exception:
                        return {"raw_pretty": json.dumps(response, indent=2)}
                return {"raw_pretty": json.dumps(str(response), indent=2)}
    except Exception as e:
        return {"error": f"Error processing document: {str(e)}", "success": False}

# Create Gradio interface
def create_gradio_interface():
    # Set a default student ID for the demo
    student_id = "student_12345"

    with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
        # Start the ping task when the app loads
        demo.load(
            fn=start_ping_task,
            inputs=None,
            outputs=None,
            queue=False
        )

        # Header Section
        with gr.Row():
            with gr.Column():
                gr.Markdown("""
                #  TutorX Educational AI Platform
                *An adaptive, multi-modal, and collaborative AI tutoring platform built with MCP.*
                """)

        # Add some spacing
        gr.Markdown("---")

# Main Tabs with scrollable container
        with gr.Tabs() as tabs:
            # Tab 1: Core Features
            with gr.Tab("1 Core Features", elem_id="core_features_tab"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("## 🔍 Concept Graph Visualization")
                        gr.Markdown("Explore relationships between educational concepts through an interactive graph visualization.")

                with gr.Row():
                    # Left panel for controls and details
                    with gr.Column(scale=3):
                        with gr.Row():
                            concept_input = gr.Textbox(
                                label="Enter Concept",
                                placeholder="e.g., machine_learning, calculus, quantum_physics",
                                value="machine_learning",
                                scale=4
                            )
                        load_btn = gr.Button("Load Graph", variant="primary", scale=1)

                        # Concept details
                        with gr.Accordion("Concept Details", open=True):
                            concept_details = gr.JSON(
                                label=None,
                                show_label=False
                            )

                        # Related concepts and prerequisites
                        with gr.Accordion("Related Concepts & Prerequisites", open=True):
                            related_concepts = gr.Dataframe(
                                headers=["Type", "Name", "Description"],
                                datatype=["str", "str", "str"],
                                interactive=False,
                                wrap=True,
                            )

                    # Graph visualization with a card-like container
                    with gr.Column(scale=7):
                        with gr.Group():
                            graph_plot = gr.Plot(
                                label="Concept Graph",
                                show_label=True,
                                container=True
                            )

                # Event handlers
                load_btn.click(
                    fn=sync_load_concept_graph,
                    inputs=[concept_input],
                    outputs=[graph_plot, concept_details, related_concepts]
                )

                # Load initial graph
                demo.load(
                    fn=lambda: sync_load_concept_graph("machine_learning"),
                    outputs=[graph_plot, concept_details, related_concepts]
                )

                # Help text and examples
                with gr.Row():
                    gr.Markdown("""
                    **Examples to try:**
                    - `machine_learning`
                    - `neural_networks`
                    - `calculus`
                    - `quantum_physics`
                    """)

                # Add some spacing between sections
                gr.Markdown("---")

                # Assessment Generation Section
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("## 📝 Assessment Generation")
                        gr.Markdown("Create customized quizzes and assessments based on educational concepts.")
                gr.Markdown("---")

                with gr.Row():
                    with gr.Column():
                        quiz_concept_input = gr.Textbox(
                            label="Enter Concept",
                            placeholder="e.g., Linear Equations, Photosynthesis, World War II",
                            lines=2
                        )
                        with gr.Row():
                            diff_input = gr.Slider(
                                minimum=1,
                                maximum=5,
                                value=2,
                                step=1,
                                label="Difficulty Level",
                                interactive=True
                            )
                            gen_quiz_btn = gr.Button("Generate Quiz", variant="primary")

                    with gr.Column():
                        with gr.Group():
                            quiz_output = gr.JSON(label="Generated Quiz", show_label=True, container=True)

                # Connect quiz generation button
                gen_quiz_btn.click(
                    fn=on_generate_quiz,
                    inputs=[quiz_concept_input, diff_input],
                    outputs=[quiz_output],
                    api_name="generate_quiz"
                )
            
            # Tab 2: Advanced Features
            with gr.Tab("2 Advanced Features", elem_id="advanced_features_tab"):
                gr.Markdown("## Lesson Generation")

                with gr.Row():
                    with gr.Column():
                        topic_input = gr.Textbox(label="Lesson Topic", value="Solving Quadratic Equations")
                        grade_input = gr.Slider(minimum=1, maximum=12, value=9, step=1, label="Grade Level")
                        duration_input = gr.Slider(minimum=15, maximum=90, value=45, step=5, label="Duration (minutes)")
                        gen_lesson_btn = gr.Button("Generate Lesson Plan")

                    with gr.Column():
                        lesson_output = gr.JSON(label="Lesson Plan")

                # Connect lesson generation button
                gen_lesson_btn.click(
                    fn=generate_lesson_async,
                    inputs=[topic_input, grade_input, duration_input],
                    outputs=[lesson_output]
                )

                gr.Markdown("## Learning Path Generation")
                with gr.Row():
                    with gr.Column():
                        lp_student_id = gr.Textbox(label="Student ID", value=student_id)
                        lp_concept_ids = gr.Textbox(label="Concept IDs (comma-separated)", placeholder="e.g., python,functions,oop")
                        lp_student_level = gr.Dropdown(choices=["beginner", "intermediate", "advanced"], value="beginner", label="Student Level")
                        lp_btn = gr.Button("Generate Learning Path")
                    with gr.Column():
                        lp_output = gr.JSON(label="Learning Path")

                # Connect learning path generation button
                lp_btn.click(
                    fn=on_generate_learning_path,
                    inputs=[lp_student_id, lp_concept_ids, lp_student_level],
                    outputs=[lp_output]
                )
        
            # Tab 3: Interactive Tools
            with gr.Tab("3 Interactive Tools", elem_id="interactive_tools_tab"):
                gr.Markdown("## Text Interaction")

                with gr.Row():
                    with gr.Column():
                        text_input = gr.Textbox(label="Ask a Question", value="How do I solve a quadratic equation?")
                        text_btn = gr.Button("Submit")

                    with gr.Column():
                        text_output = gr.JSON(label="Response")

                # Connect text interaction button
                text_btn.click(
                    fn=lambda text: text_interaction_async(text, student_id),
                    inputs=[text_input],
                    outputs=[text_output]
                )

                # Document OCR (PDF, images, etc.)
                gr.Markdown("## Document OCR & LLM Analysis")
                with gr.Row():
                    with gr.Column():
                        doc_input = gr.File(label="Upload PDF or Document", file_types=[".pdf", ".jpg", ".jpeg", ".png"])
                        doc_ocr_btn = gr.Button("Extract Text & Analyze")
                    with gr.Column():
                        doc_output = gr.JSON(label="Document OCR & LLM Analysis")

                # Connect document OCR button
                doc_ocr_btn.click(
                    fn=document_ocr_async,
                    inputs=[doc_input],
                    outputs=[doc_output]
                )
            
            # Tab 4: Data Analytics
            with gr.Tab("4 Data Analytics", elem_id="data_analytics_tab"):
                gr.Markdown("## Plagiarism Detection")
                
                with gr.Row():
                    with gr.Column():
                        submission_input = gr.Textbox(
                            label="Student Submission",
                            lines=5,
                            value="The quadratic formula states that if ax² + bx + c = 0, then x = (-b ± √(b² - 4ac)) / 2a."
                        )
                        reference_input = gr.Textbox(
                            label="Reference Source",
                            lines=5,
                            value="According to the quadratic formula, for any equation in the form ax² + bx + c = 0, the solutions are x = (-b ± √(b² - 4ac)) / 2a."
                        )
                        plagiarism_btn = gr.Button("Check Originality")
                    
                    with gr.Column():
                        with gr.Group():
                            gr.Markdown("### 🔍 Originality Report")
                            plagiarism_output = gr.JSON(label="", show_label=False, container=False)
                
                # Connect the button to the plagiarism check function
                plagiarism_btn.click(
                    fn=check_plagiarism_async,
                    inputs=[submission_input, reference_input],
                    outputs=[plagiarism_output]
                )
            
            # Footer
            gr.Markdown("---")
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### About TutorX")
                    gr.Markdown("""
                    TutorX is an AI-powered educational platform designed to enhance learning through interactive tools and personalized content.
                    """)
                with gr.Column():
                    gr.Markdown("### Quick Links")
                    gr.Markdown("""
                    - [Documentation](https://github.com/Meetpatel006/TutorX/blob/main/README.md)
                    - [GitHub Repository](https://github.com/Meetpatel006/TutorX)
                    - [Report an Issue](https://github.com/Meetpatel006/TutorX/issues)
                    """)
            
                    # Add some spacing at the bottom
                    gr.Markdown("\n\n")
                gr.Markdown("---")
                gr.Markdown("© 2025 TutorX - All rights reserved")
        
        return demo

# Launch the interface
if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue().launch(server_name="0.0.0.0", server_port=7860)