File size: 24,406 Bytes
bc987d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
"""
Contextualized AI Tutoring tools for TutorX.
Provides step-by-step guidance, alternative explanations, and conversational AI tutoring.
"""

import json
import uuid
from datetime import datetime, timedelta
from typing import Dict, Any, List, Optional
from mcp_server.mcp_instance import mcp
from mcp_server.model.gemini_flash import GeminiFlash

MODEL = GeminiFlash()

# Tutoring session storage
tutoring_sessions = {}

def extract_json_from_text(text: str):
    """Extract JSON from text response"""
    import re
    if not text or not isinstance(text, str):
        return None
    # Remove code fences
    text = re.sub(r'^\s*```(?:json)?\s*', '', text, flags=re.IGNORECASE)
    text = re.sub(r'\s*```\s*$', '', text, flags=re.IGNORECASE)
    text = text.strip()
    # Remove trailing commas
    text = re.sub(r',([ \t\r\n]*[}}\]])', r'\1', text)
    return json.loads(text)

class TutoringSession:
    """Manages a tutoring session with context and memory"""
    
    def __init__(self, session_id: str, student_id: str, subject: str = "general"):
        self.session_id = session_id
        self.student_id = student_id
        self.subject = subject
        self.created_at = datetime.utcnow()
        self.last_activity = datetime.utcnow()
        self.conversation_history = []
        self.current_topic = None
        self.learning_objectives = []
        self.student_understanding_level = 0.5  # 0.0 to 1.0
        self.preferred_explanation_style = "detailed"  # detailed, simple, visual, step-by-step
        self.difficulty_preference = 0.5  # 0.0 to 1.0
        
    def add_interaction(self, query: str, response: str, interaction_type: str = "question"):
        """Add an interaction to the session history"""
        self.conversation_history.append({
            "timestamp": datetime.utcnow().isoformat(),
            "query": query,
            "response": response,
            "type": interaction_type,
            "understanding_level": self.student_understanding_level
        })
        self.last_activity = datetime.utcnow()
        
    def get_context_summary(self) -> str:
        """Generate a context summary for the AI tutor"""
        recent_interactions = self.conversation_history[-5:]  # Last 5 interactions
        
        context = f"""
        Session Context:
        - Student ID: {self.student_id}
        - Subject: {self.subject}
        - Current Topic: {self.current_topic or 'Not specified'}
        - Understanding Level: {self.student_understanding_level:.2f}/1.0
        - Preferred Style: {self.preferred_explanation_style}
        - Session Duration: {(datetime.utcnow() - self.created_at).total_seconds() / 60:.1f} minutes
        
        Recent Conversation:
        """
        
        for interaction in recent_interactions:
            context += f"\nStudent: {interaction['query']}\nTutor: {interaction['response'][:100]}...\n"
            
        return context

@mcp.tool()
async def start_tutoring_session(student_id: str, subject: str = "general", 
                               learning_objectives: List[str] = None) -> dict:
    """
    Start a new AI tutoring session with context management.
    
    Args:
        student_id: Student identifier
        subject: Subject area for tutoring
        learning_objectives: List of learning objectives for the session
        
    Returns:
        Dictionary with session information
    """
    try:
        session_id = str(uuid.uuid4())
        session = TutoringSession(session_id, student_id, subject)
        
        if learning_objectives:
            session.learning_objectives = learning_objectives
            
        tutoring_sessions[session_id] = session
        
        # Generate welcome message
        prompt = f"""
        You are an expert AI tutor starting a new tutoring session.
        
        Student ID: {student_id}
        Subject: {subject}
        Learning Objectives: {learning_objectives or 'To be determined based on student needs'}
        
        Generate a welcoming introduction that:
        1. Welcomes the student warmly
        2. Explains your role as their AI tutor
        3. Asks about their current understanding or what they'd like to learn
        4. Sets expectations for the tutoring session
        
        Return a JSON object with:
        - "welcome_message": friendly welcome text
        - "suggested_topics": list of 3-5 topics they might want to explore
        - "session_guidelines": brief explanation of how the tutoring works
        """
        
        response = await MODEL.generate_text(prompt, temperature=0.7)
        welcome_data = extract_json_from_text(response)
        
        return {
            "success": True,
            "session_id": session_id,
            "student_id": student_id,
            "subject": subject,
            "created_at": session.created_at.isoformat(),
            **welcome_data
        }
        
    except Exception as e:
        return {
            "success": False,
            "error": f"Failed to start tutoring session: {str(e)}"
        }

@mcp.tool()
async def ai_tutor_chat(session_id: str, student_query: str, 
                       request_type: str = "explanation") -> dict:
    """
    Process student query with contextualized AI tutoring.
    
    Args:
        session_id: Active tutoring session ID
        student_query: Student's question or request
        request_type: Type of request ('explanation', 'step_by_step', 'alternative', 'practice', 'clarification')
        
    Returns:
        Dictionary with tutor response and guidance
    """
    try:
        if session_id not in tutoring_sessions:
            return {
                "success": False,
                "error": "Invalid session ID. Please start a new tutoring session."
            }
            
        session = tutoring_sessions[session_id]
        context = session.get_context_summary()
        
        # Analyze student query to understand their needs
        analysis_prompt = f"""
        Analyze this student query in the context of their tutoring session:
        
        {context}
        
        Student Query: "{student_query}"
        Request Type: {request_type}
        
        Analyze and return JSON with:
        - "topic_identified": main topic/concept the student is asking about
        - "difficulty_level": estimated difficulty (0.0 to 1.0)
        - "understanding_gaps": potential areas where student might be confused
        - "prerequisite_concepts": concepts student should know first
        - "confidence_level": how confident the student seems (0.0 to 1.0)
        """
        
        analysis_response = await MODEL.generate_text(analysis_prompt, temperature=0.3)
        analysis = extract_json_from_text(analysis_response)
        
        # Update session context based on analysis
        if analysis and "topic_identified" in analysis:
            session.current_topic = analysis["topic_identified"]
            if "difficulty_level" in analysis:
                session.difficulty_preference = analysis["difficulty_level"]
        
        # Generate appropriate response based on request type
        if request_type == "step_by_step":
            response_prompt = f"""
            {context}
            
            The student asked: "{student_query}"
            
            Provide a detailed step-by-step explanation that:
            1. Breaks down the concept into manageable steps
            2. Uses simple, clear language appropriate for their level
            3. Includes examples for each step
            4. Checks understanding at key points
            5. Provides encouragement and support
            
            Return JSON with:
            - "step_by_step_explanation": detailed step-by-step guide
            - "key_steps": list of main steps with brief descriptions
            - "examples": relevant examples for each step
            - "check_points": questions to verify understanding
            - "encouragement": supportive message
            """
        elif request_type == "alternative":
            response_prompt = f"""
            {context}
            
            The student asked: "{student_query}"
            
            Provide alternative explanations using different approaches:
            1. Visual/spatial explanation
            2. Analogy-based explanation
            3. Real-world application
            4. Simplified version
            
            Return JSON with:
            - "visual_explanation": explanation using visual/spatial concepts
            - "analogy_explanation": explanation using familiar analogies
            - "real_world_application": how this applies in real life
            - "simplified_version": very simple explanation
            - "which_works_best": question asking which explanation resonates
            """
        else:  # Default explanation
            response_prompt = f"""
            {context}
            
            The student asked: "{student_query}"
            
            Provide a comprehensive, personalized explanation that:
            1. Addresses their specific question directly
            2. Builds on their current understanding level
            3. Uses their preferred explanation style
            4. Includes relevant examples
            5. Suggests next steps for learning
            
            Return JSON with:
            - "main_explanation": comprehensive answer to their question
            - "key_concepts": important concepts to remember
            - "examples": relevant examples
            - "next_steps": suggested follow-up activities
            - "related_topics": topics they might want to explore next
            """
        
        tutor_response = await MODEL.generate_text(response_prompt, temperature=0.7)
        response_data = extract_json_from_text(tutor_response)
        
        # Add interaction to session history
        session.add_interaction(
            student_query, 
            response_data.get("main_explanation", str(response_data)), 
            request_type
        )
        
        return {
            "success": True,
            "session_id": session_id,
            "request_type": request_type,
            "analysis": analysis,
            "response": response_data,
            "session_stats": {
                "interactions_count": len(session.conversation_history),
                "current_topic": session.current_topic,
                "understanding_level": session.student_understanding_level
            }
        }
        
    except Exception as e:
        return {
            "success": False,
            "error": f"Failed to process tutoring request: {str(e)}"
        }

@mcp.tool()
async def get_step_by_step_guidance(session_id: str, concept: str,
                                  current_step: int = 1) -> dict:
    """
    Provide detailed step-by-step guidance for learning a specific concept.

    Args:
        session_id: Active tutoring session ID
        concept: The concept to provide guidance for
        current_step: Current step the student is on (1-based)

    Returns:
        Dictionary with step-by-step guidance
    """
    try:
        if session_id not in tutoring_sessions:
            return {
                "success": False,
                "error": "Invalid session ID. Please start a new tutoring session."
            }

        session = tutoring_sessions[session_id]
        context = session.get_context_summary()

        prompt = f"""
        {context}

        Provide comprehensive step-by-step guidance for learning: "{concept}"
        Current step: {current_step}

        Create a structured learning path that:
        1. Breaks the concept into logical, sequential steps
        2. Provides clear explanations for each step
        3. Includes practice exercises for each step
        4. Offers multiple ways to understand each step
        5. Includes checkpoints to verify understanding

        Return JSON with:
        - "total_steps": total number of steps needed
        - "current_step_details": detailed information about the current step
        - "step_explanation": clear explanation of the current step
        - "practice_exercises": 2-3 practice problems for this step
        - "key_points": important points to remember
        - "common_mistakes": common mistakes students make at this step
        - "next_step_preview": brief preview of what comes next
        - "prerequisite_check": what student should know before this step
        - "mastery_indicators": how to know if student has mastered this step
        """

        response = await MODEL.generate_text(prompt, temperature=0.6)
        guidance_data = extract_json_from_text(response)

        return {
            "success": True,
            "session_id": session_id,
            "concept": concept,
            "current_step": current_step,
            "guidance": guidance_data
        }

    except Exception as e:
        return {
            "success": False,
            "error": f"Failed to generate step-by-step guidance: {str(e)}"
        }

@mcp.tool()
async def get_alternative_explanations(session_id: str, concept: str,
                                     explanation_types: List[str] = None) -> dict:
    """
    Generate alternative explanations for a concept using different approaches.

    Args:
        session_id: Active tutoring session ID
        concept: The concept to explain
        explanation_types: Types of explanations to generate

    Returns:
        Dictionary with alternative explanations
    """
    try:
        if session_id not in tutoring_sessions:
            return {
                "success": False,
                "error": "Invalid session ID. Please start a new tutoring session."
            }

        session = tutoring_sessions[session_id]
        context = session.get_context_summary()

        if not explanation_types:
            explanation_types = ["visual", "analogy", "real_world", "simplified", "technical"]

        prompt = f"""
        {context}

        Generate multiple alternative explanations for: "{concept}"

        Create explanations using these approaches: {explanation_types}

        For each explanation type, provide:
        1. A complete explanation using that approach
        2. Key benefits of this explanation style
        3. When this explanation works best
        4. Supporting examples or analogies

        Return JSON with:
        - "visual_explanation": explanation using visual/spatial concepts and imagery
        - "analogy_explanation": explanation using familiar analogies and metaphors
        - "real_world_explanation": explanation showing real-world applications
        - "simplified_explanation": very simple, basic explanation
        - "technical_explanation": detailed, technical explanation
        - "story_explanation": explanation told as a story or narrative
        - "comparison_explanation": explanation comparing to similar concepts
        - "recommendation": which explanation might work best for this student
        """

        response = await MODEL.generate_text(prompt, temperature=0.7)
        explanations_data = extract_json_from_text(response)

        return {
            "success": True,
            "session_id": session_id,
            "concept": concept,
            "explanation_types": explanation_types,
            "explanations": explanations_data
        }

    except Exception as e:
        return {
            "success": False,
            "error": f"Failed to generate alternative explanations: {str(e)}"
        }

@mcp.tool()
async def update_student_understanding(session_id: str, concept: str,
                                     understanding_level: float,
                                     feedback: str = "") -> dict:
    """
    Update student's understanding level and adapt tutoring accordingly.

    Args:
        session_id: Active tutoring session ID
        concept: The concept being learned
        understanding_level: Student's understanding level (0.0 to 1.0)
        feedback: Optional feedback from student

    Returns:
        Dictionary with updated session information and recommendations
    """
    try:
        if session_id not in tutoring_sessions:
            return {
                "success": False,
                "error": "Invalid session ID. Please start a new tutoring session."
            }

        session = tutoring_sessions[session_id]

        # Update session understanding level
        session.student_understanding_level = understanding_level
        session.current_topic = concept

        # Generate adaptive recommendations based on understanding level
        prompt = f"""
        Student understanding update:
        - Concept: {concept}
        - Understanding Level: {understanding_level:.2f}/1.0
        - Student Feedback: {feedback or 'No feedback provided'}
        - Session Context: {session.get_context_summary()}

        Based on this understanding level, provide adaptive recommendations:

        Return JSON with:
        - "understanding_assessment": assessment of student's current understanding
        - "next_actions": recommended next steps based on understanding level
        - "difficulty_adjustment": how to adjust difficulty (easier/harder/same)
        - "focus_areas": specific areas that need more attention
        - "encouragement": encouraging message appropriate for their level
        - "study_strategies": personalized study strategies
        - "time_estimate": estimated time to reach mastery
        """

        response = await MODEL.generate_text(prompt, temperature=0.6)
        recommendations_data = extract_json_from_text(response)

        # Add this update to conversation history
        session.add_interaction(
            f"Understanding update for {concept}: {understanding_level:.2f}",
            f"Updated understanding and provided recommendations",
            "understanding_update"
        )

        return {
            "success": True,
            "session_id": session_id,
            "concept": concept,
            "updated_understanding_level": understanding_level,
            "recommendations": recommendations_data,
            "session_stats": {
                "interactions_count": len(session.conversation_history),
                "current_topic": session.current_topic,
                "understanding_level": session.student_understanding_level
            }
        }

    except Exception as e:
        return {
            "success": False,
            "error": f"Failed to update understanding: {str(e)}"
        }

@mcp.tool()
async def get_tutoring_session_status(session_id: str) -> dict:
    """
    Get the current status and context of a tutoring session.

    Args:
        session_id: Tutoring session ID

    Returns:
        Dictionary with session status and statistics
    """
    try:
        if session_id not in tutoring_sessions:
            return {
                "success": False,
                "error": "Session not found"
            }

        session = tutoring_sessions[session_id]

        return {
            "success": True,
            "session_id": session_id,
            "student_id": session.student_id,
            "subject": session.subject,
            "current_topic": session.current_topic,
            "created_at": session.created_at.isoformat(),
            "last_activity": session.last_activity.isoformat(),
            "duration_minutes": (datetime.utcnow() - session.created_at).total_seconds() / 60,
            "understanding_level": session.student_understanding_level,
            "preferred_style": session.preferred_explanation_style,
            "learning_objectives": session.learning_objectives,
            "interaction_count": len(session.conversation_history),
            "recent_topics": list(set([
                interaction.get("query", "")[:50]
                for interaction in session.conversation_history[-5:]
            ]))
        }

    except Exception as e:
        return {
            "success": False,
            "error": f"Failed to get session status: {str(e)}"
        }

@mcp.tool()
async def end_tutoring_session(session_id: str, session_summary: str = "") -> dict:
    """
    End a tutoring session and generate a summary.

    Args:
        session_id: Tutoring session ID
        session_summary: Optional summary from student

    Returns:
        Dictionary with session summary and recommendations
    """
    try:
        if session_id not in tutoring_sessions:
            return {
                "success": False,
                "error": "Session not found"
            }

        session = tutoring_sessions[session_id]

        # Generate session summary
        prompt = f"""
        Generate a comprehensive summary for this tutoring session:

        {session.get_context_summary()}

        Session Details:
        - Duration: {(datetime.utcnow() - session.created_at).total_seconds() / 60:.1f} minutes
        - Interactions: {len(session.conversation_history)}
        - Final Understanding Level: {session.student_understanding_level:.2f}/1.0
        - Student Summary: {session_summary or 'No summary provided'}

        Return JSON with:
        - "session_summary": comprehensive summary of what was covered
        - "learning_achievements": what the student accomplished
        - "areas_covered": topics and concepts discussed
        - "understanding_progress": how understanding evolved during session
        - "recommendations": recommendations for future study
        - "next_session_suggestions": suggestions for next tutoring session
        - "study_plan": personalized study plan based on session
        - "strengths_identified": student strengths observed
        - "areas_for_improvement": areas that need more work
        """

        response = await MODEL.generate_text(prompt, temperature=0.6)
        summary_data = extract_json_from_text(response)

        # Store session summary before removing
        session_data = {
            "session_id": session_id,
            "student_id": session.student_id,
            "subject": session.subject,
            "duration_minutes": (datetime.utcnow() - session.created_at).total_seconds() / 60,
            "interaction_count": len(session.conversation_history),
            "final_understanding": session.student_understanding_level,
            "summary": summary_data
        }

        # Remove session from active sessions
        del tutoring_sessions[session_id]

        return {
            "success": True,
            "session_ended": True,
            **session_data
        }

    except Exception as e:
        return {
            "success": False,
            "error": f"Failed to end session: {str(e)}"
        }

@mcp.tool()
async def list_active_tutoring_sessions(student_id: str = None) -> dict:
    """
    List all active tutoring sessions, optionally filtered by student.

    Args:
        student_id: Optional student ID to filter sessions

    Returns:
        Dictionary with list of active sessions
    """
    try:
        active_sessions = []

        for session_id, session in tutoring_sessions.items():
            if student_id is None or session.student_id == student_id:
                active_sessions.append({
                    "session_id": session_id,
                    "student_id": session.student_id,
                    "subject": session.subject,
                    "current_topic": session.current_topic,
                    "created_at": session.created_at.isoformat(),
                    "last_activity": session.last_activity.isoformat(),
                    "duration_minutes": (datetime.utcnow() - session.created_at).total_seconds() / 60,
                    "understanding_level": session.student_understanding_level,
                    "interaction_count": len(session.conversation_history)
                })

        return {
            "success": True,
            "active_sessions": active_sessions,
            "total_sessions": len(active_sessions),
            "filtered_by_student": student_id is not None
        }

    except Exception as e:
        return {
            "success": False,
            "error": f"Failed to list sessions: {str(e)}"
        }