Spaces:
Sleeping
Sleeping
File size: 225,919 Bytes
c466cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 |
# Example Clients
Source: https://modelcontextprotocol.io/clients
A list of applications that support MCP integrations
This page provides an overview of applications that support the Model Context Protocol (MCP). Each client may support different MCP features, allowing for varying levels of integration with MCP servers.
## Feature support matrix
| Client | [Resources] | [Prompts] | [Tools] | [Sampling] | Roots | Notes |
| ------------------------------------ | ----------- | --------- | ------- | ---------- | ----- | ------------------------------------------------------------------ |
| [Claude Desktop App][Claude] | ✅ | ✅ | ✅ | ❌ | ❌ | Full support for all MCP features |
| [5ire][5ire] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. |
| [BeeAI Framework][BeeAI Framework] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools in agentic workflows. |
| [Cline][Cline] | ✅ | ❌ | ✅ | ❌ | ❌ | Supports tools and resources. |
| [Continue][Continue] | ✅ | ✅ | ✅ | ❌ | ❌ | Full support for all MCP features |
| [Cursor][Cursor] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. |
| [Emacs Mcp][Mcp.el] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools in Emacs. |
| [Firebase Genkit][Genkit] | ⚠️ | ✅ | ✅ | ❌ | ❌ | Supports resource list and lookup through tools. |
| [GenAIScript][GenAIScript] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. |
| [Goose][Goose] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. |
| [LibreChat][LibreChat] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools for Agents |
| [mcp-agent][mcp-agent] | ❌ | ❌ | ✅ | ⚠️ | ❌ | Supports tools, server connection management, and agent workflows. |
| [oterm][oterm] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools. |
| [Roo Code][Roo Code] | ✅ | ❌ | ✅ | ❌ | ❌ | Supports tools and resources. |
| [Sourcegraph Cody][Cody] | ✅ | ❌ | ❌ | ❌ | ❌ | Supports resources through OpenCTX |
| [Superinterface][Superinterface] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools |
| [TheiaAI/TheiaIDE][TheiaAI/TheiaIDE] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools for Agents in Theia AI and the AI-powered Theia IDE |
| [Windsurf Editor][Windsurf] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools with AI Flow for collaborative development. |
| [Zed][Zed] | ❌ | ✅ | ❌ | ❌ | ❌ | Prompts appear as slash commands |
| [SpinAI][SpinAI] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools for Typescript AI Agents |
| [OpenSumi][OpenSumi] | ❌ | ❌ | ✅ | ❌ | ❌ | Supports tools in OpenSumi |
| [Daydreams Agents][Daydreams] | ✅ | ✅ | ✅ | ❌ | ❌ | Support for drop in Servers to Daydreams agents |
[Claude]: https://claude.ai/download
[Cursor]: https://cursor.com
[Zed]: https://zed.dev
[Cody]: https://sourcegraph.com/cody
[Genkit]: https://github.com/firebase/genkit
[Continue]: https://github.com/continuedev/continue
[GenAIScript]: https://microsoft.github.io/genaiscript/reference/scripts/mcp-tools/
[Cline]: https://github.com/cline/cline
[LibreChat]: https://github.com/danny-avila/LibreChat
[TheiaAI/TheiaIDE]: https://eclipsesource.com/blogs/2024/12/19/theia-ide-and-theia-ai-support-mcp/
[Superinterface]: https://superinterface.ai
[5ire]: https://github.com/nanbingxyz/5ire
[BeeAI Framework]: https://i-am-bee.github.io/beeai-framework
[mcp-agent]: https://github.com/lastmile-ai/mcp-agent
[Mcp.el]: https://github.com/lizqwerscott/mcp.el
[Roo Code]: https://roocode.com
[Goose]: https://block.github.io/goose/docs/goose-architecture/#interoperability-with-extensions
[Windsurf]: https://codeium.com/windsurf
[Daydreams]: https://github.com/daydreamsai/daydreams
[SpinAI]: https://spinai.dev
[OpenSumi]: https://github.com/opensumi/core
[oterm]: https://github.com/ggozad/oterm
[Resources]: https://modelcontextprotocol.io/docs/concepts/resources
[Prompts]: https://modelcontextprotocol.io/docs/concepts/prompts
[Tools]: https://modelcontextprotocol.io/docs/concepts/tools
[Sampling]: https://modelcontextprotocol.io/docs/concepts/sampling
## Client details
### Claude Desktop App
The Claude desktop application provides comprehensive support for MCP, enabling deep integration with local tools and data sources.
**Key features:**
* Full support for resources, allowing attachment of local files and data
* Support for prompt templates
* Tool integration for executing commands and scripts
* Local server connections for enhanced privacy and security
> ⓘ Note: The Claude.ai web application does not currently support MCP. MCP features are only available in the desktop application.
### 5ire
[5ire](https://github.com/nanbingxyz/5ire) is an open source cross-platform desktop AI assistant that supports tools through MCP servers.
**Key features:**
* Built-in MCP servers can be quickly enabled and disabled.
* Users can add more servers by modifying the configuration file.
* It is open-source and user-friendly, suitable for beginners.
* Future support for MCP will be continuously improved.
### BeeAI Framework
[BeeAI Framework](https://i-am-bee.github.io/beeai-framework) is an open-source framework for building, deploying, and serving powerful agentic workflows at scale. The framework includes the **MCP Tool**, a native feature that simplifies the integration of MCP servers into agentic workflows.
**Key features:**
* Seamlessly incorporate MCP tools into agentic workflows.
* Quickly instantiate framework-native tools from connected MCP client(s).
* Planned future support for agentic MCP capabilities.
**Learn more:**
* [Example of using MCP tools in agentic workflow](https://i-am-bee.github.io/beeai-framework/#/typescript/tools?id=using-the-mcptool-class)
### Cline
[Cline](https://github.com/cline/cline) is an autonomous coding agent in VS Code that edits files, runs commands, uses a browser, and more–with your permission at each step.
**Key features:**
* Create and add tools through natural language (e.g. "add a tool that searches the web")
* Share custom MCP servers Cline creates with others via the `~/Documents/Cline/MCP` directory
* Displays configured MCP servers along with their tools, resources, and any error logs
### Continue
[Continue](https://github.com/continuedev/continue) is an open-source AI code assistant, with built-in support for all MCP features.
**Key features**
* Type "@" to mention MCP resources
* Prompt templates surface as slash commands
* Use both built-in and MCP tools directly in chat
* Supports VS Code and JetBrains IDEs, with any LLM
### Cursor
[Cursor](https://docs.cursor.com/advanced/model-context-protocol) is an AI code editor.
**Key Features**:
* Support for MCP tools in Cursor Composer
* Support for both STDIO and SSE
### Emacs Mcp
[Emacs Mcp](https://github.com/lizqwerscott/mcp.el) is an Emacs client designed to interface with MCP servers, enabling seamless connections and interactions. It provides MCP tool invocation support for AI plugins like [gptel](https://github.com/karthink/gptel) and [llm](https://github.com/ahyatt/llm), adhering to Emacs' standard tool invocation format. This integration enhances the functionality of AI tools within the Emacs ecosystem.
**Key features:**
* Provides MCP tool support for Emacs.
### Firebase Genkit
[Genkit](https://github.com/firebase/genkit) is Firebase's SDK for building and integrating GenAI features into applications. The [genkitx-mcp](https://github.com/firebase/genkit/tree/main/js/plugins/mcp) plugin enables consuming MCP servers as a client or creating MCP servers from Genkit tools and prompts.
**Key features:**
* Client support for tools and prompts (resources partially supported)
* Rich discovery with support in Genkit's Dev UI playground
* Seamless interoperability with Genkit's existing tools and prompts
* Works across a wide variety of GenAI models from top providers
### GenAIScript
Programmatically assemble prompts for LLMs using [GenAIScript](https://microsoft.github.io/genaiscript/) (in JavaScript). Orchestrate LLMs, tools, and data in JavaScript.
**Key features:**
* JavaScript toolbox to work with prompts
* Abstraction to make it easy and productive
* Seamless Visual Studio Code integration
### Goose
[Goose](https://github.com/block/goose) is an open source AI agent that supercharges your software development by automating coding tasks.
**Key features:**
* Expose MCP functionality to Goose through tools.
* MCPs can be installed directly via the [extensions directory](https://block.github.io/goose/v1/extensions/), CLI, or UI.
* Goose allows you to extend its functionality by [building your own MCP servers](https://block.github.io/goose/docs/tutorials/custom-extensions).
* Includes built-in tools for development, web scraping, automation, memory, and integrations with JetBrains and Google Drive.
### LibreChat
[LibreChat](https://github.com/danny-avila/LibreChat) is an open-source, customizable AI chat UI that supports multiple AI providers, now including MCP integration.
**Key features:**
* Extend current tool ecosystem, including [Code Interpreter](https://www.librechat.ai/docs/features/code_interpreter) and Image generation tools, through MCP servers
* Add tools to customizable [Agents](https://www.librechat.ai/docs/features/agents), using a variety of LLMs from top providers
* Open-source and self-hostable, with secure multi-user support
* Future roadmap includes expanded MCP feature support
### mcp-agent
[mcp-agent] is a simple, composable framework to build agents using Model Context Protocol.
**Key features:**
* Automatic connection management of MCP servers.
* Expose tools from multiple servers to an LLM.
* Implements every pattern defined in [Building Effective Agents](https://www.anthropic.com/research/building-effective-agents).
* Supports workflow pause/resume signals, such as waiting for human feedback.
### oterm
[oterm] is a terminal client for Ollama allowing users to create chats/agents.
**Key features:**
* Support for multiple fully customizable chat sessions with Ollama connected with tools.
* Support for MCP tools.
### Roo Code
[Roo Code](https://roocode.com) enables AI coding assistance via MCP.
**Key features:**
* Support for MCP tools and resources
* Integration with development workflows
* Extensible AI capabilities
### Sourcegraph Cody
[Cody](https://openctx.org/docs/providers/modelcontextprotocol) is Sourcegraph's AI coding assistant, which implements MCP through OpenCTX.
**Key features:**
* Support for MCP resources
* Integration with Sourcegraph's code intelligence
* Uses OpenCTX as an abstraction layer
* Future support planned for additional MCP features
### SpinAI
[SpinAI](https://spinai.dev) is an open-source TypeScript framework for building observable AI agents. The framework provides native MCP compatibility, allowing agents to seamlessly integrate with MCP servers and tools.
**Key features:**
* Built-in MCP compatibility for AI agents
* Open-source TypeScript framework
* Observable agent architecture
* Native support for MCP tools integration
### Superinterface
[Superinterface](https://superinterface.ai) is AI infrastructure and a developer platform to build in-app AI assistants with support for MCP, interactive components, client-side function calling and more.
**Key features:**
* Use tools from MCP servers in assistants embedded via React components or script tags
* SSE transport support
* Use any AI model from any AI provider (OpenAI, Anthropic, Ollama, others)
### TheiaAI/TheiaIDE
[Theia AI](https://eclipsesource.com/blogs/2024/10/07/introducing-theia-ai/) is a framework for building AI-enhanced tools and IDEs. The [AI-powered Theia IDE](https://eclipsesource.com/blogs/2024/10/08/introducting-ai-theia-ide/) is an open and flexible development environment built on Theia AI.
**Key features:**
* **Tool Integration**: Theia AI enables AI agents, including those in the Theia IDE, to utilize MCP servers for seamless tool interaction.
* **Customizable Prompts**: The Theia IDE allows users to define and adapt prompts, dynamically integrating MCP servers for tailored workflows.
* **Custom agents**: The Theia IDE supports creating custom agents that leverage MCP capabilities, enabling users to design dedicated workflows on the fly.
Theia AI and Theia IDE's MCP integration provide users with flexibility, making them powerful platforms for exploring and adapting MCP.
**Learn more:**
* [Theia IDE and Theia AI MCP Announcement](https://eclipsesource.com/blogs/2024/12/19/theia-ide-and-theia-ai-support-mcp/)
* [Download the AI-powered Theia IDE](https://theia-ide.org/)
### Windsurf Editor
[Windsurf Editor](https://codeium.com/windsurf) is an agentic IDE that combines AI assistance with developer workflows. It features an innovative AI Flow system that enables both collaborative and independent AI interactions while maintaining developer control.
**Key features:**
* Revolutionary AI Flow paradigm for human-AI collaboration
* Intelligent code generation and understanding
* Rich development tools with multi-model support
### Zed
[Zed](https://zed.dev/docs/assistant/model-context-protocol) is a high-performance code editor with built-in MCP support, focusing on prompt templates and tool integration.
**Key features:**
* Prompt templates surface as slash commands in the editor
* Tool integration for enhanced coding workflows
* Tight integration with editor features and workspace context
* Does not support MCP resources
### OpenSumi
[OpenSumi](https://github.com/opensumi/core) is a framework helps you quickly build AI Native IDE products.
**Key features:**
* Supports MCP tools in OpenSumi
* Supports built-in IDE MCP servers and custom MCP servers
### Daydreams
[Daydreams](https://github.com/daydreamsai/daydreams) is a generative agent framework for executing anything onchain
**Key features:**
* Supports MCP Servers in config
* Exposes MCP Client
## Adding MCP support to your application
If you've added MCP support to your application, we encourage you to submit a pull request to add it to this list. MCP integration can provide your users with powerful contextual AI capabilities and make your application part of the growing MCP ecosystem.
Benefits of adding MCP support:
* Enable users to bring their own context and tools
* Join a growing ecosystem of interoperable AI applications
* Provide users with flexible integration options
* Support local-first AI workflows
To get started with implementing MCP in your application, check out our [Python](https://github.com/modelcontextprotocol/python-sdk) or [TypeScript SDK Documentation](https://github.com/modelcontextprotocol/typescript-sdk)
## Updates and corrections
This list is maintained by the community. If you notice any inaccuracies or would like to update information about MCP support in your application, please submit a pull request or [open an issue in our documentation repository](https://github.com/modelcontextprotocol/docs/issues).
# Contributing
Source: https://modelcontextprotocol.io/development/contributing
How to participate in Model Context Protocol development
We welcome contributions from the community! Please review our [contributing guidelines](https://github.com/modelcontextprotocol/.github/blob/main/CONTRIBUTING.md) for details on how to submit changes.
All contributors must adhere to our [Code of Conduct](https://github.com/modelcontextprotocol/.github/blob/main/CODE_OF_CONDUCT.md).
For questions and discussions, please use [GitHub Discussions](https://github.com/orgs/modelcontextprotocol/discussions).
# Roadmap
Source: https://modelcontextprotocol.io/development/roadmap
Our plans for evolving Model Context Protocol (H1 2025)
The Model Context Protocol is rapidly evolving. This page outlines our current thinking on key priorities and future direction for **the first half of 2025**, though these may change significantly as the project develops.
<Note>The ideas presented here are not commitments—we may solve these challenges differently than described, or some may not materialize at all. This is also not an *exhaustive* list; we may incorporate work that isn't mentioned here.</Note>
We encourage community participation! Each section links to relevant discussions where you can learn more and contribute your thoughts.
## Remote MCP Support
Our top priority is improving [remote MCP connections](https://github.com/modelcontextprotocol/specification/discussions/112), allowing clients to securely connect to MCP servers over the internet. Key initiatives include:
* [**Authentication & Authorization**](https://github.com/modelcontextprotocol/specification/discussions/64): Adding standardized auth capabilities, particularly focused on OAuth 2.0 support.
* [**Service Discovery**](https://github.com/modelcontextprotocol/specification/discussions/69): Defining how clients can discover and connect to remote MCP servers.
* [**Stateless Operations**](https://github.com/modelcontextprotocol/specification/discussions/102): Thinking about whether MCP could encompass serverless environments too, where they will need to be mostly stateless.
## Reference Implementations
To help developers build with MCP, we want to offer documentation for:
* **Client Examples**: Comprehensive reference client implementation(s), demonstrating all protocol features
* **Protocol Drafting**: Streamlined process for proposing and incorporating new protocol features
## Distribution & Discovery
Looking ahead, we're exploring ways to make MCP servers more accessible. Some areas we may investigate include:
* **Package Management**: Standardized packaging format for MCP servers
* **Installation Tools**: Simplified server installation across MCP clients
* **Sandboxing**: Improved security through server isolation
* **Server Registry**: A common directory for discovering available MCP servers
## Agent Support
We're expanding MCP's capabilities for [complex agentic workflows](https://github.com/modelcontextprotocol/specification/discussions/111), particularly focusing on:
* [**Hierarchical Agent Systems**](https://github.com/modelcontextprotocol/specification/discussions/94): Improved support for trees of agents through namespacing and topology awareness.
* [**Interactive Workflows**](https://github.com/modelcontextprotocol/specification/issues/97): Better handling of user permissions and information requests across agent hierarchies, and ways to send output to users instead of models.
* [**Streaming Results**](https://github.com/modelcontextprotocol/specification/issues/117): Real-time updates from long-running agent operations.
## Broader Ecosystem
We're also invested in:
* **Community-Led Standards Development**: Fostering a collaborative ecosystem where all AI providers can help shape MCP as an open standard through equal participation and shared governance, ensuring it meets the needs of diverse AI applications and use cases.
* [**Additional Modalities**](https://github.com/modelcontextprotocol/specification/discussions/88): Expanding beyond text to support audio, video, and other formats.
* \[**Standardization**] Considering standardization through a standardization body.
## Get Involved
We welcome community participation in shaping MCP's future. Visit our [GitHub Discussions](https://github.com/orgs/modelcontextprotocol/discussions) to join the conversation and contribute your ideas.
# What's New
Source: https://modelcontextprotocol.io/development/updates
The latest updates and improvements to MCP
<Update label="2025-02-14" description="Java SDK released">
* We're excited to announce that the Java SDK developed by Spring AI at VMware Tanzu is now
the official [Java SDK](https://github.com/modelcontextprotocol/java-sdk) for MCP.
This joins our existing Kotlin SDK in our growing list of supported languages.
The Spring AI team will maintain the SDK as an integral part of the Model Context Protocol
organization. We're thrilled to welcome them to the MCP community!
</Update>
<Update label="2025-01-27" description="Python SDK 1.2.1">
* Version [1.2.1](https://github.com/modelcontextprotocol/python-sdk/releases/tag/v1.2.1) of the MCP Python SDK has been released,
delivering important stability improvements and bug fixes.
</Update>
<Update label="2025-01-18" description="SDK and Server Improvements">
* Simplified, express-like API in the [TypeScript SDK](https://github.com/modelcontextprotocol/typescript-sdk)
* Added 8 new clients to the [clients page](https://modelcontextprotocol.io/clients)
</Update>
<Update label="2025-01-03" description="SDK and Server Improvements">
* FastMCP API in the [Python SDK](https://github.com/modelcontextprotocol/python-sdk)
* Dockerized MCP servers in the [servers repo](https://github.com/modelcontextprotocol/servers)
</Update>
<Update label="2024-12-21" description="Kotlin SDK released">
* Jetbrains released a Kotlin SDK for MCP!
* For a sample MCP Kotlin server, check out [this repository](https://github.com/modelcontextprotocol/kotlin-sdk/tree/main/samples/kotlin-mcp-server)
</Update>
# Core architecture
Source: https://modelcontextprotocol.io/docs/concepts/architecture
Understand how MCP connects clients, servers, and LLMs
The Model Context Protocol (MCP) is built on a flexible, extensible architecture that enables seamless communication between LLM applications and integrations. This document covers the core architectural components and concepts.
## Overview
MCP follows a client-server architecture where:
* **Hosts** are LLM applications (like Claude Desktop or IDEs) that initiate connections
* **Clients** maintain 1:1 connections with servers, inside the host application
* **Servers** provide context, tools, and prompts to clients
```mermaid
flowchart LR
subgraph "Host"
client1[MCP Client]
client2[MCP Client]
end
subgraph "Server Process"
server1[MCP Server]
end
subgraph "Server Process"
server2[MCP Server]
end
client1 <-->|Transport Layer| server1
client2 <-->|Transport Layer| server2
```
## Core components
### Protocol layer
The protocol layer handles message framing, request/response linking, and high-level communication patterns.
<Tabs>
<Tab title="TypeScript">
```typescript
class Protocol<Request, Notification, Result> {
// Handle incoming requests
setRequestHandler<T>(schema: T, handler: (request: T, extra: RequestHandlerExtra) => Promise<Result>): void
// Handle incoming notifications
setNotificationHandler<T>(schema: T, handler: (notification: T) => Promise<void>): void
// Send requests and await responses
request<T>(request: Request, schema: T, options?: RequestOptions): Promise<T>
// Send one-way notifications
notification(notification: Notification): Promise<void>
}
```
</Tab>
<Tab title="Python">
```python
class Session(BaseSession[RequestT, NotificationT, ResultT]):
async def send_request(
self,
request: RequestT,
result_type: type[Result]
) -> Result:
"""
Send request and wait for response. Raises McpError if response contains error.
"""
# Request handling implementation
async def send_notification(
self,
notification: NotificationT
) -> None:
"""Send one-way notification that doesn't expect response."""
# Notification handling implementation
async def _received_request(
self,
responder: RequestResponder[ReceiveRequestT, ResultT]
) -> None:
"""Handle incoming request from other side."""
# Request handling implementation
async def _received_notification(
self,
notification: ReceiveNotificationT
) -> None:
"""Handle incoming notification from other side."""
# Notification handling implementation
```
</Tab>
</Tabs>
Key classes include:
* `Protocol`
* `Client`
* `Server`
### Transport layer
The transport layer handles the actual communication between clients and servers. MCP supports multiple transport mechanisms:
1. **Stdio transport**
* Uses standard input/output for communication
* Ideal for local processes
2. **HTTP with SSE transport**
* Uses Server-Sent Events for server-to-client messages
* HTTP POST for client-to-server messages
All transports use [JSON-RPC](https://www.jsonrpc.org/) 2.0 to exchange messages. See the [specification](https://spec.modelcontextprotocol.io) for detailed information about the Model Context Protocol message format.
### Message types
MCP has these main types of messages:
1. **Requests** expect a response from the other side:
```typescript
interface Request {
method: string;
params?: { ... };
}
```
2. **Results** are successful responses to requests:
```typescript
interface Result {
[key: string]: unknown;
}
```
3. **Errors** indicate that a request failed:
```typescript
interface Error {
code: number;
message: string;
data?: unknown;
}
```
4. **Notifications** are one-way messages that don't expect a response:
```typescript
interface Notification {
method: string;
params?: { ... };
}
```
## Connection lifecycle
### 1. Initialization
```mermaid
sequenceDiagram
participant Client
participant Server
Client->>Server: initialize request
Server->>Client: initialize response
Client->>Server: initialized notification
Note over Client,Server: Connection ready for use
```
1. Client sends `initialize` request with protocol version and capabilities
2. Server responds with its protocol version and capabilities
3. Client sends `initialized` notification as acknowledgment
4. Normal message exchange begins
### 2. Message exchange
After initialization, the following patterns are supported:
* **Request-Response**: Client or server sends requests, the other responds
* **Notifications**: Either party sends one-way messages
### 3. Termination
Either party can terminate the connection:
* Clean shutdown via `close()`
* Transport disconnection
* Error conditions
## Error handling
MCP defines these standard error codes:
```typescript
enum ErrorCode {
// Standard JSON-RPC error codes
ParseError = -32700,
InvalidRequest = -32600,
MethodNotFound = -32601,
InvalidParams = -32602,
InternalError = -32603
}
```
SDKs and applications can define their own error codes above -32000.
Errors are propagated through:
* Error responses to requests
* Error events on transports
* Protocol-level error handlers
## Implementation example
Here's a basic example of implementing an MCP server:
<Tabs>
<Tab title="TypeScript">
```typescript
import { Server } from "@modelcontextprotocol/sdk/server/index.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
const server = new Server({
name: "example-server",
version: "1.0.0"
}, {
capabilities: {
resources: {}
}
});
// Handle requests
server.setRequestHandler(ListResourcesRequestSchema, async () => {
return {
resources: [
{
uri: "example://resource",
name: "Example Resource"
}
]
};
});
// Connect transport
const transport = new StdioServerTransport();
await server.connect(transport);
```
</Tab>
<Tab title="Python">
```python
import asyncio
import mcp.types as types
from mcp.server import Server
from mcp.server.stdio import stdio_server
app = Server("example-server")
@app.list_resources()
async def list_resources() -> list[types.Resource]:
return [
types.Resource(
uri="example://resource",
name="Example Resource"
)
]
async def main():
async with stdio_server() as streams:
await app.run(
streams[0],
streams[1],
app.create_initialization_options()
)
if __name__ == "__main__":
asyncio.run(main)
```
</Tab>
</Tabs>
## Best practices
### Transport selection
1. **Local communication**
* Use stdio transport for local processes
* Efficient for same-machine communication
* Simple process management
2. **Remote communication**
* Use SSE for scenarios requiring HTTP compatibility
* Consider security implications including authentication and authorization
### Message handling
1. **Request processing**
* Validate inputs thoroughly
* Use type-safe schemas
* Handle errors gracefully
* Implement timeouts
2. **Progress reporting**
* Use progress tokens for long operations
* Report progress incrementally
* Include total progress when known
3. **Error management**
* Use appropriate error codes
* Include helpful error messages
* Clean up resources on errors
## Security considerations
1. **Transport security**
* Use TLS for remote connections
* Validate connection origins
* Implement authentication when needed
2. **Message validation**
* Validate all incoming messages
* Sanitize inputs
* Check message size limits
* Verify JSON-RPC format
3. **Resource protection**
* Implement access controls
* Validate resource paths
* Monitor resource usage
* Rate limit requests
4. **Error handling**
* Don't leak sensitive information
* Log security-relevant errors
* Implement proper cleanup
* Handle DoS scenarios
## Debugging and monitoring
1. **Logging**
* Log protocol events
* Track message flow
* Monitor performance
* Record errors
2. **Diagnostics**
* Implement health checks
* Monitor connection state
* Track resource usage
* Profile performance
3. **Testing**
* Test different transports
* Verify error handling
* Check edge cases
* Load test servers
# Prompts
Source: https://modelcontextprotocol.io/docs/concepts/prompts
Create reusable prompt templates and workflows
Prompts enable servers to define reusable prompt templates and workflows that clients can easily surface to users and LLMs. They provide a powerful way to standardize and share common LLM interactions.
<Note>
Prompts are designed to be **user-controlled**, meaning they are exposed from servers to clients with the intention of the user being able to explicitly select them for use.
</Note>
## Overview
Prompts in MCP are predefined templates that can:
* Accept dynamic arguments
* Include context from resources
* Chain multiple interactions
* Guide specific workflows
* Surface as UI elements (like slash commands)
## Prompt structure
Each prompt is defined with:
```typescript
{
name: string; // Unique identifier for the prompt
description?: string; // Human-readable description
arguments?: [ // Optional list of arguments
{
name: string; // Argument identifier
description?: string; // Argument description
required?: boolean; // Whether argument is required
}
]
}
```
## Discovering prompts
Clients can discover available prompts through the `prompts/list` endpoint:
```typescript
// Request
{
method: "prompts/list"
}
// Response
{
prompts: [
{
name: "analyze-code",
description: "Analyze code for potential improvements",
arguments: [
{
name: "language",
description: "Programming language",
required: true
}
]
}
]
}
```
## Using prompts
To use a prompt, clients make a `prompts/get` request:
````typescript
// Request
{
method: "prompts/get",
params: {
name: "analyze-code",
arguments: {
language: "python"
}
}
}
// Response
{
description: "Analyze Python code for potential improvements",
messages: [
{
role: "user",
content: {
type: "text",
text: "Please analyze the following Python code for potential improvements:\n\n```python\ndef calculate_sum(numbers):\n total = 0\n for num in numbers:\n total = total + num\n return total\n\nresult = calculate_sum([1, 2, 3, 4, 5])\nprint(result)\n```"
}
}
]
}
````
## Dynamic prompts
Prompts can be dynamic and include:
### Embedded resource context
```json
{
"name": "analyze-project",
"description": "Analyze project logs and code",
"arguments": [
{
"name": "timeframe",
"description": "Time period to analyze logs",
"required": true
},
{
"name": "fileUri",
"description": "URI of code file to review",
"required": true
}
]
}
```
When handling the `prompts/get` request:
```json
{
"messages": [
{
"role": "user",
"content": {
"type": "text",
"text": "Analyze these system logs and the code file for any issues:"
}
},
{
"role": "user",
"content": {
"type": "resource",
"resource": {
"uri": "logs://recent?timeframe=1h",
"text": "[2024-03-14 15:32:11] ERROR: Connection timeout in network.py:127\n[2024-03-14 15:32:15] WARN: Retrying connection (attempt 2/3)\n[2024-03-14 15:32:20] ERROR: Max retries exceeded",
"mimeType": "text/plain"
}
}
},
{
"role": "user",
"content": {
"type": "resource",
"resource": {
"uri": "file:///path/to/code.py",
"text": "def connect_to_service(timeout=30):\n retries = 3\n for attempt in range(retries):\n try:\n return establish_connection(timeout)\n except TimeoutError:\n if attempt == retries - 1:\n raise\n time.sleep(5)\n\ndef establish_connection(timeout):\n # Connection implementation\n pass",
"mimeType": "text/x-python"
}
}
}
]
}
```
### Multi-step workflows
```typescript
const debugWorkflow = {
name: "debug-error",
async getMessages(error: string) {
return [
{
role: "user",
content: {
type: "text",
text: `Here's an error I'm seeing: ${error}`
}
},
{
role: "assistant",
content: {
type: "text",
text: "I'll help analyze this error. What have you tried so far?"
}
},
{
role: "user",
content: {
type: "text",
text: "I've tried restarting the service, but the error persists."
}
}
];
}
};
```
## Example implementation
Here's a complete example of implementing prompts in an MCP server:
<Tabs>
<Tab title="TypeScript">
```typescript
import { Server } from "@modelcontextprotocol/sdk/server";
import {
ListPromptsRequestSchema,
GetPromptRequestSchema
} from "@modelcontextprotocol/sdk/types";
const PROMPTS = {
"git-commit": {
name: "git-commit",
description: "Generate a Git commit message",
arguments: [
{
name: "changes",
description: "Git diff or description of changes",
required: true
}
]
},
"explain-code": {
name: "explain-code",
description: "Explain how code works",
arguments: [
{
name: "code",
description: "Code to explain",
required: true
},
{
name: "language",
description: "Programming language",
required: false
}
]
}
};
const server = new Server({
name: "example-prompts-server",
version: "1.0.0"
}, {
capabilities: {
prompts: {}
}
});
// List available prompts
server.setRequestHandler(ListPromptsRequestSchema, async () => {
return {
prompts: Object.values(PROMPTS)
};
});
// Get specific prompt
server.setRequestHandler(GetPromptRequestSchema, async (request) => {
const prompt = PROMPTS[request.params.name];
if (!prompt) {
throw new Error(`Prompt not found: ${request.params.name}`);
}
if (request.params.name === "git-commit") {
return {
messages: [
{
role: "user",
content: {
type: "text",
text: `Generate a concise but descriptive commit message for these changes:\n\n${request.params.arguments?.changes}`
}
}
]
};
}
if (request.params.name === "explain-code") {
const language = request.params.arguments?.language || "Unknown";
return {
messages: [
{
role: "user",
content: {
type: "text",
text: `Explain how this ${language} code works:\n\n${request.params.arguments?.code}`
}
}
]
};
}
throw new Error("Prompt implementation not found");
});
```
</Tab>
<Tab title="Python">
```python
from mcp.server import Server
import mcp.types as types
# Define available prompts
PROMPTS = {
"git-commit": types.Prompt(
name="git-commit",
description="Generate a Git commit message",
arguments=[
types.PromptArgument(
name="changes",
description="Git diff or description of changes",
required=True
)
],
),
"explain-code": types.Prompt(
name="explain-code",
description="Explain how code works",
arguments=[
types.PromptArgument(
name="code",
description="Code to explain",
required=True
),
types.PromptArgument(
name="language",
description="Programming language",
required=False
)
],
)
}
# Initialize server
app = Server("example-prompts-server")
@app.list_prompts()
async def list_prompts() -> list[types.Prompt]:
return list(PROMPTS.values())
@app.get_prompt()
async def get_prompt(
name: str, arguments: dict[str, str] | None = None
) -> types.GetPromptResult:
if name not in PROMPTS:
raise ValueError(f"Prompt not found: {name}")
if name == "git-commit":
changes = arguments.get("changes") if arguments else ""
return types.GetPromptResult(
messages=[
types.PromptMessage(
role="user",
content=types.TextContent(
type="text",
text=f"Generate a concise but descriptive commit message "
f"for these changes:\n\n{changes}"
)
)
]
)
if name == "explain-code":
code = arguments.get("code") if arguments else ""
language = arguments.get("language", "Unknown") if arguments else "Unknown"
return types.GetPromptResult(
messages=[
types.PromptMessage(
role="user",
content=types.TextContent(
type="text",
text=f"Explain how this {language} code works:\n\n{code}"
)
)
]
)
raise ValueError("Prompt implementation not found")
```
</Tab>
</Tabs>
## Best practices
When implementing prompts:
1. Use clear, descriptive prompt names
2. Provide detailed descriptions for prompts and arguments
3. Validate all required arguments
4. Handle missing arguments gracefully
5. Consider versioning for prompt templates
6. Cache dynamic content when appropriate
7. Implement error handling
8. Document expected argument formats
9. Consider prompt composability
10. Test prompts with various inputs
## UI integration
Prompts can be surfaced in client UIs as:
* Slash commands
* Quick actions
* Context menu items
* Command palette entries
* Guided workflows
* Interactive forms
## Updates and changes
Servers can notify clients about prompt changes:
1. Server capability: `prompts.listChanged`
2. Notification: `notifications/prompts/list_changed`
3. Client re-fetches prompt list
## Security considerations
When implementing prompts:
* Validate all arguments
* Sanitize user input
* Consider rate limiting
* Implement access controls
* Audit prompt usage
* Handle sensitive data appropriately
* Validate generated content
* Implement timeouts
* Consider prompt injection risks
* Document security requirements
# Resources
Source: https://modelcontextprotocol.io/docs/concepts/resources
Expose data and content from your servers to LLMs
Resources are a core primitive in the Model Context Protocol (MCP) that allow servers to expose data and content that can be read by clients and used as context for LLM interactions.
<Note>
Resources are designed to be **application-controlled**, meaning that the client application can decide how and when they should be used.
Different MCP clients may handle resources differently. For example:
* Claude Desktop currently requires users to explicitly select resources before they can be used
* Other clients might automatically select resources based on heuristics
* Some implementations may even allow the AI model itself to determine which resources to use
Server authors should be prepared to handle any of these interaction patterns when implementing resource support. In order to expose data to models automatically, server authors should use a **model-controlled** primitive such as [Tools](./tools).
</Note>
## Overview
Resources represent any kind of data that an MCP server wants to make available to clients. This can include:
* File contents
* Database records
* API responses
* Live system data
* Screenshots and images
* Log files
* And more
Each resource is identified by a unique URI and can contain either text or binary data.
## Resource URIs
Resources are identified using URIs that follow this format:
```
[protocol]://[host]/[path]
```
For example:
* `file:///home/user/documents/report.pdf`
* `postgres://database/customers/schema`
* `screen://localhost/display1`
The protocol and path structure is defined by the MCP server implementation. Servers can define their own custom URI schemes.
## Resource types
Resources can contain two types of content:
### Text resources
Text resources contain UTF-8 encoded text data. These are suitable for:
* Source code
* Configuration files
* Log files
* JSON/XML data
* Plain text
### Binary resources
Binary resources contain raw binary data encoded in base64. These are suitable for:
* Images
* PDFs
* Audio files
* Video files
* Other non-text formats
## Resource discovery
Clients can discover available resources through two main methods:
### Direct resources
Servers expose a list of concrete resources via the `resources/list` endpoint. Each resource includes:
```typescript
{
uri: string; // Unique identifier for the resource
name: string; // Human-readable name
description?: string; // Optional description
mimeType?: string; // Optional MIME type
}
```
### Resource templates
For dynamic resources, servers can expose [URI templates](https://datatracker.ietf.org/doc/html/rfc6570) that clients can use to construct valid resource URIs:
```typescript
{
uriTemplate: string; // URI template following RFC 6570
name: string; // Human-readable name for this type
description?: string; // Optional description
mimeType?: string; // Optional MIME type for all matching resources
}
```
## Reading resources
To read a resource, clients make a `resources/read` request with the resource URI.
The server responds with a list of resource contents:
```typescript
{
contents: [
{
uri: string; // The URI of the resource
mimeType?: string; // Optional MIME type
// One of:
text?: string; // For text resources
blob?: string; // For binary resources (base64 encoded)
}
]
}
```
<Tip>
Servers may return multiple resources in response to one `resources/read` request. This could be used, for example, to return a list of files inside a directory when the directory is read.
</Tip>
## Resource updates
MCP supports real-time updates for resources through two mechanisms:
### List changes
Servers can notify clients when their list of available resources changes via the `notifications/resources/list_changed` notification.
### Content changes
Clients can subscribe to updates for specific resources:
1. Client sends `resources/subscribe` with resource URI
2. Server sends `notifications/resources/updated` when the resource changes
3. Client can fetch latest content with `resources/read`
4. Client can unsubscribe with `resources/unsubscribe`
## Example implementation
Here's a simple example of implementing resource support in an MCP server:
<Tabs>
<Tab title="TypeScript">
```typescript
const server = new Server({
name: "example-server",
version: "1.0.0"
}, {
capabilities: {
resources: {}
}
});
// List available resources
server.setRequestHandler(ListResourcesRequestSchema, async () => {
return {
resources: [
{
uri: "file:///logs/app.log",
name: "Application Logs",
mimeType: "text/plain"
}
]
};
});
// Read resource contents
server.setRequestHandler(ReadResourceRequestSchema, async (request) => {
const uri = request.params.uri;
if (uri === "file:///logs/app.log") {
const logContents = await readLogFile();
return {
contents: [
{
uri,
mimeType: "text/plain",
text: logContents
}
]
};
}
throw new Error("Resource not found");
});
```
</Tab>
<Tab title="Python">
```python
app = Server("example-server")
@app.list_resources()
async def list_resources() -> list[types.Resource]:
return [
types.Resource(
uri="file:///logs/app.log",
name="Application Logs",
mimeType="text/plain"
)
]
@app.read_resource()
async def read_resource(uri: AnyUrl) -> str:
if str(uri) == "file:///logs/app.log":
log_contents = await read_log_file()
return log_contents
raise ValueError("Resource not found")
# Start server
async with stdio_server() as streams:
await app.run(
streams[0],
streams[1],
app.create_initialization_options()
)
```
</Tab>
</Tabs>
## Best practices
When implementing resource support:
1. Use clear, descriptive resource names and URIs
2. Include helpful descriptions to guide LLM understanding
3. Set appropriate MIME types when known
4. Implement resource templates for dynamic content
5. Use subscriptions for frequently changing resources
6. Handle errors gracefully with clear error messages
7. Consider pagination for large resource lists
8. Cache resource contents when appropriate
9. Validate URIs before processing
10. Document your custom URI schemes
## Security considerations
When exposing resources:
* Validate all resource URIs
* Implement appropriate access controls
* Sanitize file paths to prevent directory traversal
* Be cautious with binary data handling
* Consider rate limiting for resource reads
* Audit resource access
* Encrypt sensitive data in transit
* Validate MIME types
* Implement timeouts for long-running reads
* Handle resource cleanup appropriately
# Roots
Source: https://modelcontextprotocol.io/docs/concepts/roots
Understanding roots in MCP
Roots are a concept in MCP that define the boundaries where servers can operate. They provide a way for clients to inform servers about relevant resources and their locations.
## What are Roots?
A root is a URI that a client suggests a server should focus on. When a client connects to a server, it declares which roots the server should work with. While primarily used for filesystem paths, roots can be any valid URI including HTTP URLs.
For example, roots could be:
```
file:///home/user/projects/myapp
https://api.example.com/v1
```
## Why Use Roots?
Roots serve several important purposes:
1. **Guidance**: They inform servers about relevant resources and locations
2. **Clarity**: Roots make it clear which resources are part of your workspace
3. **Organization**: Multiple roots let you work with different resources simultaneously
## How Roots Work
When a client supports roots, it:
1. Declares the `roots` capability during connection
2. Provides a list of suggested roots to the server
3. Notifies the server when roots change (if supported)
While roots are informational and not strictly enforcing, servers should:
1. Respect the provided roots
2. Use root URIs to locate and access resources
3. Prioritize operations within root boundaries
## Common Use Cases
Roots are commonly used to define:
* Project directories
* Repository locations
* API endpoints
* Configuration locations
* Resource boundaries
## Best Practices
When working with roots:
1. Only suggest necessary resources
2. Use clear, descriptive names for roots
3. Monitor root accessibility
4. Handle root changes gracefully
## Example
Here's how a typical MCP client might expose roots:
```json
{
"roots": [
{
"uri": "file:///home/user/projects/frontend",
"name": "Frontend Repository"
},
{
"uri": "https://api.example.com/v1",
"name": "API Endpoint"
}
]
}
```
This configuration suggests the server focus on both a local repository and an API endpoint while keeping them logically separated.
# Sampling
Source: https://modelcontextprotocol.io/docs/concepts/sampling
Let your servers request completions from LLMs
Sampling is a powerful MCP feature that allows servers to request LLM completions through the client, enabling sophisticated agentic behaviors while maintaining security and privacy.
<Info>
This feature of MCP is not yet supported in the Claude Desktop client.
</Info>
## How sampling works
The sampling flow follows these steps:
1. Server sends a `sampling/createMessage` request to the client
2. Client reviews the request and can modify it
3. Client samples from an LLM
4. Client reviews the completion
5. Client returns the result to the server
This human-in-the-loop design ensures users maintain control over what the LLM sees and generates.
## Message format
Sampling requests use a standardized message format:
```typescript
{
messages: [
{
role: "user" | "assistant",
content: {
type: "text" | "image",
// For text:
text?: string,
// For images:
data?: string, // base64 encoded
mimeType?: string
}
}
],
modelPreferences?: {
hints?: [{
name?: string // Suggested model name/family
}],
costPriority?: number, // 0-1, importance of minimizing cost
speedPriority?: number, // 0-1, importance of low latency
intelligencePriority?: number // 0-1, importance of capabilities
},
systemPrompt?: string,
includeContext?: "none" | "thisServer" | "allServers",
temperature?: number,
maxTokens: number,
stopSequences?: string[],
metadata?: Record<string, unknown>
}
```
## Request parameters
### Messages
The `messages` array contains the conversation history to send to the LLM. Each message has:
* `role`: Either "user" or "assistant"
* `content`: The message content, which can be:
* Text content with a `text` field
* Image content with `data` (base64) and `mimeType` fields
### Model preferences
The `modelPreferences` object allows servers to specify their model selection preferences:
* `hints`: Array of model name suggestions that clients can use to select an appropriate model:
* `name`: String that can match full or partial model names (e.g. "claude-3", "sonnet")
* Clients may map hints to equivalent models from different providers
* Multiple hints are evaluated in preference order
* Priority values (0-1 normalized):
* `costPriority`: Importance of minimizing costs
* `speedPriority`: Importance of low latency response
* `intelligencePriority`: Importance of advanced model capabilities
Clients make the final model selection based on these preferences and their available models.
### System prompt
An optional `systemPrompt` field allows servers to request a specific system prompt. The client may modify or ignore this.
### Context inclusion
The `includeContext` parameter specifies what MCP context to include:
* `"none"`: No additional context
* `"thisServer"`: Include context from the requesting server
* `"allServers"`: Include context from all connected MCP servers
The client controls what context is actually included.
### Sampling parameters
Fine-tune the LLM sampling with:
* `temperature`: Controls randomness (0.0 to 1.0)
* `maxTokens`: Maximum tokens to generate
* `stopSequences`: Array of sequences that stop generation
* `metadata`: Additional provider-specific parameters
## Response format
The client returns a completion result:
```typescript
{
model: string, // Name of the model used
stopReason?: "endTurn" | "stopSequence" | "maxTokens" | string,
role: "user" | "assistant",
content: {
type: "text" | "image",
text?: string,
data?: string,
mimeType?: string
}
}
```
## Example request
Here's an example of requesting sampling from a client:
```json
{
"method": "sampling/createMessage",
"params": {
"messages": [
{
"role": "user",
"content": {
"type": "text",
"text": "What files are in the current directory?"
}
}
],
"systemPrompt": "You are a helpful file system assistant.",
"includeContext": "thisServer",
"maxTokens": 100
}
}
```
## Best practices
When implementing sampling:
1. Always provide clear, well-structured prompts
2. Handle both text and image content appropriately
3. Set reasonable token limits
4. Include relevant context through `includeContext`
5. Validate responses before using them
6. Handle errors gracefully
7. Consider rate limiting sampling requests
8. Document expected sampling behavior
9. Test with various model parameters
10. Monitor sampling costs
## Human in the loop controls
Sampling is designed with human oversight in mind:
### For prompts
* Clients should show users the proposed prompt
* Users should be able to modify or reject prompts
* System prompts can be filtered or modified
* Context inclusion is controlled by the client
### For completions
* Clients should show users the completion
* Users should be able to modify or reject completions
* Clients can filter or modify completions
* Users control which model is used
## Security considerations
When implementing sampling:
* Validate all message content
* Sanitize sensitive information
* Implement appropriate rate limits
* Monitor sampling usage
* Encrypt data in transit
* Handle user data privacy
* Audit sampling requests
* Control cost exposure
* Implement timeouts
* Handle model errors gracefully
## Common patterns
### Agentic workflows
Sampling enables agentic patterns like:
* Reading and analyzing resources
* Making decisions based on context
* Generating structured data
* Handling multi-step tasks
* Providing interactive assistance
### Context management
Best practices for context:
* Request minimal necessary context
* Structure context clearly
* Handle context size limits
* Update context as needed
* Clean up stale context
### Error handling
Robust error handling should:
* Catch sampling failures
* Handle timeout errors
* Manage rate limits
* Validate responses
* Provide fallback behaviors
* Log errors appropriately
## Limitations
Be aware of these limitations:
* Sampling depends on client capabilities
* Users control sampling behavior
* Context size has limits
* Rate limits may apply
* Costs should be considered
* Model availability varies
* Response times vary
* Not all content types supported
# Tools
Source: https://modelcontextprotocol.io/docs/concepts/tools
Enable LLMs to perform actions through your server
Tools are a powerful primitive in the Model Context Protocol (MCP) that enable servers to expose executable functionality to clients. Through tools, LLMs can interact with external systems, perform computations, and take actions in the real world.
<Note>
Tools are designed to be **model-controlled**, meaning that tools are exposed from servers to clients with the intention of the AI model being able to automatically invoke them (with a human in the loop to grant approval).
</Note>
## Overview
Tools in MCP allow servers to expose executable functions that can be invoked by clients and used by LLMs to perform actions. Key aspects of tools include:
* **Discovery**: Clients can list available tools through the `tools/list` endpoint
* **Invocation**: Tools are called using the `tools/call` endpoint, where servers perform the requested operation and return results
* **Flexibility**: Tools can range from simple calculations to complex API interactions
Like [resources](/docs/concepts/resources), tools are identified by unique names and can include descriptions to guide their usage. However, unlike resources, tools represent dynamic operations that can modify state or interact with external systems.
## Tool definition structure
Each tool is defined with the following structure:
```typescript
{
name: string; // Unique identifier for the tool
description?: string; // Human-readable description
inputSchema: { // JSON Schema for the tool's parameters
type: "object",
properties: { ... } // Tool-specific parameters
}
}
```
## Implementing tools
Here's an example of implementing a basic tool in an MCP server:
<Tabs>
<Tab title="TypeScript">
```typescript
const server = new Server({
name: "example-server",
version: "1.0.0"
}, {
capabilities: {
tools: {}
}
});
// Define available tools
server.setRequestHandler(ListToolsRequestSchema, async () => {
return {
tools: [{
name: "calculate_sum",
description: "Add two numbers together",
inputSchema: {
type: "object",
properties: {
a: { type: "number" },
b: { type: "number" }
},
required: ["a", "b"]
}
}]
};
});
// Handle tool execution
server.setRequestHandler(CallToolRequestSchema, async (request) => {
if (request.params.name === "calculate_sum") {
const { a, b } = request.params.arguments;
return {
content: [
{
type: "text",
text: String(a + b)
}
]
};
}
throw new Error("Tool not found");
});
```
</Tab>
<Tab title="Python">
```python
app = Server("example-server")
@app.list_tools()
async def list_tools() -> list[types.Tool]:
return [
types.Tool(
name="calculate_sum",
description="Add two numbers together",
inputSchema={
"type": "object",
"properties": {
"a": {"type": "number"},
"b": {"type": "number"}
},
"required": ["a", "b"]
}
)
]
@app.call_tool()
async def call_tool(
name: str,
arguments: dict
) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
if name == "calculate_sum":
a = arguments["a"]
b = arguments["b"]
result = a + b
return [types.TextContent(type="text", text=str(result))]
raise ValueError(f"Tool not found: {name}")
```
</Tab>
</Tabs>
## Example tool patterns
Here are some examples of types of tools that a server could provide:
### System operations
Tools that interact with the local system:
```typescript
{
name: "execute_command",
description: "Run a shell command",
inputSchema: {
type: "object",
properties: {
command: { type: "string" },
args: { type: "array", items: { type: "string" } }
}
}
}
```
### API integrations
Tools that wrap external APIs:
```typescript
{
name: "github_create_issue",
description: "Create a GitHub issue",
inputSchema: {
type: "object",
properties: {
title: { type: "string" },
body: { type: "string" },
labels: { type: "array", items: { type: "string" } }
}
}
}
```
### Data processing
Tools that transform or analyze data:
```typescript
{
name: "analyze_csv",
description: "Analyze a CSV file",
inputSchema: {
type: "object",
properties: {
filepath: { type: "string" },
operations: {
type: "array",
items: {
enum: ["sum", "average", "count"]
}
}
}
}
}
```
## Best practices
When implementing tools:
1. Provide clear, descriptive names and descriptions
2. Use detailed JSON Schema definitions for parameters
3. Include examples in tool descriptions to demonstrate how the model should use them
4. Implement proper error handling and validation
5. Use progress reporting for long operations
6. Keep tool operations focused and atomic
7. Document expected return value structures
8. Implement proper timeouts
9. Consider rate limiting for resource-intensive operations
10. Log tool usage for debugging and monitoring
## Security considerations
When exposing tools:
### Input validation
* Validate all parameters against the schema
* Sanitize file paths and system commands
* Validate URLs and external identifiers
* Check parameter sizes and ranges
* Prevent command injection
### Access control
* Implement authentication where needed
* Use appropriate authorization checks
* Audit tool usage
* Rate limit requests
* Monitor for abuse
### Error handling
* Don't expose internal errors to clients
* Log security-relevant errors
* Handle timeouts appropriately
* Clean up resources after errors
* Validate return values
## Tool discovery and updates
MCP supports dynamic tool discovery:
1. Clients can list available tools at any time
2. Servers can notify clients when tools change using `notifications/tools/list_changed`
3. Tools can be added or removed during runtime
4. Tool definitions can be updated (though this should be done carefully)
## Error handling
Tool errors should be reported within the result object, not as MCP protocol-level errors. This allows the LLM to see and potentially handle the error. When a tool encounters an error:
1. Set `isError` to `true` in the result
2. Include error details in the `content` array
Here's an example of proper error handling for tools:
<Tabs>
<Tab title="TypeScript">
```typescript
try {
// Tool operation
const result = performOperation();
return {
content: [
{
type: "text",
text: `Operation successful: ${result}`
}
]
};
} catch (error) {
return {
isError: true,
content: [
{
type: "text",
text: `Error: ${error.message}`
}
]
};
}
```
</Tab>
<Tab title="Python">
```python
try:
# Tool operation
result = perform_operation()
return types.CallToolResult(
content=[
types.TextContent(
type="text",
text=f"Operation successful: {result}"
)
]
)
except Exception as error:
return types.CallToolResult(
isError=True,
content=[
types.TextContent(
type="text",
text=f"Error: {str(error)}"
)
]
)
```
</Tab>
</Tabs>
This approach allows the LLM to see that an error occurred and potentially take corrective action or request human intervention.
## Testing tools
A comprehensive testing strategy for MCP tools should cover:
* **Functional testing**: Verify tools execute correctly with valid inputs and handle invalid inputs appropriately
* **Integration testing**: Test tool interaction with external systems using both real and mocked dependencies
* **Security testing**: Validate authentication, authorization, input sanitization, and rate limiting
* **Performance testing**: Check behavior under load, timeout handling, and resource cleanup
* **Error handling**: Ensure tools properly report errors through the MCP protocol and clean up resources
# Transports
Source: https://modelcontextprotocol.io/docs/concepts/transports
Learn about MCP's communication mechanisms
Transports in the Model Context Protocol (MCP) provide the foundation for communication between clients and servers. A transport handles the underlying mechanics of how messages are sent and received.
## Message Format
MCP uses [JSON-RPC](https://www.jsonrpc.org/) 2.0 as its wire format. The transport layer is responsible for converting MCP protocol messages into JSON-RPC format for transmission and converting received JSON-RPC messages back into MCP protocol messages.
There are three types of JSON-RPC messages used:
### Requests
```typescript
{
jsonrpc: "2.0",
id: number | string,
method: string,
params?: object
}
```
### Responses
```typescript
{
jsonrpc: "2.0",
id: number | string,
result?: object,
error?: {
code: number,
message: string,
data?: unknown
}
}
```
### Notifications
```typescript
{
jsonrpc: "2.0",
method: string,
params?: object
}
```
## Built-in Transport Types
MCP includes two standard transport implementations:
### Standard Input/Output (stdio)
The stdio transport enables communication through standard input and output streams. This is particularly useful for local integrations and command-line tools.
Use stdio when:
* Building command-line tools
* Implementing local integrations
* Needing simple process communication
* Working with shell scripts
<Tabs>
<Tab title="TypeScript (Server)">
```typescript
const server = new Server({
name: "example-server",
version: "1.0.0"
}, {
capabilities: {}
});
const transport = new StdioServerTransport();
await server.connect(transport);
```
</Tab>
<Tab title="TypeScript (Client)">
```typescript
const client = new Client({
name: "example-client",
version: "1.0.0"
}, {
capabilities: {}
});
const transport = new StdioClientTransport({
command: "./server",
args: ["--option", "value"]
});
await client.connect(transport);
```
</Tab>
<Tab title="Python (Server)">
```python
app = Server("example-server")
async with stdio_server() as streams:
await app.run(
streams[0],
streams[1],
app.create_initialization_options()
)
```
</Tab>
<Tab title="Python (Client)">
```python
params = StdioServerParameters(
command="./server",
args=["--option", "value"]
)
async with stdio_client(params) as streams:
async with ClientSession(streams[0], streams[1]) as session:
await session.initialize()
```
</Tab>
</Tabs>
### Server-Sent Events (SSE)
SSE transport enables server-to-client streaming with HTTP POST requests for client-to-server communication.
Use SSE when:
* Only server-to-client streaming is needed
* Working with restricted networks
* Implementing simple updates
<Tabs>
<Tab title="TypeScript (Server)">
```typescript
import express from "express";
const app = express();
const server = new Server({
name: "example-server",
version: "1.0.0"
}, {
capabilities: {}
});
let transport: SSEServerTransport | null = null;
app.get("/sse", (req, res) => {
transport = new SSEServerTransport("/messages", res);
server.connect(transport);
});
app.post("/messages", (req, res) => {
if (transport) {
transport.handlePostMessage(req, res);
}
});
app.listen(3000);
```
</Tab>
<Tab title="TypeScript (Client)">
```typescript
const client = new Client({
name: "example-client",
version: "1.0.0"
}, {
capabilities: {}
});
const transport = new SSEClientTransport(
new URL("http://localhost:3000/sse")
);
await client.connect(transport);
```
</Tab>
<Tab title="Python (Server)">
```python
from mcp.server.sse import SseServerTransport
from starlette.applications import Starlette
from starlette.routing import Route
app = Server("example-server")
sse = SseServerTransport("/messages")
async def handle_sse(scope, receive, send):
async with sse.connect_sse(scope, receive, send) as streams:
await app.run(streams[0], streams[1], app.create_initialization_options())
async def handle_messages(scope, receive, send):
await sse.handle_post_message(scope, receive, send)
starlette_app = Starlette(
routes=[
Route("/sse", endpoint=handle_sse),
Route("/messages", endpoint=handle_messages, methods=["POST"]),
]
)
```
</Tab>
<Tab title="Python (Client)">
```python
async with sse_client("http://localhost:8000/sse") as streams:
async with ClientSession(streams[0], streams[1]) as session:
await session.initialize()
```
</Tab>
</Tabs>
## Custom Transports
MCP makes it easy to implement custom transports for specific needs. Any transport implementation just needs to conform to the Transport interface:
You can implement custom transports for:
* Custom network protocols
* Specialized communication channels
* Integration with existing systems
* Performance optimization
<Tabs>
<Tab title="TypeScript">
```typescript
interface Transport {
// Start processing messages
start(): Promise<void>;
// Send a JSON-RPC message
send(message: JSONRPCMessage): Promise<void>;
// Close the connection
close(): Promise<void>;
// Callbacks
onclose?: () => void;
onerror?: (error: Error) => void;
onmessage?: (message: JSONRPCMessage) => void;
}
```
</Tab>
<Tab title="Python">
Note that while MCP Servers are often implemented with asyncio, we recommend
implementing low-level interfaces like transports with `anyio` for wider compatibility.
```python
@contextmanager
async def create_transport(
read_stream: MemoryObjectReceiveStream[JSONRPCMessage | Exception],
write_stream: MemoryObjectSendStream[JSONRPCMessage]
):
"""
Transport interface for MCP.
Args:
read_stream: Stream to read incoming messages from
write_stream: Stream to write outgoing messages to
"""
async with anyio.create_task_group() as tg:
try:
# Start processing messages
tg.start_soon(lambda: process_messages(read_stream))
# Send messages
async with write_stream:
yield write_stream
except Exception as exc:
# Handle errors
raise exc
finally:
# Clean up
tg.cancel_scope.cancel()
await write_stream.aclose()
await read_stream.aclose()
```
</Tab>
</Tabs>
## Error Handling
Transport implementations should handle various error scenarios:
1. Connection errors
2. Message parsing errors
3. Protocol errors
4. Network timeouts
5. Resource cleanup
Example error handling:
<Tabs>
<Tab title="TypeScript">
```typescript
class ExampleTransport implements Transport {
async start() {
try {
// Connection logic
} catch (error) {
this.onerror?.(new Error(`Failed to connect: ${error}`));
throw error;
}
}
async send(message: JSONRPCMessage) {
try {
// Sending logic
} catch (error) {
this.onerror?.(new Error(`Failed to send message: ${error}`));
throw error;
}
}
}
```
</Tab>
<Tab title="Python">
Note that while MCP Servers are often implemented with asyncio, we recommend
implementing low-level interfaces like transports with `anyio` for wider compatibility.
```python
@contextmanager
async def example_transport(scope: Scope, receive: Receive, send: Send):
try:
# Create streams for bidirectional communication
read_stream_writer, read_stream = anyio.create_memory_object_stream(0)
write_stream, write_stream_reader = anyio.create_memory_object_stream(0)
async def message_handler():
try:
async with read_stream_writer:
# Message handling logic
pass
except Exception as exc:
logger.error(f"Failed to handle message: {exc}")
raise exc
async with anyio.create_task_group() as tg:
tg.start_soon(message_handler)
try:
# Yield streams for communication
yield read_stream, write_stream
except Exception as exc:
logger.error(f"Transport error: {exc}")
raise exc
finally:
tg.cancel_scope.cancel()
await write_stream.aclose()
await read_stream.aclose()
except Exception as exc:
logger.error(f"Failed to initialize transport: {exc}")
raise exc
```
</Tab>
</Tabs>
## Best Practices
When implementing or using MCP transport:
1. Handle connection lifecycle properly
2. Implement proper error handling
3. Clean up resources on connection close
4. Use appropriate timeouts
5. Validate messages before sending
6. Log transport events for debugging
7. Implement reconnection logic when appropriate
8. Handle backpressure in message queues
9. Monitor connection health
10. Implement proper security measures
## Security Considerations
When implementing transport:
### Authentication and Authorization
* Implement proper authentication mechanisms
* Validate client credentials
* Use secure token handling
* Implement authorization checks
### Data Security
* Use TLS for network transport
* Encrypt sensitive data
* Validate message integrity
* Implement message size limits
* Sanitize input data
### Network Security
* Implement rate limiting
* Use appropriate timeouts
* Handle denial of service scenarios
* Monitor for unusual patterns
* Implement proper firewall rules
## Debugging Transport
Tips for debugging transport issues:
1. Enable debug logging
2. Monitor message flow
3. Check connection states
4. Validate message formats
5. Test error scenarios
6. Use network analysis tools
7. Implement health checks
8. Monitor resource usage
9. Test edge cases
10. Use proper error tracking
# Debugging
Source: https://modelcontextprotocol.io/docs/tools/debugging
A comprehensive guide to debugging Model Context Protocol (MCP) integrations
Effective debugging is essential when developing MCP servers or integrating them with applications. This guide covers the debugging tools and approaches available in the MCP ecosystem.
<Info>
This guide is for macOS. Guides for other platforms are coming soon.
</Info>
## Debugging tools overview
MCP provides several tools for debugging at different levels:
1. **MCP Inspector**
* Interactive debugging interface
* Direct server testing
* See the [Inspector guide](/docs/tools/inspector) for details
2. **Claude Desktop Developer Tools**
* Integration testing
* Log collection
* Chrome DevTools integration
3. **Server Logging**
* Custom logging implementations
* Error tracking
* Performance monitoring
## Debugging in Claude Desktop
### Checking server status
The Claude.app interface provides basic server status information:
1. Click the <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/claude-desktop-mcp-plug-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon to view:
* Connected servers
* Available prompts and resources
2. Click the <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/claude-desktop-mcp-hammer-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon to view:
* Tools made available to the model
### Viewing logs
Review detailed MCP logs from Claude Desktop:
```bash
# Follow logs in real-time
tail -n 20 -F ~/Library/Logs/Claude/mcp*.log
```
The logs capture:
* Server connection events
* Configuration issues
* Runtime errors
* Message exchanges
### Using Chrome DevTools
Access Chrome's developer tools inside Claude Desktop to investigate client-side errors:
1. Create a `developer_settings.json` file with `allowDevTools` set to true:
```bash
echo '{"allowDevTools": true}' > ~/Library/Application\ Support/Claude/developer_settings.json
```
2. Open DevTools: `Command-Option-Shift-i`
Note: You'll see two DevTools windows:
* Main content window
* App title bar window
Use the Console panel to inspect client-side errors.
Use the Network panel to inspect:
* Message payloads
* Connection timing
## Common issues
### Working directory
When using MCP servers with Claude Desktop:
* The working directory for servers launched via `claude_desktop_config.json` may be undefined (like `/` on macOS) since Claude Desktop could be started from anywhere
* Always use absolute paths in your configuration and `.env` files to ensure reliable operation
* For testing servers directly via command line, the working directory will be where you run the command
For example in `claude_desktop_config.json`, use:
```json
{
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/Users/username/data"]
}
```
Instead of relative paths like `./data`
### Environment variables
MCP servers inherit only a subset of environment variables automatically, like `USER`, `HOME`, and `PATH`.
To override the default variables or provide your own, you can specify an `env` key in `claude_desktop_config.json`:
```json
{
"myserver": {
"command": "mcp-server-myapp",
"env": {
"MYAPP_API_KEY": "some_key",
}
}
}
```
### Server initialization
Common initialization problems:
1. **Path Issues**
* Incorrect server executable path
* Missing required files
* Permission problems
* Try using an absolute path for `command`
2. **Configuration Errors**
* Invalid JSON syntax
* Missing required fields
* Type mismatches
3. **Environment Problems**
* Missing environment variables
* Incorrect variable values
* Permission restrictions
### Connection problems
When servers fail to connect:
1. Check Claude Desktop logs
2. Verify server process is running
3. Test standalone with [Inspector](/docs/tools/inspector)
4. Verify protocol compatibility
## Implementing logging
### Server-side logging
When building a server that uses the local stdio [transport](/docs/concepts/transports), all messages logged to stderr (standard error) will be captured by the host application (e.g., Claude Desktop) automatically.
<Warning>
Local MCP servers should not log messages to stdout (standard out), as this will interfere with protocol operation.
</Warning>
For all [transports](/docs/concepts/transports), you can also provide logging to the client by sending a log message notification:
<Tabs>
<Tab title="Python">
```python
server.request_context.session.send_log_message(
level="info",
data="Server started successfully",
)
```
</Tab>
<Tab title="TypeScript">
```typescript
server.sendLoggingMessage({
level: "info",
data: "Server started successfully",
});
```
</Tab>
</Tabs>
Important events to log:
* Initialization steps
* Resource access
* Tool execution
* Error conditions
* Performance metrics
### Client-side logging
In client applications:
1. Enable debug logging
2. Monitor network traffic
3. Track message exchanges
4. Record error states
## Debugging workflow
### Development cycle
1. Initial Development
* Use [Inspector](/docs/tools/inspector) for basic testing
* Implement core functionality
* Add logging points
2. Integration Testing
* Test in Claude Desktop
* Monitor logs
* Check error handling
### Testing changes
To test changes efficiently:
* **Configuration changes**: Restart Claude Desktop
* **Server code changes**: Use Command-R to reload
* **Quick iteration**: Use [Inspector](/docs/tools/inspector) during development
## Best practices
### Logging strategy
1. **Structured Logging**
* Use consistent formats
* Include context
* Add timestamps
* Track request IDs
2. **Error Handling**
* Log stack traces
* Include error context
* Track error patterns
* Monitor recovery
3. **Performance Tracking**
* Log operation timing
* Monitor resource usage
* Track message sizes
* Measure latency
### Security considerations
When debugging:
1. **Sensitive Data**
* Sanitize logs
* Protect credentials
* Mask personal information
2. **Access Control**
* Verify permissions
* Check authentication
* Monitor access patterns
## Getting help
When encountering issues:
1. **First Steps**
* Check server logs
* Test with [Inspector](/docs/tools/inspector)
* Review configuration
* Verify environment
2. **Support Channels**
* GitHub issues
* GitHub discussions
3. **Providing Information**
* Log excerpts
* Configuration files
* Steps to reproduce
* Environment details
## Next steps
<CardGroup cols={2}>
<Card title="MCP Inspector" icon="magnifying-glass" href="/docs/tools/inspector">
Learn to use the MCP Inspector
</Card>
</CardGroup>
# Inspector
Source: https://modelcontextprotocol.io/docs/tools/inspector
In-depth guide to using the MCP Inspector for testing and debugging Model Context Protocol servers
The [MCP Inspector](https://github.com/modelcontextprotocol/inspector) is an interactive developer tool for testing and debugging MCP servers. While the [Debugging Guide](/docs/tools/debugging) covers the Inspector as part of the overall debugging toolkit, this document provides a detailed exploration of the Inspector's features and capabilities.
## Getting started
### Installation and basic usage
The Inspector runs directly through `npx` without requiring installation:
```bash
npx @modelcontextprotocol/inspector <command>
```
```bash
npx @modelcontextprotocol/inspector <command> <arg1> <arg2>
```
#### Inspecting servers from NPM or PyPi
A common way to start server packages from [NPM](https://npmjs.com) or [PyPi](https://pypi.com).
<Tabs>
<Tab title="NPM package">
```bash
npx -y @modelcontextprotocol/inspector npx <package-name> <args>
# For example
npx -y @modelcontextprotocol/inspector npx server-postgres postgres://127.0.0.1/testdb
```
</Tab>
<Tab title="PyPi package">
```bash
npx @modelcontextprotocol/inspector uvx <package-name> <args>
# For example
npx @modelcontextprotocol/inspector uvx mcp-server-git --repository ~/code/mcp/servers.git
```
</Tab>
</Tabs>
#### Inspecting locally developed servers
To inspect servers locally developed or downloaded as a repository, the most common
way is:
<Tabs>
<Tab title="TypeScript">
```bash
npx @modelcontextprotocol/inspector node path/to/server/index.js args...
```
</Tab>
<Tab title="Python">
```bash
npx @modelcontextprotocol/inspector \
uv \
--directory path/to/server \
run \
package-name \
args...
```
</Tab>
</Tabs>
Please carefully read any attached README for the most accurate instructions.
## Feature overview
<Frame caption="The MCP Inspector interface">
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/mcp-inspector.png" />
</Frame>
The Inspector provides several features for interacting with your MCP server:
### Server connection pane
* Allows selecting the [transport](/docs/concepts/transports) for connecting to the server
* For local servers, supports customizing the command-line arguments and environment
### Resources tab
* Lists all available resources
* Shows resource metadata (MIME types, descriptions)
* Allows resource content inspection
* Supports subscription testing
### Prompts tab
* Displays available prompt templates
* Shows prompt arguments and descriptions
* Enables prompt testing with custom arguments
* Previews generated messages
### Tools tab
* Lists available tools
* Shows tool schemas and descriptions
* Enables tool testing with custom inputs
* Displays tool execution results
### Notifications pane
* Presents all logs recorded from the server
* Shows notifications received from the server
## Best practices
### Development workflow
1. Start Development
* Launch Inspector with your server
* Verify basic connectivity
* Check capability negotiation
2. Iterative testing
* Make server changes
* Rebuild the server
* Reconnect the Inspector
* Test affected features
* Monitor messages
3. Test edge cases
* Invalid inputs
* Missing prompt arguments
* Concurrent operations
* Verify error handling and error responses
## Next steps
<CardGroup cols={2}>
<Card title="Inspector Repository" icon="github" href="https://github.com/modelcontextprotocol/inspector">
Check out the MCP Inspector source code
</Card>
<Card title="Debugging Guide" icon="bug" href="/docs/tools/debugging">
Learn about broader debugging strategies
</Card>
</CardGroup>
# Example Servers
Source: https://modelcontextprotocol.io/examples
A list of example servers and implementations
This page showcases various Model Context Protocol (MCP) servers that demonstrate the protocol's capabilities and versatility. These servers enable Large Language Models (LLMs) to securely access tools and data sources.
## Reference implementations
These official reference servers demonstrate core MCP features and SDK usage:
### Data and file systems
* **[Filesystem](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem)** - Secure file operations with configurable access controls
* **[PostgreSQL](https://github.com/modelcontextprotocol/servers/tree/main/src/postgres)** - Read-only database access with schema inspection capabilities
* **[SQLite](https://github.com/modelcontextprotocol/servers/tree/main/src/sqlite)** - Database interaction and business intelligence features
* **[Google Drive](https://github.com/modelcontextprotocol/servers/tree/main/src/gdrive)** - File access and search capabilities for Google Drive
### Development tools
* **[Git](https://github.com/modelcontextprotocol/servers/tree/main/src/git)** - Tools to read, search, and manipulate Git repositories
* **[GitHub](https://github.com/modelcontextprotocol/servers/tree/main/src/github)** - Repository management, file operations, and GitHub API integration
* **[GitLab](https://github.com/modelcontextprotocol/servers/tree/main/src/gitlab)** - GitLab API integration enabling project management
* **[Sentry](https://github.com/modelcontextprotocol/servers/tree/main/src/sentry)** - Retrieving and analyzing issues from Sentry.io
### Web and browser automation
* **[Brave Search](https://github.com/modelcontextprotocol/servers/tree/main/src/brave-search)** - Web and local search using Brave's Search API
* **[Fetch](https://github.com/modelcontextprotocol/servers/tree/main/src/fetch)** - Web content fetching and conversion optimized for LLM usage
* **[Puppeteer](https://github.com/modelcontextprotocol/servers/tree/main/src/puppeteer)** - Browser automation and web scraping capabilities
### Productivity and communication
* **[Slack](https://github.com/modelcontextprotocol/servers/tree/main/src/slack)** - Channel management and messaging capabilities
* **[Google Maps](https://github.com/modelcontextprotocol/servers/tree/main/src/google-maps)** - Location services, directions, and place details
* **[Memory](https://github.com/modelcontextprotocol/servers/tree/main/src/memory)** - Knowledge graph-based persistent memory system
### AI and specialized tools
* **[EverArt](https://github.com/modelcontextprotocol/servers/tree/main/src/everart)** - AI image generation using various models
* **[Sequential Thinking](https://github.com/modelcontextprotocol/servers/tree/main/src/sequentialthinking)** - Dynamic problem-solving through thought sequences
* **[AWS KB Retrieval](https://github.com/modelcontextprotocol/servers/tree/main/src/aws-kb-retrieval-server)** - Retrieval from AWS Knowledge Base using Bedrock Agent Runtime
## Official integrations
These MCP servers are maintained by companies for their platforms:
* **[Axiom](https://github.com/axiomhq/mcp-server-axiom)** - Query and analyze logs, traces, and event data using natural language
* **[Browserbase](https://github.com/browserbase/mcp-server-browserbase)** - Automate browser interactions in the cloud
* **[Cloudflare](https://github.com/cloudflare/mcp-server-cloudflare)** - Deploy and manage resources on the Cloudflare developer platform
* **[E2B](https://github.com/e2b-dev/mcp-server)** - Execute code in secure cloud sandboxes
* **[Neon](https://github.com/neondatabase/mcp-server-neon)** - Interact with the Neon serverless Postgres platform
* **[Obsidian Markdown Notes](https://github.com/calclavia/mcp-obsidian)** - Read and search through Markdown notes in Obsidian vaults
* **[Qdrant](https://github.com/qdrant/mcp-server-qdrant/)** - Implement semantic memory using the Qdrant vector search engine
* **[Raygun](https://github.com/MindscapeHQ/mcp-server-raygun)** - Access crash reporting and monitoring data
* **[Search1API](https://github.com/fatwang2/search1api-mcp)** - Unified API for search, crawling, and sitemaps
* **[Stripe](https://github.com/stripe/agent-toolkit)** - Interact with the Stripe API
* **[Tinybird](https://github.com/tinybirdco/mcp-tinybird)** - Interface with the Tinybird serverless ClickHouse platform
* **[Weaviate](https://github.com/weaviate/mcp-server-weaviate)** - Enable Agentic RAG through your Weaviate collection(s)
## Community highlights
A growing ecosystem of community-developed servers extends MCP's capabilities:
* **[Docker](https://github.com/ckreiling/mcp-server-docker)** - Manage containers, images, volumes, and networks
* **[Kubernetes](https://github.com/Flux159/mcp-server-kubernetes)** - Manage pods, deployments, and services
* **[Linear](https://github.com/jerhadf/linear-mcp-server)** - Project management and issue tracking
* **[Snowflake](https://github.com/datawiz168/mcp-snowflake-service)** - Interact with Snowflake databases
* **[Spotify](https://github.com/varunneal/spotify-mcp)** - Control Spotify playback and manage playlists
* **[Todoist](https://github.com/abhiz123/todoist-mcp-server)** - Task management integration
> **Note:** Community servers are untested and should be used at your own risk. They are not affiliated with or endorsed by Anthropic.
For a complete list of community servers, visit the [MCP Servers Repository](https://github.com/modelcontextprotocol/servers).
## Getting started
### Using reference servers
TypeScript-based servers can be used directly with `npx`:
```bash
npx -y @modelcontextprotocol/server-memory
```
Python-based servers can be used with `uvx` (recommended) or `pip`:
```bash
# Using uvx
uvx mcp-server-git
# Using pip
pip install mcp-server-git
python -m mcp_server_git
```
### Configuring with Claude
To use an MCP server with Claude, add it to your configuration:
```json
{
"mcpServers": {
"memory": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-memory"]
},
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/path/to/allowed/files"]
},
"github": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-github"],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "<YOUR_TOKEN>"
}
}
}
}
```
## Additional resources
* [MCP Servers Repository](https://github.com/modelcontextprotocol/servers) - Complete collection of reference implementations and community servers
* [Awesome MCP Servers](https://github.com/punkpeye/awesome-mcp-servers) - Curated list of MCP servers
* [MCP CLI](https://github.com/wong2/mcp-cli) - Command-line inspector for testing MCP servers
* [MCP Get](https://mcp-get.com) - Tool for installing and managing MCP servers
* [Supergateway](https://github.com/supercorp-ai/supergateway) - Run MCP stdio servers over SSE
Visit our [GitHub Discussions](https://github.com/orgs/modelcontextprotocol/discussions) to engage with the MCP community.
# Introduction
Source: https://modelcontextprotocol.io/introduction
Get started with the Model Context Protocol (MCP)
<Note>Java SDK released! Check out [what else is new.](/development/updates)</Note>
MCP is an open protocol that standardizes how applications provide context to LLMs. Think of MCP like a USB-C port for AI applications. Just as USB-C provides a standardized way to connect your devices to various peripherals and accessories, MCP provides a standardized way to connect AI models to different data sources and tools.
## Why MCP?
MCP helps you build agents and complex workflows on top of LLMs. LLMs frequently need to integrate with data and tools, and MCP provides:
* A growing list of pre-built integrations that your LLM can directly plug into
* The flexibility to switch between LLM providers and vendors
* Best practices for securing your data within your infrastructure
### General architecture
At its core, MCP follows a client-server architecture where a host application can connect to multiple servers:
```mermaid
flowchart LR
subgraph "Your Computer"
Host["Host with MCP Client\n(Claude, IDEs, Tools)"]
S1["MCP Server A"]
S2["MCP Server B"]
S3["MCP Server C"]
Host <-->|"MCP Protocol"| S1
Host <-->|"MCP Protocol"| S2
Host <-->|"MCP Protocol"| S3
S1 <--> D1[("Local\nData Source A")]
S2 <--> D2[("Local\nData Source B")]
end
subgraph "Internet"
S3 <-->|"Web APIs"| D3[("Remote\nService C")]
end
```
* **MCP Hosts**: Programs like Claude Desktop, IDEs, or AI tools that want to access data through MCP
* **MCP Clients**: Protocol clients that maintain 1:1 connections with servers
* **MCP Servers**: Lightweight programs that each expose specific capabilities through the standardized Model Context Protocol
* **Local Data Sources**: Your computer's files, databases, and services that MCP servers can securely access
* **Remote Services**: External systems available over the internet (e.g., through APIs) that MCP servers can connect to
## Get started
Choose the path that best fits your needs:
#### Quick Starts
<CardGroup cols={2}>
<Card title="For Server Developers" icon="bolt" href="/quickstart/server">
Get started building your own server to use in Claude for Desktop and other clients
</Card>
<Card title="For Client Developers" icon="bolt" href="/quickstart/client">
Get started building your own client that can integrate with all MCP servers
</Card>
<Card title="For Claude Desktop Users" icon="bolt" href="/quickstart/user">
Get started using pre-built servers in Claude for Desktop
</Card>
</CardGroup>
#### Examples
<CardGroup cols={2}>
<Card title="Example Servers" icon="grid" href="/examples">
Check out our gallery of official MCP servers and implementations
</Card>
<Card title="Example Clients" icon="cubes" href="/clients">
View the list of clients that support MCP integrations
</Card>
</CardGroup>
## Tutorials
<CardGroup cols={2}>
<Card title="Building MCP with LLMs" icon="comments" href="/tutorials/building-mcp-with-llms">
Learn how to use LLMs like Claude to speed up your MCP development
</Card>
<Card title="Debugging Guide" icon="bug" href="/docs/tools/debugging">
Learn how to effectively debug MCP servers and integrations
</Card>
<Card title="MCP Inspector" icon="magnifying-glass" href="/docs/tools/inspector">
Test and inspect your MCP servers with our interactive debugging tool
</Card>
<Card title="MCP Workshop (Video, 2hr)" icon="person-chalkboard" href="https://www.youtube.com/watch?v=kQmXtrmQ5Zg">
<iframe src="https://www.youtube.com/embed/kQmXtrmQ5Zg" />
</Card>
</CardGroup>
## Explore MCP
Dive deeper into MCP's core concepts and capabilities:
<CardGroup cols={2}>
<Card title="Core architecture" icon="sitemap" href="/docs/concepts/architecture">
Understand how MCP connects clients, servers, and LLMs
</Card>
<Card title="Resources" icon="database" href="/docs/concepts/resources">
Expose data and content from your servers to LLMs
</Card>
<Card title="Prompts" icon="message" href="/docs/concepts/prompts">
Create reusable prompt templates and workflows
</Card>
<Card title="Tools" icon="wrench" href="/docs/concepts/tools">
Enable LLMs to perform actions through your server
</Card>
<Card title="Sampling" icon="robot" href="/docs/concepts/sampling">
Let your servers request completions from LLMs
</Card>
<Card title="Transports" icon="network-wired" href="/docs/concepts/transports">
Learn about MCP's communication mechanism
</Card>
</CardGroup>
## Contributing
Want to contribute? Check out our [Contributing Guide](/development/contributing) to learn how you can help improve MCP.
## Support and Feedback
Here's how to get help or provide feedback:
* For bug reports and feature requests related to the MCP specification, SDKs, or documentation (open source), please [create a GitHub issue](https://github.com/modelcontextprotocol)
* For discussions or Q\&A about the MCP specification, use the [specification discussions](https://github.com/modelcontextprotocol/specification/discussions)
* For discussions or Q\&A about other MCP open source components, use the [organization discussions](https://github.com/orgs/modelcontextprotocol/discussions)
* For bug reports, feature requests, and questions related to Claude.app and claude.ai's MCP integration, please email [[email protected]](mailto:[email protected])
# For Client Developers
Source: https://modelcontextprotocol.io/quickstart/client
Get started building your own client that can integrate with all MCP servers.
In this tutorial, you'll learn how to build a LLM-powered chatbot client that connects to MCP servers. It helps to have gone through the [Server quickstart](/quickstart/server) that guides you through the basic of building your first server.
<Tabs>
<Tab title="Python">
[You can find the complete code for this tutorial here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/mcp-client-python)
## System Requirements
Before starting, ensure your system meets these requirements:
* Mac or Windows computer
* Latest Python version installed
* Latest version of `uv` installed
## Setting Up Your Environment
First, create a new Python project with `uv`:
```bash
# Create project directory
uv init mcp-client
cd mcp-client
# Create virtual environment
uv venv
# Activate virtual environment
# On Windows:
.venv\Scripts\activate
# On Unix or MacOS:
source .venv/bin/activate
# Install required packages
uv add mcp anthropic python-dotenv
# Remove boilerplate files
rm hello.py
# Create our main file
touch client.py
```
## Setting Up Your API Key
You'll need an Anthropic API key from the [Anthropic Console](https://console.anthropic.com/settings/keys).
Create a `.env` file to store it:
```bash
# Create .env file
touch .env
```
Add your key to the `.env` file:
```bash
ANTHROPIC_API_KEY=<your key here>
```
Add `.env` to your `.gitignore`:
```bash
echo ".env" >> .gitignore
```
<Warning>
Make sure you keep your `ANTHROPIC_API_KEY` secure!
</Warning>
## Creating the Client
### Basic Client Structure
First, let's set up our imports and create the basic client class:
```python
import asyncio
from typing import Optional
from contextlib import AsyncExitStack
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from anthropic import Anthropic
from dotenv import load_dotenv
load_dotenv() # load environment variables from .env
class MCPClient:
def __init__(self):
# Initialize session and client objects
self.session: Optional[ClientSession] = None
self.exit_stack = AsyncExitStack()
self.anthropic = Anthropic()
# methods will go here
```
### Server Connection Management
Next, we'll implement the method to connect to an MCP server:
```python
async def connect_to_server(self, server_script_path: str):
"""Connect to an MCP server
Args:
server_script_path: Path to the server script (.py or .js)
"""
is_python = server_script_path.endswith('.py')
is_js = server_script_path.endswith('.js')
if not (is_python or is_js):
raise ValueError("Server script must be a .py or .js file")
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_script_path],
env=None
)
stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
await self.session.initialize()
# List available tools
response = await self.session.list_tools()
tools = response.tools
print("\nConnected to server with tools:", [tool.name for tool in tools])
```
### Query Processing Logic
Now let's add the core functionality for processing queries and handling tool calls:
```python
async def process_query(self, query: str) -> str:
"""Process a query using Claude and available tools"""
messages = [
{
"role": "user",
"content": query
}
]
response = await self.session.list_tools()
available_tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in response.tools]
# Initial Claude API call
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=messages,
tools=available_tools
)
# Process response and handle tool calls
final_text = []
assistant_message_content = []
for content in response.content:
if content.type == 'text':
final_text.append(content.text)
assistant_message_content.append(content)
elif content.type == 'tool_use':
tool_name = content.name
tool_args = content.input
# Execute tool call
result = await self.session.call_tool(tool_name, tool_args)
final_text.append(f"[Calling tool {tool_name} with args {tool_args}]")
assistant_message_content.append(content)
messages.append({
"role": "assistant",
"content": assistant_message_content
})
messages.append({
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": content.id,
"content": result.content
}
]
})
# Get next response from Claude
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=messages,
tools=available_tools
)
final_text.append(response.content[0].text)
return "\n".join(final_text)
```
### Interactive Chat Interface
Now we'll add the chat loop and cleanup functionality:
```python
async def chat_loop(self):
"""Run an interactive chat loop"""
print("\nMCP Client Started!")
print("Type your queries or 'quit' to exit.")
while True:
try:
query = input("\nQuery: ").strip()
if query.lower() == 'quit':
break
response = await self.process_query(query)
print("\n" + response)
except Exception as e:
print(f"\nError: {str(e)}")
async def cleanup(self):
"""Clean up resources"""
await self.exit_stack.aclose()
```
### Main Entry Point
Finally, we'll add the main execution logic:
```python
async def main():
if len(sys.argv) < 2:
print("Usage: python client.py <path_to_server_script>")
sys.exit(1)
client = MCPClient()
try:
await client.connect_to_server(sys.argv[1])
await client.chat_loop()
finally:
await client.cleanup()
if __name__ == "__main__":
import sys
asyncio.run(main())
```
You can find the complete `client.py` file [here.](https://gist.github.com/zckly/f3f28ea731e096e53b39b47bf0a2d4b1)
## Key Components Explained
### 1. Client Initialization
* The `MCPClient` class initializes with session management and API clients
* Uses `AsyncExitStack` for proper resource management
* Configures the Anthropic client for Claude interactions
### 2. Server Connection
* Supports both Python and Node.js servers
* Validates server script type
* Sets up proper communication channels
* Initializes the session and lists available tools
### 3. Query Processing
* Maintains conversation context
* Handles Claude's responses and tool calls
* Manages the message flow between Claude and tools
* Combines results into a coherent response
### 4. Interactive Interface
* Provides a simple command-line interface
* Handles user input and displays responses
* Includes basic error handling
* Allows graceful exit
### 5. Resource Management
* Proper cleanup of resources
* Error handling for connection issues
* Graceful shutdown procedures
## Common Customization Points
1. **Tool Handling**
* Modify `process_query()` to handle specific tool types
* Add custom error handling for tool calls
* Implement tool-specific response formatting
2. **Response Processing**
* Customize how tool results are formatted
* Add response filtering or transformation
* Implement custom logging
3. **User Interface**
* Add a GUI or web interface
* Implement rich console output
* Add command history or auto-completion
## Running the Client
To run your client with any MCP server:
```bash
uv run client.py path/to/server.py # python server
uv run client.py path/to/build/index.js # node server
```
<Note>
If you're continuing the weather tutorial from the server quickstart, your command might look something like this: `python client.py .../weather/src/weather/server.py`
</Note>
The client will:
1. Connect to the specified server
2. List available tools
3. Start an interactive chat session where you can:
* Enter queries
* See tool executions
* Get responses from Claude
Here's an example of what it should look like if connected to the weather server from the server quickstart:
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/client-claude-cli-python.png" />
</Frame>
## How It Works
When you submit a query:
1. The client gets the list of available tools from the server
2. Your query is sent to Claude along with tool descriptions
3. Claude decides which tools (if any) to use
4. The client executes any requested tool calls through the server
5. Results are sent back to Claude
6. Claude provides a natural language response
7. The response is displayed to you
## Best practices
1. **Error Handling**
* Always wrap tool calls in try-catch blocks
* Provide meaningful error messages
* Gracefully handle connection issues
2. **Resource Management**
* Use `AsyncExitStack` for proper cleanup
* Close connections when done
* Handle server disconnections
3. **Security**
* Store API keys securely in `.env`
* Validate server responses
* Be cautious with tool permissions
## Troubleshooting
### Server Path Issues
* Double-check the path to your server script is correct
* Use the absolute path if the relative path isn't working
* For Windows users, make sure to use forward slashes (/) or escaped backslashes (\\) in the path
* Verify the server file has the correct extension (.py for Python or .js for Node.js)
Example of correct path usage:
```bash
# Relative path
uv run client.py ./server/weather.py
# Absolute path
uv run client.py /Users/username/projects/mcp-server/weather.py
# Windows path (either format works)
uv run client.py C:/projects/mcp-server/weather.py
uv run client.py C:\\projects\\mcp-server\\weather.py
```
### Response Timing
* The first response might take up to 30 seconds to return
* This is normal and happens while:
* The server initializes
* Claude processes the query
* Tools are being executed
* Subsequent responses are typically faster
* Don't interrupt the process during this initial waiting period
### Common Error Messages
If you see:
* `FileNotFoundError`: Check your server path
* `Connection refused`: Ensure the server is running and the path is correct
* `Tool execution failed`: Verify the tool's required environment variables are set
* `Timeout error`: Consider increasing the timeout in your client configuration
</Tab>
<Tab title="Node">
[You can find the complete code for this tutorial here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/mcp-client-typescript)
## System Requirements
Before starting, ensure your system meets these requirements:
* Mac or Windows computer
* Node.js 16 or higher installed
* Latest version of `npm` installed
* Anthropic API key (Claude)
## Setting Up Your Environment
First, let's create and set up our project:
<CodeGroup>
```bash MacOS/Linux
# Create project directory
mkdir mcp-client-typescript
cd mcp-client-typescript
# Initialize npm project
npm init -y
# Install dependencies
npm install @anthropic-ai/sdk @modelcontextprotocol/sdk dotenv
# Install dev dependencies
npm install -D @types/node typescript
# Create source file
touch index.ts
```
```powershell Windows
# Create project directory
md mcp-client-typescript
cd mcp-client-typescript
# Initialize npm project
npm init -y
# Install dependencies
npm install @anthropic-ai/sdk @modelcontextprotocol/sdk dotenv
# Install dev dependencies
npm install -D @types/node typescript
# Create source file
new-item index.ts
```
</CodeGroup>
Update your `package.json` to set `type: "module"` and a build script:
```json package.json
{
"type": "module",
"scripts": {
"build": "tsc && chmod 755 build/index.js"
}
}
```
Create a `tsconfig.json` in the root of your project:
```json tsconfig.json
{
"compilerOptions": {
"target": "ES2022",
"module": "Node16",
"moduleResolution": "Node16",
"outDir": "./build",
"rootDir": "./",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
},
"include": ["index.ts"],
"exclude": ["node_modules"]
}
```
## Setting Up Your API Key
You'll need an Anthropic API key from the [Anthropic Console](https://console.anthropic.com/settings/keys).
Create a `.env` file to store it:
```bash
echo "ANTHROPIC_API_KEY=<your key here>" > .env
```
Add `.env` to your `.gitignore`:
```bash
echo ".env" >> .gitignore
```
<Warning>
Make sure you keep your `ANTHROPIC_API_KEY` secure!
</Warning>
## Creating the Client
### Basic Client Structure
First, let's set up our imports and create the basic client class in `index.ts`:
```typescript
import { Anthropic } from "@anthropic-ai/sdk";
import {
MessageParam,
Tool,
} from "@anthropic-ai/sdk/resources/messages/messages.mjs";
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
import readline from "readline/promises";
import dotenv from "dotenv";
dotenv.config();
const ANTHROPIC_API_KEY = process.env.ANTHROPIC_API_KEY;
if (!ANTHROPIC_API_KEY) {
throw new Error("ANTHROPIC_API_KEY is not set");
}
class MCPClient {
private mcp: Client;
private anthropic: Anthropic;
private transport: StdioClientTransport | null = null;
private tools: Tool[] = [];
constructor() {
this.anthropic = new Anthropic({
apiKey: ANTHROPIC_API_KEY,
});
this.mcp = new Client({ name: "mcp-client-cli", version: "1.0.0" });
}
// methods will go here
}
```
### Server Connection Management
Next, we'll implement the method to connect to an MCP server:
```typescript
async connectToServer(serverScriptPath: string) {
try {
const isJs = serverScriptPath.endsWith(".js");
const isPy = serverScriptPath.endsWith(".py");
if (!isJs && !isPy) {
throw new Error("Server script must be a .js or .py file");
}
const command = isPy
? process.platform === "win32"
? "python"
: "python3"
: process.execPath;
this.transport = new StdioClientTransport({
command,
args: [serverScriptPath],
});
this.mcp.connect(this.transport);
const toolsResult = await this.mcp.listTools();
this.tools = toolsResult.tools.map((tool) => {
return {
name: tool.name,
description: tool.description,
input_schema: tool.inputSchema,
};
});
console.log(
"Connected to server with tools:",
this.tools.map(({ name }) => name)
);
} catch (e) {
console.log("Failed to connect to MCP server: ", e);
throw e;
}
}
```
### Query Processing Logic
Now let's add the core functionality for processing queries and handling tool calls:
```typescript
async processQuery(query: string) {
const messages: MessageParam[] = [
{
role: "user",
content: query,
},
];
const response = await this.anthropic.messages.create({
model: "claude-3-5-sonnet-20241022",
max_tokens: 1000,
messages,
tools: this.tools,
});
const finalText = [];
const toolResults = [];
for (const content of response.content) {
if (content.type === "text") {
finalText.push(content.text);
} else if (content.type === "tool_use") {
const toolName = content.name;
const toolArgs = content.input as { [x: string]: unknown } | undefined;
const result = await this.mcp.callTool({
name: toolName,
arguments: toolArgs,
});
toolResults.push(result);
finalText.push(
`[Calling tool ${toolName} with args ${JSON.stringify(toolArgs)}]`
);
messages.push({
role: "user",
content: result.content as string,
});
const response = await this.anthropic.messages.create({
model: "claude-3-5-sonnet-20241022",
max_tokens: 1000,
messages,
});
finalText.push(
response.content[0].type === "text" ? response.content[0].text : ""
);
}
}
return finalText.join("\n");
}
```
### Interactive Chat Interface
Now we'll add the chat loop and cleanup functionality:
```typescript
async chatLoop() {
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout,
});
try {
console.log("\nMCP Client Started!");
console.log("Type your queries or 'quit' to exit.");
while (true) {
const message = await rl.question("\nQuery: ");
if (message.toLowerCase() === "quit") {
break;
}
const response = await this.processQuery(message);
console.log("\n" + response);
}
} finally {
rl.close();
}
}
async cleanup() {
await this.mcp.close();
}
```
### Main Entry Point
Finally, we'll add the main execution logic:
```typescript
async function main() {
if (process.argv.length < 3) {
console.log("Usage: node index.ts <path_to_server_script>");
return;
}
const mcpClient = new MCPClient();
try {
await mcpClient.connectToServer(process.argv[2]);
await mcpClient.chatLoop();
} finally {
await mcpClient.cleanup();
process.exit(0);
}
}
main();
```
## Running the Client
To run your client with any MCP server:
```bash
# Build TypeScript
npm run build
# Run the client
node build/index.js path/to/server.py # python server
node build/index.js path/to/build/index.js # node server
```
<Note>
If you're continuing the weather tutorial from the server quickstart, your command might look something like this: `node build/index.js .../quickstart-resources/weather-server-typescript/build/index.js`
</Note>
**The client will:**
1. Connect to the specified server
2. List available tools
3. Start an interactive chat session where you can:
* Enter queries
* See tool executions
* Get responses from Claude
## How It Works
When you submit a query:
1. The client gets the list of available tools from the server
2. Your query is sent to Claude along with tool descriptions
3. Claude decides which tools (if any) to use
4. The client executes any requested tool calls through the server
5. Results are sent back to Claude
6. Claude provides a natural language response
7. The response is displayed to you
## Best practices
1. **Error Handling**
* Use TypeScript's type system for better error detection
* Wrap tool calls in try-catch blocks
* Provide meaningful error messages
* Gracefully handle connection issues
2. **Security**
* Store API keys securely in `.env`
* Validate server responses
* Be cautious with tool permissions
## Troubleshooting
### Server Path Issues
* Double-check the path to your server script is correct
* Use the absolute path if the relative path isn't working
* For Windows users, make sure to use forward slashes (/) or escaped backslashes (\\) in the path
* Verify the server file has the correct extension (.js for Node.js or .py for Python)
Example of correct path usage:
```bash
# Relative path
node build/index.js ./server/build/index.js
# Absolute path
node build/index.js /Users/username/projects/mcp-server/build/index.js
# Windows path (either format works)
node build/index.js C:/projects/mcp-server/build/index.js
node build/index.js C:\\projects\\mcp-server\\build\\index.js
```
### Response Timing
* The first response might take up to 30 seconds to return
* This is normal and happens while:
* The server initializes
* Claude processes the query
* Tools are being executed
* Subsequent responses are typically faster
* Don't interrupt the process during this initial waiting period
### Common Error Messages
If you see:
* `Error: Cannot find module`: Check your build folder and ensure TypeScript compilation succeeded
* `Connection refused`: Ensure the server is running and the path is correct
* `Tool execution failed`: Verify the tool's required environment variables are set
* `ANTHROPIC_API_KEY is not set`: Check your .env file and environment variables
* `TypeError`: Ensure you're using the correct types for tool arguments
</Tab>
<Tab title="Java">
<Note>
This is a quickstart demo based on Spring AI MCP auto-configuration and boot starters.
To learn how to create sync and async MCP Clients manually, consult the [Java SDK Client](/sdk/java/mcp-client) documentation
</Note>
This example demonstrates how to build an interactive chatbot that combines Spring AI's Model Context Protocol (MCP) with the [Brave Search MCP Server](https://github.com/modelcontextprotocol/servers/tree/main/src/brave-search). The application creates a conversational interface powered by Anthropic's Claude AI model that can perform internet searches through Brave Search, enabling natural language interactions with real-time web data.
[You can find the complete code for this tutorial here.](https://github.com/spring-projects/spring-ai-examples/tree/main/model-context-protocol/web-search/brave-chatbot)
## System Requirements
Before starting, ensure your system meets these requirements:
* Java 17 or higher
* Maven 3.6+
* npx package manager
* Anthropic API key (Claude)
* Brave Search API key
## Setting Up Your Environment
1. Install npx (Node Package eXecute):
First, make sure to install [npm](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm)
and then run:
```bash
npm install -g npx
```
2. Clone the repository:
```bash
git clone https://github.com/spring-projects/spring-ai-examples.git
cd model-context-protocol/brave-chatbot
```
3. Set up your API keys:
```bash
export ANTHROPIC_API_KEY='your-anthropic-api-key-here'
export BRAVE_API_KEY='your-brave-api-key-here'
```
4. Build the application:
```bash
./mvnw clean install
```
5. Run the application using Maven:
```bash
./mvnw spring-boot:run
```
<Warning>
Make sure you keep your `ANTHROPIC_API_KEY` and `BRAVE_API_KEY` keys secure!
</Warning>
## How it Works
The application integrates Spring AI with the Brave Search MCP server through several components:
### MCP Client Configuration
1. Required dependencies in pom.xml:
```xml
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-mcp-client-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-anthropic-spring-boot-starter</artifactId>
</dependency>
```
2. Application properties (application.yml):
```yml
spring:
ai:
mcp:
client:
enabled: true
name: brave-search-client
version: 1.0.0
type: SYNC
request-timeout: 20s
stdio:
root-change-notification: true
servers-configuration: classpath:/mcp-servers-config.json
anthropic:
api-key: ${ANTHROPIC_API_KEY}
```
This activates the `spring-ai-mcp-client-spring-boot-starter` to create one or more `McpClient`s based on the provided server configuration.
3. MCP Server Configuration (`mcp-servers-config.json`):
```json
{
"mcpServers": {
"brave-search": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-brave-search"
],
"env": {
"BRAVE_API_KEY": "<PUT YOUR BRAVE API KEY>"
}
}
}
}
```
### Chat Implementation
The chatbot is implemented using Spring AI's ChatClient with MCP tool integration:
```java
var chatClient = chatClientBuilder
.defaultSystem("You are useful assistant, expert in AI and Java.")
.defaultTools((Object[]) mcpToolAdapter.toolCallbacks())
.defaultAdvisors(new MessageChatMemoryAdvisor(new InMemoryChatMemory()))
.build();
```
Key features:
* Uses Claude AI model for natural language understanding
* Integrates Brave Search through MCP for real-time web search capabilities
* Maintains conversation memory using InMemoryChatMemory
* Runs as an interactive command-line application
### Build and run
```bash
./mvnw clean install
java -jar ./target/ai-mcp-brave-chatbot-0.0.1-SNAPSHOT.jar
```
or
```bash
./mvnw spring-boot:run
```
The application will start an interactive chat session where you can ask questions. The chatbot will use Brave Search when it needs to find information from the internet to answer your queries.
The chatbot can:
* Answer questions using its built-in knowledge
* Perform web searches when needed using Brave Search
* Remember context from previous messages in the conversation
* Combine information from multiple sources to provide comprehensive answers
### Advanced Configuration
The MCP client supports additional configuration options:
* Client customization through `McpSyncClientCustomizer` or `McpAsyncClientCustomizer`
* Multiple clients with multiple transport types: `STDIO` and `SSE` (Server-Sent Events)
* Integration with Spring AI's tool execution framework
* Automatic client initialization and lifecycle management
For WebFlux-based applications, you can use the WebFlux starter instead:
```xml
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-mcp-client-webflux-spring-boot-starter</artifactId>
</dependency>
```
This provides similar functionality but uses a WebFlux-based SSE transport implementation, recommended for production deployments.
</Tab>
<Tab title="Kotlin">
[You can find the complete code for this tutorial here.](https://github.com/modelcontextprotocol/kotlin-sdk/tree/main/samples/kotlin-mcp-client)
## System Requirements
Before starting, ensure your system meets these requirements:
* Java 17 or higher
* Anthropic API key (Claude)
## Setting up your environment
First, let's install `java` and `gradle` if you haven't already.
You can download `java` from [official Oracle JDK website](https://www.oracle.com/java/technologies/downloads/).
Verify your `java` installation:
```bash
java --version
```
Now, let's create and set up your project:
<CodeGroup>
```bash MacOS/Linux
# Create a new directory for our project
mkdir kotlin-mcp-client
cd kotlin-mcp-client
# Initialize a new kotlin project
gradle init
```
```powershell Windows
# Create a new directory for our project
md kotlin-mcp-client
cd kotlin-mcp-client
# Initialize a new kotlin project
gradle init
```
</CodeGroup>
After running `gradle init`, you will be presented with options for creating your project.
Select **Application** as the project type, **Kotlin** as the programming language, and **Java 17** as the Java version.
Alternatively, you can create a Kotlin application using the [IntelliJ IDEA project wizard](https://kotlinlang.org/docs/jvm-get-started.html).
After creating the project, add the following dependencies:
<CodeGroup>
```kotlin build.gradle.kts
val mcpVersion = "0.3.0"
val slf4jVersion = "2.0.9"
val anthropicVersion = "0.8.0"
dependencies {
implementation("io.modelcontextprotocol:kotlin-sdk:$mcpVersion")
implementation("org.slf4j:slf4j-nop:$slf4jVersion")
implementation("com.anthropic:anthropic-java:$anthropicVersion")
}
```
```groovy build.gradle
def mcpVersion = '0.3.0'
def slf4jVersion = '2.0.9'
def anthropicVersion = '0.8.0'
dependencies {
implementation "io.modelcontextprotocol:kotlin-sdk:$mcpVersion"
implementation "org.slf4j:slf4j-nop:$slf4jVersion"
implementation "com.anthropic:anthropic-java:$anthropicVersion"
}
```
</CodeGroup>
Also, add the following plugins to your build script:
<CodeGroup>
```kotlin build.gradle.kts
plugins {
id("com.github.johnrengelman.shadow") version "8.1.1"
}
```
```groovy build.gradle
plugins {
id 'com.github.johnrengelman.shadow' version '8.1.1'
}
```
</CodeGroup>
## Setting up your API key
You'll need an Anthropic API key from the [Anthropic Console](https://console.anthropic.com/settings/keys).
Set up your API key:
```bash
export ANTHROPIC_API_KEY='your-anthropic-api-key-here'
```
<Warning>
Make sure your keep your `ANTHROPIC_API_KEY` secure!
</Warning>
## Creating the Client
### Basic Client Structure
First, let's create the basic client class:
```kotlin
class MCPClient : AutoCloseable {
private val anthropic = AnthropicOkHttpClient.fromEnv()
private val mcp: Client = Client(clientInfo = Implementation(name = "mcp-client-cli", version = "1.0.0"))
private lateinit var tools: List<ToolUnion>
// methods will go here
override fun close() {
runBlocking {
mcp.close()
anthropic.close()
}
}
```
### Server connection managment
Next, we'll implement the method to connect to an MCP server:
```kotlin
suspend fun connectToServer(serverScriptPath: String) {
try {
val command = buildList {
when (serverScriptPath.substringAfterLast(".")) {
"js" -> add("node")
"py" -> add(if (System.getProperty("os.name").lowercase().contains("win")) "python" else "python3")
"jar" -> addAll(listOf("java", "-jar"))
else -> throw IllegalArgumentException("Server script must be a .js, .py or .jar file")
}
add(serverScriptPath)
}
val process = ProcessBuilder(command).start()
val transport = StdioClientTransport(
input = process.inputStream.asSource().buffered(),
output = process.outputStream.asSink().buffered()
)
mcp.connect(transport)
val toolsResult = mcp.listTools()
tools = toolsResult?.tools?.map { tool ->
ToolUnion.ofTool(
Tool.builder()
.name(tool.name)
.description(tool.description ?: "")
.inputSchema(
Tool.InputSchema.builder()
.type(JsonValue.from(tool.inputSchema.type))
.properties(tool.inputSchema.properties.toJsonValue())
.putAdditionalProperty("required", JsonValue.from(tool.inputSchema.required))
.build()
)
.build()
)
} ?: emptyList()
println("Connected to server with tools: ${tools.joinToString(", ") { it.tool().get().name() }}")
} catch (e: Exception) {
println("Failed to connect to MCP server: $e")
throw e
}
}
```
Also create a helper function to convert from `JsonObject` to `JsonValue` for Anthropic:
```kotlin
private fun JsonObject.toJsonValue(): JsonValue {
val mapper = ObjectMapper()
val node = mapper.readTree(this.toString())
return JsonValue.fromJsonNode(node)
}
```
### Query processing logic
Now let's add the core functionality for processing queries and handling tool calls:
```kotlin
private val messageParamsBuilder: MessageCreateParams.Builder = MessageCreateParams.builder()
.model(Model.CLAUDE_3_5_SONNET_20241022)
.maxTokens(1024)
suspend fun processQuery(query: String): String {
val messages = mutableListOf(
MessageParam.builder()
.role(MessageParam.Role.USER)
.content(query)
.build()
)
val response = anthropic.messages().create(
messageParamsBuilder
.messages(messages)
.tools(tools)
.build()
)
val finalText = mutableListOf<String>()
response.content().forEach { content ->
when {
content.isText() -> finalText.add(content.text().getOrNull()?.text() ?: "")
content.isToolUse() -> {
val toolName = content.toolUse().get().name()
val toolArgs =
content.toolUse().get()._input().convert(object : TypeReference<Map<String, JsonValue>>() {})
val result = mcp.callTool(
name = toolName,
arguments = toolArgs ?: emptyMap()
)
finalText.add("[Calling tool $toolName with args $toolArgs]")
messages.add(
MessageParam.builder()
.role(MessageParam.Role.USER)
.content(
"""
"type": "tool_result",
"tool_name": $toolName,
"result": ${result?.content?.joinToString("\n") { (it as TextContent).text ?: "" }}
""".trimIndent()
)
.build()
)
val aiResponse = anthropic.messages().create(
messageParamsBuilder
.messages(messages)
.build()
)
finalText.add(aiResponse.content().first().text().getOrNull()?.text() ?: "")
}
}
}
return finalText.joinToString("\n", prefix = "", postfix = "")
}
```
### Interactive chat
We'll add the chat loop:
```kotlin
suspend fun chatLoop() {
println("\nMCP Client Started!")
println("Type your queries or 'quit' to exit.")
while (true) {
print("\nQuery: ")
val message = readLine() ?: break
if (message.lowercase() == "quit") break
val response = processQuery(message)
println("\n$response")
}
}
```
### Main entry point
Finally, we'll add the main execution function:
```kotlin
fun main(args: Array<String>) = runBlocking {
if (args.isEmpty()) throw IllegalArgumentException("Usage: java -jar <your_path>/build/libs/kotlin-mcp-client-0.1.0-all.jar <path_to_server_script>")
val serverPath = args.first()
val client = MCPClient()
client.use {
client.connectToServer(serverPath)
client.chatLoop()
}
}
```
## Running the client
To run your client with any MCP server:
```bash
./gradlew build
# Run the client
java -jar build/libs/<your-jar-name>.jar path/to/server.jar # jvm server
java -jar build/libs/<your-jar-name>.jar path/to/server.py # python server
java -jar build/libs/<your-jar-name>.jar path/to/build/index.js # node server
```
<Note>
If you're continuing the weather tutorial from the server quickstart, your command might look something like this: `java -jar build/libs/kotlin-mcp-client-0.1.0-all.jar .../samples/weather-stdio-server/build/libs/weather-stdio-server-0.1.0-all.jar`
</Note>
**The client will:**
1. Connect to the specified server
2. List available tools
3. Start an interactive chat session where you can:
* Enter queries
* See tool executions
* Get responses from Claude
## How it works
Here's a high-level workflow schema:
```mermaid
---
config:
theme: neutral
---
sequenceDiagram
actor User
participant Client
participant Claude
participant MCP_Server as MCP Server
participant Tools
User->>Client: Send query
Client<<->>MCP_Server: Get available tools
Client->>Claude: Send query with tool descriptions
Claude-->>Client: Decide tool execution
Client->>MCP_Server: Request tool execution
MCP_Server->>Tools: Execute chosen tools
Tools-->>MCP_Server: Return results
MCP_Server-->>Client: Send results
Client->>Claude: Send tool results
Claude-->>Client: Provide final response
Client-->>User: Display response
```
When you submit a query:
1. The client gets the list of available tools from the server
2. Your query is sent to Claude along with tool descriptions
3. Claude decides which tools (if any) to use
4. The client executes any requested tool calls through the server
5. Results are sent back to Claude
6. Claude provides a natural language response
7. The response is displayed to you
## Best practices
1. **Error Handling**
* Leverage Kotlin's type system to model errors explicitly
* Wrap external tool and API calls in `try-catch` blocks when exceptions are possible
* Provide clear and meaningful error messages
* Handle network timeouts and connection issues gracefully
2. **Security**
* Store API keys and secrets securely in `local.properties`, environment variables, or secret managers
* Validate all external responses to avoid unexpected or unsafe data usage
* Be cautious with permissions and trust boundaries when using tools
## Troubleshooting
### Server Path Issues
* Double-check the path to your server script is correct
* Use the absolute path if the relative path isn't working
* For Windows users, make sure to use forward slashes (/) or escaped backslashes (\\) in the path
* Make sure that the required runtime is installed (java for Java, npm for Node.js, or uv for Python)
* Verify the server file has the correct extension (.jar for Java, .js for Node.js or .py for Python)
Example of correct path usage:
```bash
# Relative path
java -jar build/libs/client.jar ./server/build/libs/server.jar
# Absoulute path
java -jar build/libs/client.jar /Users/username/projects/mcp-server/build/libs/server.jar
# Windows path (either format works)
java -jar build/libs/client.jar C:/projects/mcp-server/build/libs/server.jar
java -jar build/libs/client.jar C:\\projects\\mcp-server\\build\\libs\\server.jar
```
### Response Timing
* The first response might take up to 30 seconds to return
* This is normal and happens while:
* The server initializes
* Claude processes the query
* Tools are being executed
* Subsequent responses are typically faster
* Don't interrupt the process during this initial waiting period
### Common Error Messages
If you see:
* `Connection refused`: Ensure the server is running and the path is correct
* `Tool execution failed`: Verify the tool's required environment variables are set
* `ANTHROPIC_API_KEY is not set`: Check your environment variables
</Tab>
</Tabs>
## Next steps
<CardGroup cols={2}>
<Card title="Example servers" icon="grid" href="/examples">
Check out our gallery of official MCP servers and implementations
</Card>
<Card title="Clients" icon="cubes" href="/clients">
View the list of clients that support MCP integrations
</Card>
<Card title="Building MCP with LLMs" icon="comments" href="/tutorials/building-mcp-with-llms">
Learn how to use LLMs like Claude to speed up your MCP development
</Card>
<Card title="Core architecture" icon="sitemap" href="/docs/concepts/architecture">
Understand how MCP connects clients, servers, and LLMs
</Card>
</CardGroup>
# For Server Developers
Source: https://modelcontextprotocol.io/quickstart/server
Get started building your own server to use in Claude for Desktop and other clients.
In this tutorial, we'll build a simple MCP weather server and connect it to a host, Claude for Desktop. We'll start with a basic setup, and then progress to more complex use cases.
### What we'll be building
Many LLMs do not currently have the ability to fetch the forecast and severe weather alerts. Let's use MCP to solve that!
We'll build a server that exposes two tools: `get-alerts` and `get-forecast`. Then we'll connect the server to an MCP host (in this case, Claude for Desktop):
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/weather-alerts.png" />
</Frame>
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/current-weather.png" />
</Frame>
<Note>
Servers can connect to any client. We've chosen Claude for Desktop here for simplicity, but we also have guides on [building your own client](/quickstart/client) as well as a [list of other clients here](/clients).
</Note>
<Accordion title="Why Claude for Desktop and not Claude.ai?">
Because servers are locally run, MCP currently only supports desktop hosts. Remote hosts are in active development.
</Accordion>
### Core MCP Concepts
MCP servers can provide three main types of capabilities:
1. **Resources**: File-like data that can be read by clients (like API responses or file contents)
2. **Tools**: Functions that can be called by the LLM (with user approval)
3. **Prompts**: Pre-written templates that help users accomplish specific tasks
This tutorial will primarily focus on tools.
<Tabs>
<Tab title="Python">
Let's get started with building our weather server! [You can find the complete code for what we'll be building here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/weather-server-python)
### Prerequisite knowledge
This quickstart assumes you have familiarity with:
* Python
* LLMs like Claude
### System requirements
* Python 3.10 or higher installed.
* You must use the Python MCP SDK 1.2.0 or higher.
### Set up your environment
First, let's install `uv` and set up our Python project and environment:
<CodeGroup>
```bash MacOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
```
```powershell Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
```
</CodeGroup>
Make sure to restart your terminal afterwards to ensure that the `uv` command gets picked up.
Now, let's create and set up our project:
<CodeGroup>
```bash MacOS/Linux
# Create a new directory for our project
uv init weather
cd weather
# Create virtual environment and activate it
uv venv
source .venv/bin/activate
# Install dependencies
uv add "mcp[cli]" httpx
# Create our server file
touch weather.py
```
```powershell Windows
# Create a new directory for our project
uv init weather
cd weather
# Create virtual environment and activate it
uv venv
.venv\Scripts\activate
# Install dependencies
uv add mcp[cli] httpx
# Create our server file
new-item weather.py
```
</CodeGroup>
Now let's dive into building your server.
## Building your server
### Importing packages and setting up the instance
Add these to the top of your `weather.py`:
```python
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
# Initialize FastMCP server
mcp = FastMCP("weather")
# Constants
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"
```
The FastMCP class uses Python type hints and docstrings to automatically generate tool definitions, making it easy to create and maintain MCP tools.
### Helper functions
Next, let's add our helper functions for querying and formatting the data from the National Weather Service API:
```python
async def make_nws_request(url: str) -> dict[str, Any] | None:
"""Make a request to the NWS API with proper error handling."""
headers = {
"User-Agent": USER_AGENT,
"Accept": "application/geo+json"
}
async with httpx.AsyncClient() as client:
try:
response = await client.get(url, headers=headers, timeout=30.0)
response.raise_for_status()
return response.json()
except Exception:
return None
def format_alert(feature: dict) -> str:
"""Format an alert feature into a readable string."""
props = feature["properties"]
return f"""
Event: {props.get('event', 'Unknown')}
Area: {props.get('areaDesc', 'Unknown')}
Severity: {props.get('severity', 'Unknown')}
Description: {props.get('description', 'No description available')}
Instructions: {props.get('instruction', 'No specific instructions provided')}
"""
```
### Implementing tool execution
The tool execution handler is responsible for actually executing the logic of each tool. Let's add it:
```python
@mcp.tool()
async def get_alerts(state: str) -> str:
"""Get weather alerts for a US state.
Args:
state: Two-letter US state code (e.g. CA, NY)
"""
url = f"{NWS_API_BASE}/alerts/active/area/{state}"
data = await make_nws_request(url)
if not data or "features" not in data:
return "Unable to fetch alerts or no alerts found."
if not data["features"]:
return "No active alerts for this state."
alerts = [format_alert(feature) for feature in data["features"]]
return "\n---\n".join(alerts)
@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:
"""Get weather forecast for a location.
Args:
latitude: Latitude of the location
longitude: Longitude of the location
"""
# First get the forecast grid endpoint
points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}"
points_data = await make_nws_request(points_url)
if not points_data:
return "Unable to fetch forecast data for this location."
# Get the forecast URL from the points response
forecast_url = points_data["properties"]["forecast"]
forecast_data = await make_nws_request(forecast_url)
if not forecast_data:
return "Unable to fetch detailed forecast."
# Format the periods into a readable forecast
periods = forecast_data["properties"]["periods"]
forecasts = []
for period in periods[:5]: # Only show next 5 periods
forecast = f"""
{period['name']}:
Temperature: {period['temperature']}°{period['temperatureUnit']}
Wind: {period['windSpeed']} {period['windDirection']}
Forecast: {period['detailedForecast']}
"""
forecasts.append(forecast)
return "\n---\n".join(forecasts)
```
### Running the server
Finally, let's initialize and run the server:
```python
if __name__ == "__main__":
# Initialize and run the server
mcp.run(transport='stdio')
```
Your server is complete! Run `uv run weather.py` to confirm that everything's working.
Let's now test your server from an existing MCP host, Claude for Desktop.
## Testing your server with Claude for Desktop
<Note>
Claude for Desktop is not yet available on Linux. Linux users can proceed to the [Building a client](/quickstart/client) tutorial to build an MCP client that connects to the server we just built.
</Note>
First, make sure you have Claude for Desktop installed. [You can install the latest version
here.](https://claude.ai/download) If you already have Claude for Desktop, **make sure it's updated to the latest version.**
We'll need to configure Claude for Desktop for whichever MCP servers you want to use. To do this, open your Claude for Desktop App configuration at `~/Library/Application Support/Claude/claude_desktop_config.json` in a text editor. Make sure to create the file if it doesn't exist.
For example, if you have [VS Code](https://code.visualstudio.com/) installed:
<Tabs>
<Tab title="MacOS/Linux">
```bash
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
```
</Tab>
<Tab title="Windows">
```powershell
code $env:AppData\Claude\claude_desktop_config.json
```
</Tab>
</Tabs>
You'll then add your servers in the `mcpServers` key. The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured.
In this case, we'll add our single weather server like so:
<Tabs>
<Tab title="MacOS/Linux">
```json Python
{
"mcpServers": {
"weather": {
"command": "uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather",
"run",
"weather.py"
]
}
}
}
```
</Tab>
<Tab title="Windows">
```json Python
{
"mcpServers": {
"weather": {
"command": "uv",
"args": [
"--directory",
"C:\\ABSOLUTE\\PATH\\TO\\PARENT\\FOLDER\\weather",
"run",
"weather.py"
]
}
}
}
```
</Tab>
</Tabs>
<Warning>
You may need to put the full path to the `uv` executable in the `command` field. You can get this by running `which uv` on MacOS/Linux or `where uv` on Windows.
</Warning>
<Note>
Make sure you pass in the absolute path to your server.
</Note>
This tells Claude for Desktop:
1. There's an MCP server named "weather"
2. To launch it by running `uv --directory /ABSOLUTE/PATH/TO/PARENT/FOLDER/weather run weather.py`
Save the file, and restart **Claude for Desktop**.
</Tab>
<Tab title="Node">
Let's get started with building our weather server! [You can find the complete code for what we'll be building here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/weather-server-typescript)
### Prerequisite knowledge
This quickstart assumes you have familiarity with:
* TypeScript
* LLMs like Claude
### System requirements
For TypeScript, make sure you have the latest version of Node installed.
### Set up your environment
First, let's install Node.js and npm if you haven't already. You can download them from [nodejs.org](https://nodejs.org/).
Verify your Node.js installation:
```bash
node --version
npm --version
```
For this tutorial, you'll need Node.js version 16 or higher.
Now, let's create and set up our project:
<CodeGroup>
```bash MacOS/Linux
# Create a new directory for our project
mkdir weather
cd weather
# Initialize a new npm project
npm init -y
# Install dependencies
npm install @modelcontextprotocol/sdk zod
npm install -D @types/node typescript
# Create our files
mkdir src
touch src/index.ts
```
```powershell Windows
# Create a new directory for our project
md weather
cd weather
# Initialize a new npm project
npm init -y
# Install dependencies
npm install @modelcontextprotocol/sdk zod
npm install -D @types/node typescript
# Create our files
md src
new-item src\index.ts
```
</CodeGroup>
Update your package.json to add type: "module" and a build script:
```json package.json
{
"type": "module",
"bin": {
"weather": "./build/index.js"
},
"scripts": {
"build": "tsc && chmod 755 build/index.js"
},
"files": [
"build"
],
}
```
Create a `tsconfig.json` in the root of your project:
```json tsconfig.json
{
"compilerOptions": {
"target": "ES2022",
"module": "Node16",
"moduleResolution": "Node16",
"outDir": "./build",
"rootDir": "./src",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
},
"include": ["src/**/*"],
"exclude": ["node_modules"]
}
```
Now let's dive into building your server.
## Building your server
### Importing packages and setting up the instance
Add these to the top of your `src/index.ts`:
```typescript
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { z } from "zod";
const NWS_API_BASE = "https://api.weather.gov";
const USER_AGENT = "weather-app/1.0";
// Create server instance
const server = new McpServer({
name: "weather",
version: "1.0.0",
});
```
### Helper functions
Next, let's add our helper functions for querying and formatting the data from the National Weather Service API:
```typescript
// Helper function for making NWS API requests
async function makeNWSRequest<T>(url: string): Promise<T | null> {
const headers = {
"User-Agent": USER_AGENT,
Accept: "application/geo+json",
};
try {
const response = await fetch(url, { headers });
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
return (await response.json()) as T;
} catch (error) {
console.error("Error making NWS request:", error);
return null;
}
}
interface AlertFeature {
properties: {
event?: string;
areaDesc?: string;
severity?: string;
status?: string;
headline?: string;
};
}
// Format alert data
function formatAlert(feature: AlertFeature): string {
const props = feature.properties;
return [
`Event: ${props.event || "Unknown"}`,
`Area: ${props.areaDesc || "Unknown"}`,
`Severity: ${props.severity || "Unknown"}`,
`Status: ${props.status || "Unknown"}`,
`Headline: ${props.headline || "No headline"}`,
"---",
].join("\n");
}
interface ForecastPeriod {
name?: string;
temperature?: number;
temperatureUnit?: string;
windSpeed?: string;
windDirection?: string;
shortForecast?: string;
}
interface AlertsResponse {
features: AlertFeature[];
}
interface PointsResponse {
properties: {
forecast?: string;
};
}
interface ForecastResponse {
properties: {
periods: ForecastPeriod[];
};
}
```
### Implementing tool execution
The tool execution handler is responsible for actually executing the logic of each tool. Let's add it:
```typescript
// Register weather tools
server.tool(
"get-alerts",
"Get weather alerts for a state",
{
state: z.string().length(2).describe("Two-letter state code (e.g. CA, NY)"),
},
async ({ state }) => {
const stateCode = state.toUpperCase();
const alertsUrl = `${NWS_API_BASE}/alerts?area=${stateCode}`;
const alertsData = await makeNWSRequest<AlertsResponse>(alertsUrl);
if (!alertsData) {
return {
content: [
{
type: "text",
text: "Failed to retrieve alerts data",
},
],
};
}
const features = alertsData.features || [];
if (features.length === 0) {
return {
content: [
{
type: "text",
text: `No active alerts for ${stateCode}`,
},
],
};
}
const formattedAlerts = features.map(formatAlert);
const alertsText = `Active alerts for ${stateCode}:\n\n${formattedAlerts.join("\n")}`;
return {
content: [
{
type: "text",
text: alertsText,
},
],
};
},
);
server.tool(
"get-forecast",
"Get weather forecast for a location",
{
latitude: z.number().min(-90).max(90).describe("Latitude of the location"),
longitude: z.number().min(-180).max(180).describe("Longitude of the location"),
},
async ({ latitude, longitude }) => {
// Get grid point data
const pointsUrl = `${NWS_API_BASE}/points/${latitude.toFixed(4)},${longitude.toFixed(4)}`;
const pointsData = await makeNWSRequest<PointsResponse>(pointsUrl);
if (!pointsData) {
return {
content: [
{
type: "text",
text: `Failed to retrieve grid point data for coordinates: ${latitude}, ${longitude}. This location may not be supported by the NWS API (only US locations are supported).`,
},
],
};
}
const forecastUrl = pointsData.properties?.forecast;
if (!forecastUrl) {
return {
content: [
{
type: "text",
text: "Failed to get forecast URL from grid point data",
},
],
};
}
// Get forecast data
const forecastData = await makeNWSRequest<ForecastResponse>(forecastUrl);
if (!forecastData) {
return {
content: [
{
type: "text",
text: "Failed to retrieve forecast data",
},
],
};
}
const periods = forecastData.properties?.periods || [];
if (periods.length === 0) {
return {
content: [
{
type: "text",
text: "No forecast periods available",
},
],
};
}
// Format forecast periods
const formattedForecast = periods.map((period: ForecastPeriod) =>
[
`${period.name || "Unknown"}:`,
`Temperature: ${period.temperature || "Unknown"}°${period.temperatureUnit || "F"}`,
`Wind: ${period.windSpeed || "Unknown"} ${period.windDirection || ""}`,
`${period.shortForecast || "No forecast available"}`,
"---",
].join("\n"),
);
const forecastText = `Forecast for ${latitude}, ${longitude}:\n\n${formattedForecast.join("\n")}`;
return {
content: [
{
type: "text",
text: forecastText,
},
],
};
},
);
```
### Running the server
Finally, implement the main function to run the server:
```typescript
async function main() {
const transport = new StdioServerTransport();
await server.connect(transport);
console.error("Weather MCP Server running on stdio");
}
main().catch((error) => {
console.error("Fatal error in main():", error);
process.exit(1);
});
```
Make sure to run `npm run build` to build your server! This is a very important step in getting your server to connect.
Let's now test your server from an existing MCP host, Claude for Desktop.
## Testing your server with Claude for Desktop
<Note>
Claude for Desktop is not yet available on Linux. Linux users can proceed to the [Building a client](/quickstart/client) tutorial to build an MCP client that connects to the server we just built.
</Note>
First, make sure you have Claude for Desktop installed. [You can install the latest version
here.](https://claude.ai/download) If you already have Claude for Desktop, **make sure it's updated to the latest version.**
We'll need to configure Claude for Desktop for whichever MCP servers you want to use. To do this, open your Claude for Desktop App configuration at `~/Library/Application Support/Claude/claude_desktop_config.json` in a text editor. Make sure to create the file if it doesn't exist.
For example, if you have [VS Code](https://code.visualstudio.com/) installed:
<Tabs>
<Tab title="MacOS/Linux">
```bash
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
```
</Tab>
<Tab title="Windows">
```powershell
code $env:AppData\Claude\claude_desktop_config.json
```
</Tab>
</Tabs>
You'll then add your servers in the `mcpServers` key. The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured.
In this case, we'll add our single weather server like so:
<Tabs>
<Tab title="MacOS/Linux">
<CodeGroup>
```json Node
{
"mcpServers": {
"weather": {
"command": "node",
"args": [
"/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather/build/index.js"
]
}
}
}
```
</CodeGroup>
</Tab>
<Tab title="Windows">
<CodeGroup>
```json Node
{
"mcpServers": {
"weather": {
"command": "node",
"args": [
"C:\\PATH\\TO\\PARENT\\FOLDER\\weather\\build\\index.js"
]
}
}
}
```
</CodeGroup>
</Tab>
</Tabs>
This tells Claude for Desktop:
1. There's an MCP server named "weather"
2. Launch it by running `node /ABSOLUTE/PATH/TO/PARENT/FOLDER/weather/build/index.js`
Save the file, and restart **Claude for Desktop**.
</Tab>
<Tab title="Java">
<Note>
This is a quickstart demo based on Spring AI MCP auto-configuration and boot starters.
To learn how to create sync and async MCP Servers, manually, consult the [Java SDK Server](/sdk/java/mcp-server) documentation.
</Note>
Let's get started with building our weather server!
[You can find the complete code for what we'll be building here.](https://github.com/spring-projects/spring-ai-examples/tree/main/model-context-protocol/weather/starter-stdio-server)
For more information, see the [MCP Server Boot Starter](https://docs.spring.io/spring-ai/reference/api/mcp/mcp-server-boot-starter-docs.html) reference documentation.
For manual MCP Server implementation, refer to the [MCP Server Java SDK documentation](/sdk/java/mcp-server).
### System requirements
* Java 17 or higher installed.
* [Spring Boot 3.3.x](https://docs.spring.io/spring-boot/installing.html) or higher
### Set up your environment
Use the [Spring Initizer](https://start.spring.io/) to bootstrat the project.
You will need to add the following dependencies:
<Tabs>
<Tab title="Maven">
```xml
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-mcp-server-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
</dependency>
</dependencies>
```
</Tab>
<Tab title="Gradle">
```groovy
dependencies {
implementation platform("org.springframework.ai:spring-ai-mcp-server-spring-boot-starter")
implementation platform("org.springframework:spring-web")
}
```
</Tab>
</Tabs>
Then configure your application by setting the applicaiton properties:
<CodeGroup>
```bash application.properties
spring.main.bannerMode=off
logging.pattern.console=
```
```yaml application.yml
logging:
pattern:
console:
spring:
main:
banner-mode: off
```
</CodeGroup>
The [Server Configuration Properties](https://docs.spring.io/spring-ai/reference/api/mcp/mcp-server-boot-starter-docs.html#_configuration_properties) documents all available properties.
Now let's dive into building your server.
## Building your server
### Weather Service
Let's implement a [WeatheService.java](https://github.com/spring-projects/spring-ai-examples/blob/main/model-context-protocol/weather/starter-stdio-server/src/main/java/org/springframework/ai/mcp/sample/server/WeatherService.java) that uses a REST client to query the data from the National Weather Service API:
```java
@Service
public class WeatherService {
private final RestClient restClient;
public WeatherService() {
this.restClient = RestClient.builder()
.baseUrl("https://api.weather.gov")
.defaultHeader("Accept", "application/geo+json")
.defaultHeader("User-Agent", "WeatherApiClient/1.0 ([email protected])")
.build();
}
@Tool(description = "Get weather forecast for a specific latitude/longitude")
public String getWeatherForecastByLocation(
double latitude, // Latitude coordinate
double longitude // Longitude coordinate
) {
// Returns detailed forecast including:
// - Temperature and unit
// - Wind speed and direction
// - Detailed forecast description
}
@Tool(description = "Get weather alerts for a US state")
public String getAlerts(
@ToolParam(description = "Two-letter US state code (e.g. CA, NY") String state)
) {
// Returns active alerts including:
// - Event type
// - Affected area
// - Severity
// - Description
// - Safety instructions
}
// ......
}
```
The `@Service` annotation with auto-register the service in your applicaiton context.
The Spring AI `@Tool` annotation, making it easy to create and maintain MCP tools.
The auto-configuration will automatically register these tools with the MCP server.
### Create your Boot Applicaiton
```java
@SpringBootApplication
public class McpServerApplication {
public static void main(String[] args) {
SpringApplication.run(McpServerApplication.class, args);
}
@Bean
public ToolCallbackProvider weatherTools(WeatherService weatherService) {
return MethodToolCallbackProvider.builder().toolObjects(weatherService).build();
}
}
```
Uses the the `MethodToolCallbackProvider` utils to convert the `@Tools` into actionalble callbackes used by the MCP server.
### Running the server
Finally, let's build the server:
```bash
./mvnw clean install
```
This will generate a `mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar` file within the `target` folder.
Let's now test your server from an existing MCP host, Claude for Desktop.
## Testing your server with Claude for Desktop
<Note>
Claude for Desktop is not yet available on Linux.
</Note>
First, make sure you have Claude for Desktop installed.
[You can install the latest version here.](https://claude.ai/download) If you already have Claude for Desktop, **make sure it's updated to the latest version.**
We'll need to configure Claude for Desktop for whichever MCP servers you want to use.
To do this, open your Claude for Desktop App configuration at `~/Library/Application Support/Claude/claude_desktop_config.json` in a text editor.
Make sure to create the file if it doesn't exist.
For example, if you have [VS Code](https://code.visualstudio.com/) installed:
<Tabs>
<Tab title="MacOS/Linux">
```bash
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
```
</Tab>
<Tab title="Windows">
```powershell
code $env:AppData\Claude\claude_desktop_config.json
```
</Tab>
</Tabs>
You'll then add your servers in the `mcpServers` key.
The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured.
In this case, we'll add our single weather server like so:
<Tabs>
<Tab title="MacOS/Linux">
```json java
{
"mcpServers": {
"spring-ai-mcp-weather": {
"command": "java",
"args": [
"-Dspring.ai.mcp.server.stdio=true",
"-jar",
"/ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar"
]
}
}
}
```
</Tab>
<Tab title="Windows">
```json java
{
"mcpServers": {
"spring-ai-mcp-weather": {
"command": "java",
"args": [
"-Dspring.ai.mcp.server.transport=STDIO",
"-jar",
"C:\\ABSOLUTE\\PATH\\TO\\PARENT\\FOLDER\\weather\\mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar"
]
}
}
}
```
</Tab>
</Tabs>
<Note>
Make sure you pass in the absolute path to your server.
</Note>
This tells Claude for Desktop:
1. There's an MCP server named "my-weather-server"
2. To launch it by running `java -jar /ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar`
Save the file, and restart **Claude for Desktop**.
## Testing your server with Java client
### Create a MCP Client manually
Use the `McpClient` to connect to the server:
```java
var stdioParams = ServerParameters.builder("java")
.args("-jar", "/ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar")
.build();
var stdioTransport = new StdioClientTransport(stdioParams);
var mcpClient = McpClient.sync(stdioTransport).build();
mcpClient.initialize();
ListToolsResult toolsList = mcpClient.listTools();
CallToolResult weather = mcpClient.callTool(
new CallToolRequest("getWeatherForecastByLocation",
Map.of("latitude", "47.6062", "longitude", "-122.3321")));
CallToolResult alert = mcpClient.callTool(
new CallToolRequest("getAlerts", Map.of("state", "NY")));
mcpClient.closeGracefully();
```
### Use MCP Client Boot Starter
Create a new boot starter applicaiton using the `spring-ai-mcp-client-spring-boot-starter` dependency:
```xml
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-mcp-client-spring-boot-starter</artifactId>
</dependency>
```
and set the `spring.ai.mcp.client.stdio.servers-configuration` property to point to your `claude_desktop_config.json`.
You can re-use the existing Anthropic Destop configuration:
```properties
spring.ai.mcp.client.stdio.servers-configuration=file:PATH/TO/claude_desktop_config.json
```
When you start your client applicaiton, the auto-configuration will create, automatically MCP clients from the claude\_desktop\_config.json.
For more information, see the [MCP Client Boot Starters](https://docs.spring.io/spring-ai/reference/api/mcp/mcp-server-boot-client-docs.html) reference documentation.
## More Java MCP Server examples
The [starter-webflux-server](https://github.com/spring-projects/spring-ai-examples/tree/main/model-context-protocol/weather/starter-webflux-server) demonstrates how to create a MCP server using SSE transport.
It showcases how to define and register MCP Tools, Resources, and Prompts, using the Spring Boot's auto-configuration capabilities.
</Tab>
</Tabs>
### Test with commands
Let's make sure Claude for Desktop is picking up the two tools we've exposed in our `weather` server. You can do this by looking for the hammer <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/claude-desktop-mcp-hammer-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon:
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/visual-indicator-mcp-tools.png" />
</Frame>
After clicking on the hammer icon, you should see two tools listed:
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/available-mcp-tools.png" />
</Frame>
If your server isn't being picked up by Claude for Desktop, proceed to the [Troubleshooting](#troubleshooting) section for debugging tips.
If the hammer icon has shown up, you can now test your server by running the following commands in Claude for Desktop:
* What's the weather in Sacramento?
* What are the active weather alerts in Texas?
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/current-weather.png" />
</Frame>
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/weather-alerts.png" />
</Frame>
<Note>
Since this is the US National Weather service, the queries will only work for US locations.
</Note>
## What's happening under the hood
When you ask a question:
1. The client sends your question to Claude
2. Claude analyzes the available tools and decides which one(s) to use
3. The client executes the chosen tool(s) through the MCP server
4. The results are sent back to Claude
5. Claude formulates a natural language response
6. The response is displayed to you!
## Troubleshooting
<AccordionGroup>
<Accordion title="Claude for Desktop Integration Issues">
**Getting logs from Claude for Desktop**
Claude.app logging related to MCP is written to log files in `~/Library/Logs/Claude`:
* `mcp.log` will contain general logging about MCP connections and connection failures.
* Files named `mcp-server-SERVERNAME.log` will contain error (stderr) logging from the named server.
You can run the following command to list recent logs and follow along with any new ones:
```bash
# Check Claude's logs for errors
tail -n 20 -f ~/Library/Logs/Claude/mcp*.log
```
**Server not showing up in Claude**
1. Check your `claude_desktop_config.json` file syntax
2. Make sure the path to your project is absolute and not relative
3. Restart Claude for Desktop completely
**Tool calls failing silently**
If Claude attempts to use the tools but they fail:
1. Check Claude's logs for errors
2. Verify your server builds and runs without errors
3. Try restarting Claude for Desktop
**None of this is working. What do I do?**
Please refer to our [debugging guide](/docs/tools/debugging) for better debugging tools and more detailed guidance.
</Accordion>
<Accordion title="Weather API Issues">
**Error: Failed to retrieve grid point data**
This usually means either:
1. The coordinates are outside the US
2. The NWS API is having issues
3. You're being rate limited
Fix:
* Verify you're using US coordinates
* Add a small delay between requests
* Check the NWS API status page
**Error: No active alerts for \[STATE]**
This isn't an error - it just means there are no current weather alerts for that state. Try a different state or check during severe weather.
</Accordion>
</AccordionGroup>
<Note>
For more advanced troubleshooting, check out our guide on [Debugging MCP](/docs/tools/debugging)
</Note>
## Next steps
<CardGroup cols={2}>
<Card title="Building a client" icon="outlet" href="/quickstart/client">
Learn how to build your own MCP client that can connect to your server
</Card>
<Card title="Example servers" icon="grid" href="/examples">
Check out our gallery of official MCP servers and implementations
</Card>
<Card title="Debugging Guide" icon="bug" href="/docs/tools/debugging">
Learn how to effectively debug MCP servers and integrations
</Card>
<Card title="Building MCP with LLMs" icon="comments" href="/tutorials/building-mcp-with-llms">
Learn how to use LLMs like Claude to speed up your MCP development
</Card>
</CardGroup>
# For Claude Desktop Users
Source: https://modelcontextprotocol.io/quickstart/user
Get started using pre-built servers in Claude for Desktop.
In this tutorial, you will extend [Claude for Desktop](https://claude.ai/download) so that it can read from your computer's file system, write new files, move files, and even search files.
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-filesystem.png" />
</Frame>
Don't worry — it will ask you for your permission before executing these actions!
## 1. Download Claude for Desktop
Start by downloading [Claude for Desktop](https://claude.ai/download), choosing either macOS or Windows. (Linux is not yet supported for Claude for Desktop.)
Follow the installation instructions.
If you already have Claude for Desktop, make sure it's on the latest version by clicking on the Claude menu on your computer and selecting "Check for Updates..."
<Accordion title="Why Claude for Desktop and not Claude.ai?">
Because servers are locally run, MCP currently only supports desktop hosts. Remote hosts are in active development.
</Accordion>
## 2. Add the Filesystem MCP Server
To add this filesystem functionality, we will be installing a pre-built [Filesystem MCP Server](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem) to Claude for Desktop. This is one of dozens of [servers](https://github.com/modelcontextprotocol/servers/tree/main) created by Anthropic and the community.
Get started by opening up the Claude menu on your computer and select "Settings..." Please note that these are not the Claude Account Settings found in the app window itself.
This is what it should look like on a Mac:
<Frame style={{ textAlign: 'center' }}>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-menu.png" width="400" />
</Frame>
Click on "Developer" in the lefthand bar of the Settings pane, and then click on "Edit Config":
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-developer.png" />
</Frame>
This will create a configuration file at:
* macOS: `~/Library/Application Support/Claude/claude_desktop_config.json`
* Windows: `%APPDATA%\Claude\claude_desktop_config.json`
if you don't already have one, and will display the file in your file system.
Open up the configuration file in any text editor. Replace the file contents with this:
<Tabs>
<Tab title="MacOS/Linux">
```json
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-filesystem",
"/Users/username/Desktop",
"/Users/username/Downloads"
]
}
}
}
```
</Tab>
<Tab title="Windows">
```json
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-filesystem",
"C:\\Users\\username\\Desktop",
"C:\\Users\\username\\Downloads"
]
}
}
}
```
</Tab>
</Tabs>
Make sure to replace `username` with your computer's username. The paths should point to valid directories that you want Claude to be able to access and modify. It's set up to work for Desktop and Downloads, but you can add more paths as well.
You will also need [Node.js](https://nodejs.org) on your computer for this to run properly. To verify you have Node installed, open the command line on your computer.
* On macOS, open the Terminal from your Applications folder
* On Windows, press Windows + R, type "cmd", and press Enter
Once in the command line, verify you have Node installed by entering in the following command:
```bash
node --version
```
If you get an error saying "command not found" or "node is not recognized", download Node from [nodejs.org](https://nodejs.org/).
<Tip>
**How does the configuration file work?**
This configuration file tells Claude for Desktop which MCP servers to start up every time you start the application. In this case, we have added one server called "filesystem" that will use the Node `npx` command to install and run `@modelcontextprotocol/server-filesystem`. This server, described [here](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem), will let you access your file system in Claude for Desktop.
</Tip>
<Warning>
**Command Privileges**
Claude for Desktop will run the commands in the configuration file with the permissions of your user account, and access to your local files. Only add commands if you understand and trust the source.
</Warning>
## 3. Restart Claude
After updating your configuration file, you need to restart Claude for Desktop.
Upon restarting, you should see a hammer <img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/claude-desktop-mcp-hammer-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon in the bottom right corner of the input box:
<Frame>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-hammer.png" />
</Frame>
After clicking on the hammer icon, you should see the tools that come with the Filesystem MCP Server:
<Frame style={{ textAlign: 'center' }}>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-tools.png" width="400" />
</Frame>
If your server isn't being picked up by Claude for Desktop, proceed to the [Troubleshooting](#troubleshooting) section for debugging tips.
## 4. Try it out!
You can now talk to Claude and ask it about your filesystem. It should know when to call the relevant tools.
Things you might try asking Claude:
* Can you write a poem and save it to my desktop?
* What are some work-related files in my downloads folder?
* Can you take all the images on my desktop and move them to a new folder called "Images"?
As needed, Claude will call the relevant tools and seek your approval before taking an action:
<Frame style={{ textAlign: 'center' }}>
<img src="https://mintlify.s3.us-west-1.amazonaws.com/mcp/images/quickstart-approve.png" width="500" />
</Frame>
## Troubleshooting
<AccordionGroup>
<Accordion title="Server not showing up in Claude / hammer icon missing">
1. Restart Claude for Desktop completely
2. Check your `claude_desktop_config.json` file syntax
3. Make sure the file paths included in `claude_desktop_config.json` are valid and that they are absolute and not relative
4. Look at [logs](#getting-logs-from-claude-for-desktop) to see why the server is not connecting
5. In your command line, try manually running the server (replacing `username` as you did in `claude_desktop_config.json`) to see if you get any errors:
<Tabs>
<Tab title="MacOS/Linux">
```bash
npx -y @modelcontextprotocol/server-filesystem /Users/username/Desktop /Users/username/Downloads
```
</Tab>
<Tab title="Windows">
```bash
npx -y @modelcontextprotocol/server-filesystem C:\Users\username\Desktop C:\Users\username\Downloads
```
</Tab>
</Tabs>
</Accordion>
<Accordion title="Getting logs from Claude for Desktop">
Claude.app logging related to MCP is written to log files in:
* macOS: `~/Library/Logs/Claude`
* Windows: `%APPDATA%\Claude\logs`
* `mcp.log` will contain general logging about MCP connections and connection failures.
* Files named `mcp-server-SERVERNAME.log` will contain error (stderr) logging from the named server.
You can run the following command to list recent logs and follow along with any new ones (on Windows, it will only show recent logs):
<Tabs>
<Tab title="MacOS/Linux">
```bash
# Check Claude's logs for errors
tail -n 20 -f ~/Library/Logs/Claude/mcp*.log
```
</Tab>
<Tab title="Windows">
```bash
type "%APPDATA%\Claude\logs\mcp*.log"
```
</Tab>
</Tabs>
</Accordion>
<Accordion title="Tool calls failing silently">
If Claude attempts to use the tools but they fail:
1. Check Claude's logs for errors
2. Verify your server builds and runs without errors
3. Try restarting Claude for Desktop
</Accordion>
<Accordion title="None of this is working. What do I do?">
Please refer to our [debugging guide](/docs/tools/debugging) for better debugging tools and more detailed guidance.
</Accordion>
<Accordion title="ENOENT error and `${APPDATA}` in paths on Windows">
If your configured server fails to load, and you see within its logs an error referring to `${APPDATA}` within a path, you may need to add the expanded value of `%APPDATA%` to your `env` key in `claude_desktop_config.json`:
```json
{
"brave-search": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"env": {
"APPDATA": "C:\\Users\\user\\AppData\\Roaming\\",
"BRAVE_API_KEY": "..."
}
}
}
```
With this change in place, launch Claude Desktop once again.
<Warning>
**NPM should be installed globally**
The `npx` command may continue to fail if you have not installed NPM globally. If NPM is already installed globally, you will find `%APPDATA%\npm` exists on your system. If not, you can install NPM globally by running the following command:
```bash
npm install -g npm
```
</Warning>
</Accordion>
</AccordionGroup>
## Next steps
<CardGroup cols={2}>
<Card title="Explore other servers" icon="grid" href="/examples">
Check out our gallery of official MCP servers and implementations
</Card>
<Card title="Build your own server" icon="code" href="/quickstart/server">
Now build your own custom server to use in Claude for Desktop and other clients
</Card>
</CardGroup>
# MCP Client
Source: https://modelcontextprotocol.io/sdk/java/mcp-client
Learn how to use the Model Context Protocol (MCP) client to interact with MCP servers
# Model Context Protocol Client
The MCP Client is a key component in the Model Context Protocol (MCP) architecture, responsible for establishing and managing connections with MCP servers. It implements the client-side of the protocol, handling:
* Protocol version negotiation to ensure compatibility with servers
* Capability negotiation to determine available features
* Message transport and JSON-RPC communication
* Tool discovery and execution
* Resource access and management
* Prompt system interactions
* Optional features like roots management and sampling support
The client provides both synchronous and asynchronous APIs for flexibility in different application contexts.
<Tabs>
<Tab title="Sync API">
```java
// Create a sync client with custom configuration
McpSyncClient client = McpClient.sync(transport)
.requestTimeout(Duration.ofSeconds(10))
.capabilities(ClientCapabilities.builder()
.roots(true) // Enable roots capability
.sampling() // Enable sampling capability
.build())
.sampling(request -> new CreateMessageResult(response))
.build();
// Initialize connection
client.initialize();
// List available tools
ListToolsResult tools = client.listTools();
// Call a tool
CallToolResult result = client.callTool(
new CallToolRequest("calculator",
Map.of("operation", "add", "a", 2, "b", 3))
);
// List and read resources
ListResourcesResult resources = client.listResources();
ReadResourceResult resource = client.readResource(
new ReadResourceRequest("resource://uri")
);
// List and use prompts
ListPromptsResult prompts = client.listPrompts();
GetPromptResult prompt = client.getPrompt(
new GetPromptRequest("greeting", Map.of("name", "Spring"))
);
// Add/remove roots
client.addRoot(new Root("file:///path", "description"));
client.removeRoot("file:///path");
// Close client
client.closeGracefully();
```
</Tab>
<Tab title="Async API">
```java
// Create an async client with custom configuration
McpAsyncClient client = McpClient.async(transport)
.requestTimeout(Duration.ofSeconds(10))
.capabilities(ClientCapabilities.builder()
.roots(true) // Enable roots capability
.sampling() // Enable sampling capability
.build())
.sampling(request -> Mono.just(new CreateMessageResult(response)))
.toolsChangeConsumer(tools -> Mono.fromRunnable(() -> {
logger.info("Tools updated: {}", tools);
}))
.resourcesChangeConsumer(resources -> Mono.fromRunnable(() -> {
logger.info("Resources updated: {}", resources);
}))
.promptsChangeConsumer(prompts -> Mono.fromRunnable(() -> {
logger.info("Prompts updated: {}", prompts);
}))
.build();
// Initialize connection and use features
client.initialize()
.flatMap(initResult -> client.listTools())
.flatMap(tools -> {
return client.callTool(new CallToolRequest(
"calculator",
Map.of("operation", "add", "a", 2, "b", 3)
));
})
.flatMap(result -> {
return client.listResources()
.flatMap(resources ->
client.readResource(new ReadResourceRequest("resource://uri"))
);
})
.flatMap(resource -> {
return client.listPrompts()
.flatMap(prompts ->
client.getPrompt(new GetPromptRequest(
"greeting",
Map.of("name", "Spring")
))
);
})
.flatMap(prompt -> {
return client.addRoot(new Root("file:///path", "description"))
.then(client.removeRoot("file:///path"));
})
.doFinally(signalType -> {
client.closeGracefully().subscribe();
})
.subscribe();
```
</Tab>
</Tabs>
## Client Transport
The transport layer handles the communication between MCP clients and servers, providing different implementations for various use cases. The client transport manages message serialization, connection establishment, and protocol-specific communication patterns.
<Tabs>
<Tab title="STDIO">
Creates transport for in-process based communication
```java
ServerParameters params = ServerParameters.builder("npx")
.args("-y", "@modelcontextprotocol/server-everything", "dir")
.build();
McpTransport transport = new StdioClientTransport(params);
```
</Tab>
<Tab title="SSE (HttpClient)">
Creates a framework agnostic (pure Java API) SSE client transport. Included in the core mcp module.
```java
McpTransport transport = new HttpClientSseClientTransport("http://your-mcp-server");
```
</Tab>
<Tab title="SSE (WebFlux)">
Creates WebFlux-based SSE client transport. Requires the mcp-webflux-sse-transport dependency.
```java
WebClient.Builder webClientBuilder = WebClient.builder()
.baseUrl("http://your-mcp-server");
McpTransport transport = new WebFluxSseClientTransport(webClientBuilder);
```
</Tab>
</Tabs>
## Client Capabilities
The client can be configured with various capabilities:
```java
var capabilities = ClientCapabilities.builder()
.roots(true) // Enable filesystem roots support with list changes notifications
.sampling() // Enable LLM sampling support
.build();
```
### Roots Support
Roots define the boundaries of where servers can operate within the filesystem:
```java
// Add a root dynamically
client.addRoot(new Root("file:///path", "description"));
// Remove a root
client.removeRoot("file:///path");
// Notify server of roots changes
client.rootsListChangedNotification();
```
The roots capability allows servers to:
* Request the list of accessible filesystem roots
* Receive notifications when the roots list changes
* Understand which directories and files they have access to
### Sampling Support
Sampling enables servers to request LLM interactions ("completions" or "generations") through the client:
```java
// Configure sampling handler
Function<CreateMessageRequest, CreateMessageResult> samplingHandler = request -> {
// Sampling implementation that interfaces with LLM
return new CreateMessageResult(response);
};
// Create client with sampling support
var client = McpClient.sync(transport)
.capabilities(ClientCapabilities.builder()
.sampling()
.build())
.sampling(samplingHandler)
.build();
```
This capability allows:
* Servers to leverage AI capabilities without requiring API keys
* Clients to maintain control over model access and permissions
* Support for both text and image-based interactions
* Optional inclusion of MCP server context in prompts
## Using MCP Clients
### Tool Execution
Tools are server-side functions that clients can discover and execute. The MCP client provides methods to list available tools and execute them with specific parameters. Each tool has a unique name and accepts a map of parameters.
<Tabs>
<Tab title="Sync API">
```java
// List available tools and their names
var tools = client.listTools();
tools.forEach(tool -> System.out.println(tool.getName()));
// Execute a tool with parameters
var result = client.callTool("calculator", Map.of(
"operation", "add",
"a", 1,
"b", 2
));
```
</Tab>
<Tab title="Async API">
```java
// List available tools asynchronously
client.listTools()
.doOnNext(tools -> tools.forEach(tool ->
System.out.println(tool.getName())))
.subscribe();
// Execute a tool asynchronously
client.callTool("calculator", Map.of(
"operation", "add",
"a", 1,
"b", 2
))
.subscribe();
```
</Tab>
</Tabs>
### Resource Access
Resources represent server-side data sources that clients can access using URI templates. The MCP client provides methods to discover available resources and retrieve their contents through a standardized interface.
<Tabs>
<Tab title="Sync API">
```java
// List available resources and their names
var resources = client.listResources();
resources.forEach(resource -> System.out.println(resource.getName()));
// Retrieve resource content using a URI template
var content = client.getResource("file", Map.of(
"path", "/path/to/file.txt"
));
```
</Tab>
<Tab title="Async API">
```java
// List available resources asynchronously
client.listResources()
.doOnNext(resources -> resources.forEach(resource ->
System.out.println(resource.getName())))
.subscribe();
// Retrieve resource content asynchronously
client.getResource("file", Map.of(
"path", "/path/to/file.txt"
))
.subscribe();
```
</Tab>
</Tabs>
### Prompt System
The prompt system enables interaction with server-side prompt templates. These templates can be discovered and executed with custom parameters, allowing for dynamic text generation based on predefined patterns.
<Tabs>
<Tab title="Sync API">
```java
// List available prompt templates
var prompts = client.listPrompts();
prompts.forEach(prompt -> System.out.println(prompt.getName()));
// Execute a prompt template with parameters
var response = client.executePrompt("echo", Map.of(
"text", "Hello, World!"
));
```
</Tab>
<Tab title="Async API">
```java
// List available prompt templates asynchronously
client.listPrompts()
.doOnNext(prompts -> prompts.forEach(prompt ->
System.out.println(prompt.getName())))
.subscribe();
// Execute a prompt template asynchronously
client.executePrompt("echo", Map.of(
"text", "Hello, World!"
))
.subscribe();
```
</Tab>
</Tabs>
# Overview
Source: https://modelcontextprotocol.io/sdk/java/mcp-overview
Introduction to the Model Context Protocol (MCP) Java SDK
Java SDK for the [Model Context Protocol](https://modelcontextprotocol.org/docs/concepts/architecture)
enables standardized integration between AI models and tools.
## Features
* MCP Client and MCP Server implementations supporting:
* Protocol [version compatibility negotiation](https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/lifecycle/#initialization)
* [Tool](https://spec.modelcontextprotocol.io/specification/2024-11-05/server/tools/) discovery, execution, list change notifications
* [Resource](https://spec.modelcontextprotocol.io/specification/2024-11-05/server/resources/) management with URI templates
* [Roots](https://spec.modelcontextprotocol.io/specification/2024-11-05/client/roots/) list management and notifications
* [Prompt](https://spec.modelcontextprotocol.io/specification/2024-11-05/server/prompts/) handling and management
* [Sampling](https://spec.modelcontextprotocol.io/specification/2024-11-05/client/sampling/) support for AI model interactions
* Multiple transport implementations:
* Default transports:
* Stdio-based transport for process-based communication
* Java HttpClient-based SSE client transport for HTTP SSE Client-side streaming
* Servlet-based SSE server transport for HTTP SSE Server streaming
* Spring-based transports:
* WebFlux SSE client and server transports for reactive HTTP streaming
* WebMVC SSE transport for servlet-based HTTP streaming
* Supports Synchronous and Asynchronous programming paradigms
## Architecture
The SDK follows a layered architecture with clear separation of concerns:

* **Client/Server Layer (McpClient/McpServer)**: Both use McpSession for sync/async operations,
with McpClient handling client-side protocol operations and McpServer managing server-side protocol operations.
* **Session Layer (McpSession)**: Manages communication patterns and state using DefaultMcpSession implementation.
* **Transport Layer (McpTransport)**: Handles JSON-RPC message serialization/deserialization via:
* StdioTransport (stdin/stdout) in the core module
* HTTP SSE transports in dedicated transport modules (Java HttpClient, Spring WebFlux, Spring WebMVC)
The MCP Client is a key component in the Model Context Protocol (MCP) architecture, responsible for establishing and managing connections with MCP servers.
It implements the client-side of the protocol.

The MCP Server is a foundational component in the Model Context Protocol (MCP) architecture that provides tools, resources, and capabilities to clients.
It implements the server-side of the protocol.

Key Interactions:
* **Client/Server Initialization**: Transport setup, protocol compatibility check, capability negotiation, and implementation details exchange.
* **Message Flow**: JSON-RPC message handling with validation, type-safe response processing, and error handling.
* **Resource Management**: Resource discovery, URI template-based access, subscription system, and content retrieval.
## Dependencies
Add the following Maven dependency to your project:
<Tabs>
<Tab title="Maven">
The core MCP functionality:
```xml
<dependency>
<groupId>io.modelcontextprotocol.sdk</groupId>
<artifactId>mcp</artifactId>
</dependency>
```
For HTTP SSE transport implementations, add one of the following dependencies:
```xml
<!-- Spring WebFlux-based SSE client and server transport -->
<dependency>
<groupId>io.modelcontextprotocol.sdk</groupId>
<artifactId>mcp-spring-webflux</artifactId>
</dependency>
<!-- Spring WebMVC-based SSE server transport -->
<dependency>
<groupId>io.modelcontextprotocol.sdk</groupId>
<artifactId>mcp-spring-webmvc</artifactId>
</dependency>
```
</Tab>
<Tab title="Gradle">
The core MCP functionality:
```groovy
dependencies {
implementation platform("io.modelcontextprotocol.sdk:mcp")
//...
}
```
For HTTP SSE transport implementations, add one of the following dependencies:
```groovy
// Spring WebFlux-based SSE client and server transport
dependencies {
implementation platform("io.modelcontextprotocol.sdk:mcp-spring-webflux")
}
// Spring WebMVC-based SSE server transport
dependencies {
implementation platform("io.modelcontextprotocol.sdk:mcp-spring-webmvc")
}
```
</Tab>
</Tabs>
### Bill of Materials (BOM)
The Bill of Materials (BOM) declares the recommended versions of all the dependencies used by a given release.
Using the BOM from your application's build script avoids the need for you to specify and maintain the dependency versions yourself.
Instead, the version of the BOM you're using determines the utilized dependency versions.
It also ensures that you're using supported and tested versions of the dependencies by default, unless you choose to override them.
Add the BOM to your project:
<Tabs>
<Tab title="Maven">
```xml
<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.modelcontextprotocol.sdk</groupId>
<artifactId>mcp-bom</artifactId>
<version>0.7.0</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
```
</Tab>
<Tab title="Gradle">
```groovy
dependencies {
implementation platform("io.modelcontextprotocol.sdk:mcp-bom:0.7.0")
//...
}
```
Gradle users can also use the Spring AI MCP BOM by leveraging Gradle (5.0+) native support for declaring dependency constraints using a Maven BOM.
This is implemented by adding a 'platform' dependency handler method to the dependencies section of your Gradle build script.
As shown in the snippet above this can then be followed by version-less declarations of the Starter Dependencies for the one or more spring-ai modules you wish to use, e.g. spring-ai-openai.
</Tab>
</Tabs>
Replace the version number with the version of the BOM you want to use.
### Available Dependencies
The following dependencies are available and managed by the BOM:
* Core Dependencies
* `io.modelcontextprotocol.sdk:mcp` - Core MCP library providing the base functionality and APIs for Model Context Protocol implementation.
* Transport Dependencies
* `io.modelcontextprotocol.sdk:mcp-spring-webflux` - WebFlux-based Server-Sent Events (SSE) transport implementation for reactive applications.
* `io.modelcontextprotocol.sdk:mcp-spring-webmvc` - WebMVC-based Server-Sent Events (SSE) transport implementation for servlet-based applications.
* Testing Dependencies
* `io.modelcontextprotocol.sdk:mcp-test` - Testing utilities and support for MCP-based applications.
# MCP Server
Source: https://modelcontextprotocol.io/sdk/java/mcp-server
Learn how to implement and configure a Model Context Protocol (MCP) server
## Overview
The MCP Server is a foundational component in the Model Context Protocol (MCP) architecture that provides tools, resources, and capabilities to clients. It implements the server-side of the protocol, responsible for:
* Exposing tools that clients can discover and execute
* Managing resources with URI-based access patterns
* Providing prompt templates and handling prompt requests
* Supporting capability negotiation with clients
* Implementing server-side protocol operations
* Managing concurrent client connections
* Providing structured logging and notifications
The server supports both synchronous and asynchronous APIs, allowing for flexible integration in different application contexts.
<Tabs>
<Tab title="Sync API">
```java
// Create a server with custom configuration
McpSyncServer syncServer = McpServer.sync(transport)
.serverInfo("my-server", "1.0.0")
.capabilities(ServerCapabilities.builder()
.resources(true) // Enable resource support
.tools(true) // Enable tool support
.prompts(true) // Enable prompt support
.logging() // Enable logging support
.build())
.build();
// Register tools, resources, and prompts
syncServer.addTool(syncToolRegistration);
syncServer.addResource(syncResourceRegistration);
syncServer.addPrompt(syncPromptRegistration);
// Send logging notifications
syncServer.loggingNotification(LoggingMessageNotification.builder()
.level(LoggingLevel.INFO)
.logger("custom-logger")
.data("Server initialized")
.build());
// Close the server when done
syncServer.close();
```
</Tab>
<Tab title="Async API">
```java
// Create an async server with custom configuration
McpAsyncServer asyncServer = McpServer.async(transport)
.serverInfo("my-server", "1.0.0")
.capabilities(ServerCapabilities.builder()
.resources(true) // Enable resource support
.tools(true) // Enable tool support
.prompts(true) // Enable prompt support
.logging() // Enable logging support
.build())
.build();
// Register tools, resources, and prompts
asyncServer.addTool(asyncToolRegistration)
.doOnSuccess(v -> logger.info("Tool registered"))
.subscribe();
asyncServer.addResource(asyncResourceRegistration)
.doOnSuccess(v -> logger.info("Resource registered"))
.subscribe();
asyncServer.addPrompt(asyncPromptRegistration)
.doOnSuccess(v -> logger.info("Prompt registered"))
.subscribe();
// Send logging notifications
asyncServer.loggingNotification(LoggingMessageNotification.builder()
.level(LoggingLevel.INFO)
.logger("custom-logger")
.data("Server initialized")
.build());
// Close the server when done
asyncServer.close()
.doOnSuccess(v -> logger.info("Server closed"))
.subscribe();
```
</Tab>
</Tabs>
## Server Transport
The transport layer in the MCP SDK is responsible for handling the communication between clients and servers. It provides different implementations to support various communication protocols and patterns. The SDK includes several built-in transport implementations:
<Tabs>
<Tab title="STDIO">
<>
Create in-process based transport:
```java
StdioServerTransport transport = new StdioServerTransport(new ObjectMapper());
```
Provides bidirectional JSON-RPC message handling over standard input/output streams with non-blocking message processing, serialization/deserialization, and graceful shutdown support.
Key features:
<ul>
<li>Bidirectional communication through stdin/stdout</li>
<li>Process-based integration support</li>
<li>Simple setup and configuration</li>
<li>Lightweight implementation</li>
</ul>
</>
</Tab>
<Tab title="SSE (WebFlux)">
<>
<p>Creates WebFlux-based SSE server transport.<br />Requires the <code>mcp-spring-webflux</code> dependency.</p>
```java
@Configuration
class McpConfig {
@Bean
WebFluxSseServerTransport webFluxSseServerTransport(ObjectMapper mapper) {
return new WebFluxSseServerTransport(mapper, "/mcp/message");
}
@Bean
RouterFunction<?> mcpRouterFunction(WebFluxSseServerTransport transport) {
return transport.getRouterFunction();
}
}
```
<p>Implements the MCP HTTP with SSE transport specification, providing:</p>
<ul>
<li>Reactive HTTP streaming with WebFlux</li>
<li>Concurrent client connections through SSE endpoints</li>
<li>Message routing and session management</li>
<li>Graceful shutdown capabilities</li>
</ul>
</>
</Tab>
<Tab title="SSE (WebMvc)">
<>
<p>Creates WebMvc-based SSE server transport.<br />Requires the <code>mcp-spring-webmvc</code> dependency.</p>
```java
@Configuration
@EnableWebMvc
class McpConfig {
@Bean
WebMvcSseServerTransport webMvcSseServerTransport(ObjectMapper mapper) {
return new WebMvcSseServerTransport(mapper, "/mcp/message");
}
@Bean
RouterFunction<ServerResponse> mcpRouterFunction(WebMvcSseServerTransport transport) {
return transport.getRouterFunction();
}
}
```
<p>Implements the MCP HTTP with SSE transport specification, providing:</p>
<ul>
<li>Server-side event streaming</li>
<li>Integration with Spring WebMVC</li>
<li>Support for traditional web applications</li>
<li>Synchronous operation handling</li>
</ul>
</>
</Tab>
<Tab title="SSE (Servlet)">
<>
<p>
Creates a Servlet-based SSE server transport. It is included in the core <code>mcp</code> module.<br />
The <code>HttpServletSseServerTransport</code> can be used with any Servlet container.<br />
To use it with a Spring Web application, you can register it as a Servlet bean:
</p>
```java
@Configuration
@EnableWebMvc
public class McpServerConfig implements WebMvcConfigurer {
@Bean
public HttpServletSseServerTransport servletSseServerTransport() {
return new HttpServletSseServerTransport(new ObjectMapper(), "/mcp/message");
}
@Bean
public ServletRegistrationBean customServletBean(HttpServletSseServerTransport servlet) {
return new ServletRegistrationBean(servlet);
}
}
```
<p>
Implements the MCP HTTP with SSE transport specification using the traditional Servlet API, providing:
</p>
<ul>
<li>Asynchronous message handling using Servlet 6.0 async support</li>
<li>Session management for multiple client connections</li>
<li>
Two types of endpoints:
<ul>
<li>SSE endpoint (<code>/sse</code>) for server-to-client events</li>
<li>Message endpoint (configurable) for client-to-server requests</li>
</ul>
</li>
<li>Error handling and response formatting</li>
<li>Graceful shutdown support</li>
</ul>
</>
</Tab>
</Tabs>
## Server Capabilities
The server can be configured with various capabilities:
```java
var capabilities = ServerCapabilities.builder()
.resources(false, true) // Resource support with list changes notifications
.tools(true) // Tool support with list changes notifications
.prompts(true) // Prompt support with list changes notifications
.logging() // Enable logging support (enabled by default with loging level INFO)
.build();
```
### Logging Support
The server provides structured logging capabilities that allow sending log messages to clients with different severity levels:
```java
// Send a log message to clients
server.loggingNotification(LoggingMessageNotification.builder()
.level(LoggingLevel.INFO)
.logger("custom-logger")
.data("Custom log message")
.build());
```
Clients can control the minimum logging level they receive through the `mcpClient.setLoggingLevel(level)` request. Messages below the set level will be filtered out.
Supported logging levels (in order of increasing severity): DEBUG (0), INFO (1), NOTICE (2), WARNING (3), ERROR (4), CRITICAL (5), ALERT (6), EMERGENCY (7)
### Tool Registration
<Tabs>
<Tab title="Sync">
```java
// Sync tool registration
var schema = """
{
"type" : "object",
"id" : "urn:jsonschema:Operation",
"properties" : {
"operation" : {
"type" : "string"
},
"a" : {
"type" : "number"
},
"b" : {
"type" : "number"
}
}
}
""";
var syncToolRegistration = new McpServerFeatures.SyncToolRegistration(
new Tool("calculator", "Basic calculator", schema),
arguments -> {
// Tool implementation
return new CallToolResult(result, false);
}
);
```
</Tab>
<Tab title="Async">
```java
// Async tool registration
var schema = """
{
"type" : "object",
"id" : "urn:jsonschema:Operation",
"properties" : {
"operation" : {
"type" : "string"
},
"a" : {
"type" : "number"
},
"b" : {
"type" : "number"
}
}
}
""";
var asyncToolRegistration = new McpServerFeatures.AsyncToolRegistration(
new Tool("calculator", "Basic calculator", schema),
arguments -> {
// Tool implementation
return Mono.just(new CallToolResult(result, false));
}
);
```
</Tab>
</Tabs>
### Resource Registration
<Tabs>
<Tab title="Sync">
```java
// Sync resource registration
var syncResourceRegistration = new McpServerFeatures.SyncResourceRegistration(
new Resource("custom://resource", "name", "description", "mime-type", null),
request -> {
// Resource read implementation
return new ReadResourceResult(contents);
}
);
```
</Tab>
<Tab title="Async">
```java
// Async resource registration
var asyncResourceRegistration = new McpServerFeatures.AsyncResourceRegistration(
new Resource("custom://resource", "name", "description", "mime-type", null),
request -> {
// Resource read implementation
return Mono.just(new ReadResourceResult(contents));
}
);
```
</Tab>
</Tabs>
### Prompt Registration
<Tabs>
<Tab title="Sync">
```java
// Sync prompt registration
var syncPromptRegistration = new McpServerFeatures.SyncPromptRegistration(
new Prompt("greeting", "description", List.of(
new PromptArgument("name", "description", true)
)),
request -> {
// Prompt implementation
return new GetPromptResult(description, messages);
}
);
```
</Tab>
<Tab title="Async">
```java
// Async prompt registration
var asyncPromptRegistration = new McpServerFeatures.AsyncPromptRegistration(
new Prompt("greeting", "description", List.of(
new PromptArgument("name", "description", true)
)),
request -> {
// Prompt implementation
return Mono.just(new GetPromptResult(description, messages));
}
);
```
</Tab>
</Tabs>
## Error Handling
The SDK provides comprehensive error handling through the McpError class, covering protocol compatibility, transport communication, JSON-RPC messaging, tool execution, resource management, prompt handling, timeouts, and connection issues. This unified error handling approach ensures consistent and reliable error management across both synchronous and asynchronous operations.
# Building MCP with LLMs
Source: https://modelcontextprotocol.io/tutorials/building-mcp-with-llms
Speed up your MCP development using LLMs such as Claude!
This guide will help you use LLMs to help you build custom Model Context Protocol (MCP) servers and clients. We'll be focusing on Claude for this tutorial, but you can do this with any frontier LLM.
## Preparing the documentation
Before starting, gather the necessary documentation to help Claude understand MCP:
1. Visit [https://modelcontextprotocol.io/llms-full.txt](https://modelcontextprotocol.io/llms-full.txt) and copy the full documentation text
2. Navigate to either the [MCP TypeScript SDK](https://github.com/modelcontextprotocol/typescript-sdk) or [Python SDK repository](https://github.com/modelcontextprotocol/python-sdk)
3. Copy the README files and other relevant documentation
4. Paste these documents into your conversation with Claude
## Describing your server
Once you've provided the documentation, clearly describe to Claude what kind of server you want to build. Be specific about:
* What resources your server will expose
* What tools it will provide
* Any prompts it should offer
* What external systems it needs to interact with
For example:
```
Build an MCP server that:
- Connects to my company's PostgreSQL database
- Exposes table schemas as resources
- Provides tools for running read-only SQL queries
- Includes prompts for common data analysis tasks
```
## Working with Claude
When working with Claude on MCP servers:
1. Start with the core functionality first, then iterate to add more features
2. Ask Claude to explain any parts of the code you don't understand
3. Request modifications or improvements as needed
4. Have Claude help you test the server and handle edge cases
Claude can help implement all the key MCP features:
* Resource management and exposure
* Tool definitions and implementations
* Prompt templates and handlers
* Error handling and logging
* Connection and transport setup
## Best practices
When building MCP servers with Claude:
* Break down complex servers into smaller pieces
* Test each component thoroughly before moving on
* Keep security in mind - validate inputs and limit access appropriately
* Document your code well for future maintenance
* Follow MCP protocol specifications carefully
## Next steps
After Claude helps you build your server:
1. Review the generated code carefully
2. Test the server with the MCP Inspector tool
3. Connect it to Claude.app or other MCP clients
4. Iterate based on real usage and feedback
Remember that Claude can help you modify and improve your server as requirements change over time.
Need more guidance? Just ask Claude specific questions about implementing MCP features or troubleshooting issues that arise.
|