Spaces:
Sleeping
Sleeping
File size: 19,544 Bytes
bc987d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
"""
Advanced Automated Content Generation tools for TutorX.
Generates interactive content, exercises, and adaptive learning materials.
"""
import json
import uuid
from datetime import datetime
from typing import Dict, Any, List, Optional
from mcp_server.mcp_instance import mcp
from mcp_server.model.gemini_flash import GeminiFlash
MODEL = GeminiFlash()
def extract_json_from_text(text: str):
"""Extract JSON from text response"""
import re
if not text or not isinstance(text, str):
return None
# Remove code fences
text = re.sub(r'^\s*```(?:json)?\s*', '', text, flags=re.IGNORECASE)
text = re.sub(r'\s*```\s*$', '', text, flags=re.IGNORECASE)
text = text.strip()
# Remove trailing commas
text = re.sub(r',([ \t\r\n]*[}}\]])', r'\1', text)
return json.loads(text)
@mcp.tool()
async def generate_interactive_exercise(concept: str, exercise_type: str = "problem_solving",
difficulty_level: float = 0.5,
student_level: str = "intermediate") -> dict:
"""
Generate interactive exercises with multiple components and adaptive features.
Args:
concept: The concept to create exercises for
exercise_type: Type of exercise ('problem_solving', 'simulation', 'case_study', 'lab', 'project')
difficulty_level: Difficulty level (0.0 to 1.0)
student_level: Student's academic level
Returns:
Dictionary with interactive exercise content
"""
try:
prompt = f"""
Create an interactive {exercise_type} exercise for the concept: "{concept}"
Exercise Parameters:
- Difficulty Level: {difficulty_level:.2f}/1.0
- Student Level: {student_level}
- Exercise Type: {exercise_type}
Generate a comprehensive interactive exercise that includes:
1. Clear learning objectives
2. Step-by-step instructions
3. Interactive components that engage the student
4. Multiple difficulty levels within the exercise
5. Real-time feedback mechanisms
6. Assessment criteria
7. Extension activities for advanced students
Return JSON with:
- "exercise_id": unique identifier
- "title": engaging title for the exercise
- "learning_objectives": list of specific learning goals
- "introduction": engaging introduction to the exercise
- "instructions": detailed step-by-step instructions
- "interactive_components": list of interactive elements
- "materials_needed": required materials or resources
- "estimated_time": estimated completion time in minutes
- "difficulty_variations": easier and harder versions
- "assessment_rubric": criteria for evaluating student work
- "feedback_prompts": questions for self-reflection
- "extension_activities": additional challenges for advanced students
- "real_world_connections": how this relates to real-world applications
"""
response = await MODEL.generate_text(prompt, temperature=0.7)
exercise_data = extract_json_from_text(response)
# Add metadata
exercise_data.update({
"success": True,
"concept": concept,
"exercise_type": exercise_type,
"difficulty_level": difficulty_level,
"student_level": student_level,
"generated_at": datetime.utcnow().isoformat(),
"ai_generated": True
})
return exercise_data
except Exception as e:
return {
"success": False,
"error": f"Failed to generate interactive exercise: {str(e)}"
}
@mcp.tool()
async def generate_adaptive_content_sequence(topic: str, student_profile: dict,
sequence_length: int = 5) -> dict:
"""
Generate a sequence of adaptive content that adjusts based on student profile.
Args:
topic: Main topic for the content sequence
student_profile: Student's learning profile and preferences
sequence_length: Number of content pieces in the sequence
Returns:
Dictionary with adaptive content sequence
"""
try:
prompt = f"""
Create an adaptive content sequence for the topic: "{topic}"
Student Profile:
{json.dumps(student_profile, indent=2)}
Generate a sequence of {sequence_length} interconnected content pieces that:
1. Build upon each other progressively
2. Adapt to the student's learning style and preferences
3. Include multiple content types (text, visual descriptions, interactive elements)
4. Provide branching paths based on understanding
5. Include assessment checkpoints
6. Offer remediation and enrichment options
Return JSON with:
- "sequence_id": unique identifier for the sequence
- "topic": main topic
- "total_pieces": number of content pieces
- "estimated_total_time": total estimated time in minutes
- "content_sequence": array of content pieces, each with:
- "piece_id": unique identifier
- "title": content title
- "content_type": type of content (explanation, example, practice, assessment)
- "content": main content text
- "visual_elements": descriptions of visual components
- "interactive_elements": interactive components
- "difficulty_level": difficulty rating
- "prerequisites": what student should know
- "learning_objectives": specific objectives for this piece
- "assessment_questions": questions to check understanding
- "branching_options": different paths based on performance
- "estimated_time": time for this piece
- "adaptation_rules": rules for how content adapts to student responses
- "success_criteria": criteria for successful completion
"""
response = await MODEL.generate_text(prompt, temperature=0.6)
sequence_data = extract_json_from_text(response)
# Add metadata
sequence_data.update({
"success": True,
"topic": topic,
"student_profile": student_profile,
"generated_at": datetime.utcnow().isoformat(),
"ai_generated": True
})
return sequence_data
except Exception as e:
return {
"success": False,
"error": f"Failed to generate adaptive content sequence: {str(e)}"
}
@mcp.tool()
async def generate_scenario_based_learning(concept: str, scenario_type: str = "real_world",
complexity_level: str = "moderate") -> dict:
"""
Generate scenario-based learning content with realistic situations.
Args:
concept: The concept to teach through scenarios
scenario_type: Type of scenario ('real_world', 'historical', 'futuristic', 'problem_solving')
complexity_level: Complexity of the scenario ('simple', 'moderate', 'complex')
Returns:
Dictionary with scenario-based learning content
"""
try:
prompt = f"""
Create a {scenario_type} scenario-based learning experience for: "{concept}"
Scenario Parameters:
- Type: {scenario_type}
- Complexity: {complexity_level}
Design a realistic scenario that:
1. Presents the concept in a meaningful context
2. Requires students to apply their knowledge
3. Includes decision points and consequences
4. Provides multiple solution paths
5. Connects to real-world applications
6. Engages students emotionally and intellectually
Return JSON with:
- "scenario_id": unique identifier
- "title": compelling scenario title
- "setting": detailed description of the scenario setting
- "background_story": engaging background narrative
- "main_challenge": primary challenge students must solve
- "characters": key characters in the scenario (if applicable)
- "decision_points": critical decisions students must make
- "possible_outcomes": different outcomes based on decisions
- "learning_integration": how the concept is woven into the scenario
- "assessment_criteria": how to evaluate student responses
- "discussion_questions": questions for reflection and discussion
- "extension_scenarios": related scenarios for further exploration
- "real_world_connections": connections to actual situations
- "resources": additional resources students might need
"""
response = await MODEL.generate_text(prompt, temperature=0.8)
scenario_data = extract_json_from_text(response)
# Add metadata
scenario_data.update({
"success": True,
"concept": concept,
"scenario_type": scenario_type,
"complexity_level": complexity_level,
"generated_at": datetime.utcnow().isoformat(),
"ai_generated": True
})
return scenario_data
except Exception as e:
return {
"success": False,
"error": f"Failed to generate scenario-based learning: {str(e)}"
}
@mcp.tool()
async def generate_multimodal_content(concept: str, modalities: List[str] = None,
target_audience: str = "general") -> dict:
"""
Generate multi-modal content that appeals to different learning styles.
Args:
concept: The concept to create content for
modalities: List of modalities to include ('visual', 'auditory', 'kinesthetic', 'reading')
target_audience: Target audience description
Returns:
Dictionary with multi-modal content
"""
try:
if not modalities:
modalities = ["visual", "auditory", "kinesthetic", "reading"]
prompt = f"""
Create multi-modal content for the concept: "{concept}"
Target Audience: {target_audience}
Modalities to include: {modalities}
Generate content that appeals to different learning styles:
Return JSON with:
- "content_id": unique identifier
- "concept": the main concept
- "visual_content": content for visual learners (descriptions of diagrams, charts, images)
- "auditory_content": content for auditory learners (descriptions of sounds, music, verbal explanations)
- "kinesthetic_content": content for kinesthetic learners (hands-on activities, movement, manipulation)
- "reading_content": content for reading/writing learners (text-based materials, written exercises)
- "integrated_activities": activities that combine multiple modalities
- "accessibility_features": features for students with different abilities
- "technology_integration": how technology can enhance each modality
- "assessment_variations": different ways to assess understanding for each modality
- "adaptation_guidelines": how to adapt content for different needs
"""
response = await MODEL.generate_text(prompt, temperature=0.7)
content_data = extract_json_from_text(response)
# Add metadata
content_data.update({
"success": True,
"concept": concept,
"modalities": modalities,
"target_audience": target_audience,
"generated_at": datetime.utcnow().isoformat(),
"ai_generated": True
})
return content_data
except Exception as e:
return {
"success": False,
"error": f"Failed to generate multimodal content: {str(e)}"
}
@mcp.tool()
async def generate_adaptive_assessment(concept: str, assessment_type: str = "formative",
student_data: dict = None) -> dict:
"""
Generate adaptive assessments that adjust based on student responses.
Args:
concept: The concept to assess
assessment_type: Type of assessment ('formative', 'summative', 'diagnostic', 'peer')
student_data: Optional student performance data
Returns:
Dictionary with adaptive assessment content
"""
try:
prompt = f"""
Create an adaptive {assessment_type} assessment for: "{concept}"
Student Data: {json.dumps(student_data or {}, indent=2)}
Design an assessment that:
1. Adapts difficulty based on student responses
2. Provides immediate feedback
3. Identifies learning gaps
4. Offers multiple question types
5. Includes branching logic
6. Provides detailed analytics
Return JSON with:
- "assessment_id": unique identifier
- "title": assessment title
- "instructions": clear instructions for students
- "question_pool": large pool of questions with metadata:
- "question_id": unique identifier
- "question_text": the question
- "question_type": type (multiple_choice, short_answer, essay, etc.)
- "difficulty_level": difficulty rating (0.0 to 1.0)
- "cognitive_level": Bloom's taxonomy level
- "options": answer options (if applicable)
- "correct_answer": correct answer
- "explanation": detailed explanation
- "hints": progressive hints
- "common_misconceptions": common wrong answers and why
- "adaptive_rules": rules for question selection and difficulty adjustment
- "feedback_templates": templates for different types of feedback
- "scoring_rubric": detailed scoring criteria
- "analytics_tracking": what data to track for analysis
- "remediation_suggestions": suggestions based on performance
"""
response = await MODEL.generate_text(prompt, temperature=0.6)
assessment_data = extract_json_from_text(response)
# Add metadata
assessment_data.update({
"success": True,
"concept": concept,
"assessment_type": assessment_type,
"generated_at": datetime.utcnow().isoformat(),
"ai_generated": True
})
return assessment_data
except Exception as e:
return {
"success": False,
"error": f"Failed to generate adaptive assessment: {str(e)}"
}
@mcp.tool()
async def generate_gamified_content(concept: str, game_type: str = "quest",
target_age_group: str = "teen") -> dict:
"""
Generate gamified learning content with game mechanics and engagement features.
Args:
concept: The concept to gamify
game_type: Type of game ('quest', 'puzzle', 'simulation', 'competition', 'story')
target_age_group: Target age group ('child', 'teen', 'adult')
Returns:
Dictionary with gamified content
"""
try:
prompt = f"""
Create gamified learning content for: "{concept}"
Game Parameters:
- Game Type: {game_type}
- Target Age Group: {target_age_group}
Design engaging game-based learning that includes:
1. Clear game objectives aligned with learning goals
2. Progressive difficulty levels
3. Reward systems and achievements
4. Interactive challenges
5. Narrative elements (if applicable)
6. Social features for collaboration/competition
Return JSON with:
- "game_id": unique identifier
- "title": engaging game title
- "theme": game theme and setting
- "storyline": narrative framework (if applicable)
- "learning_objectives": educational goals
- "game_mechanics": core game mechanics and rules
- "levels": progressive levels with increasing difficulty
- "challenges": specific challenges and tasks
- "reward_system": points, badges, achievements
- "character_progression": how players advance
- "social_features": multiplayer or collaborative elements
- "assessment_integration": how learning is assessed within the game
- "feedback_mechanisms": how players receive feedback
- "customization_options": ways to personalize the experience
- "accessibility_features": features for different abilities
"""
response = await MODEL.generate_text(prompt, temperature=0.8)
game_data = extract_json_from_text(response)
# Add metadata
game_data.update({
"success": True,
"concept": concept,
"game_type": game_type,
"target_age_group": target_age_group,
"generated_at": datetime.utcnow().isoformat(),
"ai_generated": True
})
return game_data
except Exception as e:
return {
"success": False,
"error": f"Failed to generate gamified content: {str(e)}"
}
@mcp.tool()
async def validate_generated_content(content_data: dict, validation_criteria: dict = None) -> dict:
"""
Validate and quality-check generated educational content.
Args:
content_data: The content to validate
validation_criteria: Specific criteria for validation
Returns:
Dictionary with validation results and suggestions
"""
try:
default_criteria = {
"educational_alignment": True,
"age_appropriateness": True,
"clarity": True,
"engagement": True,
"accessibility": True,
"accuracy": True
}
criteria = {**default_criteria, **(validation_criteria or {})}
prompt = f"""
Validate this educational content against quality criteria:
Content to Validate:
{json.dumps(content_data, indent=2)}
Validation Criteria:
{json.dumps(criteria, indent=2)}
Perform comprehensive validation and return JSON with:
- "overall_quality_score": score from 0.0 to 1.0
- "validation_results": detailed results for each criterion
- "strengths": identified strengths in the content
- "areas_for_improvement": specific areas that need work
- "suggestions": concrete suggestions for improvement
- "compliance_check": compliance with educational standards
- "accessibility_assessment": accessibility for different learners
- "engagement_analysis": analysis of engagement potential
- "accuracy_verification": verification of factual accuracy
- "recommended_modifications": specific modifications to make
"""
response = await MODEL.generate_text(prompt, temperature=0.3)
validation_data = extract_json_from_text(response)
return {
"success": True,
"content_validated": True,
"validation_timestamp": datetime.utcnow().isoformat(),
**validation_data
}
except Exception as e:
return {
"success": False,
"error": f"Failed to validate content: {str(e)}"
}
|