Spaces:
Sleeping
Sleeping
Meet Patel
Refactor TutorX MCP server to remove legacy client and utility modules, update app.py for SSE integration, and enhance .gitignore to exclude .cursor directory. Clean up main.py for improved server configuration and streamline run script for better usability.
1af10cc
""" | |
Gradio web interface for the TutorX MCP Server with SSE support | |
""" | |
import os | |
import gradio as gr | |
import numpy as np | |
import json | |
from datetime import datetime | |
import asyncio | |
import aiohttp | |
import sseclient | |
import requests | |
# Import MCP SSE client context managers | |
from mcp import ClientSession | |
from mcp.client.sse import sse_client | |
# Server configuration | |
SERVER_URL = "http://localhost:8000/sse" # Ensure this is the SSE endpoint | |
# Utility functions | |
async def load_concept_graph(concept_id: str = None): | |
""" | |
Load and visualize the concept graph for a given concept ID. | |
If no concept_id is provided, returns the first available concept. | |
Uses call_resource for concept graph retrieval (not a tool). | |
Returns: | |
tuple: (figure, concept_details, related_concepts) or (None, error_dict, []) | |
""" | |
try: | |
print(f"[DEBUG] Loading concept graph for concept_id: {concept_id}") | |
async with sse_client(SERVER_URL) as (sse, write): | |
async with ClientSession(sse, write) as session: | |
await session.initialize() | |
# Use MCP resource call for concept graph | |
result = await session.call_resource("resources/read", {"uri": f"concept-graph://{concept_id}" if concept_id else "concept-graph://"}) | |
print(f"[DEBUG] Server response: {result}") | |
if not result or not isinstance(result, dict): | |
error_msg = "Invalid server response" | |
print(f"[ERROR] {error_msg}") | |
return None, {"error": error_msg}, [] | |
if "error" in result: | |
print(f"[ERROR] Server returned error: {result['error']}") | |
return None, {"error": result["error"]}, [] | |
if "concepts" in result and not concept_id: | |
if not result["concepts"]: | |
error_msg = "No concepts available" | |
print(f"[ERROR] {error_msg}") | |
return None, {"error": error_msg}, [] | |
concept = result["concepts"][0] | |
print(f"[DEBUG] Using first concept from list: {concept.get('id')}") | |
else: | |
concept = result.get("concept", result) | |
print(f"[DEBUG] Using direct concept: {concept.get('id')}") | |
if not isinstance(concept, dict) or not concept.get('id'): | |
error_msg = "Invalid concept data structure" | |
print(f"[ERROR] {error_msg}: {concept}") | |
return None, {"error": error_msg}, [] | |
import matplotlib.pyplot as plt | |
import networkx as nx | |
G = nx.DiGraph() | |
G.add_node(concept["id"], label=concept["name"], type="concept") | |
related_concepts = [] | |
if "related" in concept: | |
for rel_id in concept["related"]: | |
rel_result = await session.call_tool("get_concept_graph", {"concept_id": rel_id}) | |
if "error" not in rel_result: | |
G.add_node(rel_id, label=rel_result["name"], type="related") | |
G.add_edge(concept["id"], rel_id, relationship="related_to") | |
related_concepts.append([rel_id, rel_result.get("name", ""), rel_result.get("description", "")]) | |
if "prerequisites" in concept: | |
for prereq_id in concept["prerequisites"]: | |
prereq_result = await session.call_tool("get_concept_graph", {"concept_id": prereq_id}) | |
if "error" not in prereq_result: | |
G.add_node(prereq_id, label=prereq_result["name"], type="prerequisite") | |
G.add_edge(prereq_id, concept["id"], relationship="prerequisite_for") | |
plt.figure(figsize=(10, 8)) | |
pos = nx.spring_layout(G) | |
node_colors = [] | |
for node in G.nodes(): | |
if G.nodes[node].get("type") == "concept": | |
node_colors.append("lightblue") | |
elif G.nodes[node].get("type") == "prerequisite": | |
node_colors.append("lightcoral") | |
else: | |
node_colors.append("lightgreen") | |
nx.draw_networkx_nodes(G, pos, node_size=2000, node_color=node_colors, alpha=0.8) | |
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5) | |
labels = {node: G.nodes[node].get("label", node) for node in G.nodes()} | |
nx.draw_networkx_labels(G, pos, labels, font_size=10, font_weight="bold") | |
edge_labels = {(u, v): d["relationship"] for u, v, d in G.edges(data=True)} | |
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8) | |
plt.title(f"Concept Graph: {concept.get('name', concept_id)}") | |
plt.axis("off") | |
concept_details = { | |
"id": concept.get("id", ""), | |
"name": concept.get("name", ""), | |
"description": concept.get("description", ""), | |
"related_concepts_count": len(concept.get("related", [])), | |
"prerequisites_count": len(concept.get("prerequisites", [])) | |
} | |
return plt.gcf(), concept_details, related_concepts | |
except Exception as e: | |
import traceback | |
traceback.print_exc() | |
return None, {"error": f"Failed to load concept graph: {str(e)}"}, [] | |
# Create Gradio interface | |
with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# 📚 TutorX Educational AI Platform") | |
gr.Markdown(""" | |
An adaptive, multi-modal, and collaborative AI tutoring platform built with MCP. | |
This interface demonstrates the functionality of the TutorX MCP server using SSE connections. | |
""") | |
# Set a default student ID for the demo | |
student_id = "student_12345" | |
with gr.Tabs() as tabs: | |
# Tab 1: Core Features | |
with gr.Tab("Core Features"): | |
with gr.Blocks() as concept_graph_tab: | |
gr.Markdown("## Concept Graph Visualization") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
concept_id = gr.Dropdown( | |
label="Select a Concept", | |
choices=["python", "functions", "oop", "data_structures"], | |
value="python", | |
interactive=True | |
) | |
load_concept_btn = gr.Button("Load Concept Graph", variant="primary") | |
# Concept details | |
concept_details = gr.JSON(label="Concept Details") | |
# Related concepts | |
related_concepts = gr.Dataframe( | |
headers=["ID", "Name", "Description"], | |
datatype=["str", "str", "str"], | |
label="Related Concepts" | |
) | |
# Graph visualization | |
with gr.Column(scale=7): | |
graph_output = gr.Plot(label="Concept Graph") | |
# Button click handler | |
load_concept_btn.click( | |
fn=load_concept_graph, | |
inputs=[concept_id], | |
outputs=[graph_output, concept_details, related_concepts] | |
) | |
# Load default concept on tab click | |
concept_graph_tab.load( | |
fn=load_concept_graph, | |
inputs=[concept_id], | |
outputs=[graph_output, concept_details, related_concepts] | |
) | |
gr.Markdown("## Assessment Generation") | |
with gr.Row(): | |
with gr.Column(): | |
concept_input = gr.Textbox( | |
label="Enter Concept", | |
placeholder="e.g., Linear Equations, Photosynthesis, World War II", | |
lines=2 | |
) | |
with gr.Row(): | |
diff_input = gr.Slider( | |
minimum=1, | |
maximum=5, | |
value=2, | |
step=1, | |
label="Difficulty Level", | |
interactive=True | |
) | |
gen_quiz_btn = gr.Button("Generate Quiz", variant="primary") | |
with gr.Column(): | |
quiz_output = gr.JSON(label="Generated Quiz") | |
async def on_generate_quiz(concept, difficulty): | |
try: | |
if not concept or not str(concept).strip(): | |
return {"error": "Please enter a concept"} | |
try: | |
difficulty = int(float(difficulty)) | |
difficulty = max(1, min(5, difficulty)) | |
except (ValueError, TypeError): | |
difficulty = 3 | |
# Map numeric difficulty to string | |
if difficulty <= 2: | |
difficulty_str = "easy" | |
elif difficulty == 3: | |
difficulty_str = "medium" | |
else: | |
difficulty_str = "hard" | |
async with sse_client(SERVER_URL) as (sse, write): | |
async with ClientSession(sse, write) as session: | |
await session.initialize() | |
response = await session.call_tool("generate_quiz_tool", {"concept": concept.strip(), "difficulty": difficulty_str}) | |
return response | |
except Exception as e: | |
import traceback | |
return { | |
"error": f"Error generating quiz: {str(e)}\n\n{traceback.format_exc()}" | |
} | |
gen_quiz_btn.click( | |
fn=on_generate_quiz, | |
inputs=[concept_input, diff_input], | |
outputs=[quiz_output], | |
api_name="generate_quiz" | |
) | |
# Tab 2: Advanced Features | |
with gr.Tab("Advanced Features"): | |
gr.Markdown("## Lesson Generation") | |
with gr.Row(): | |
with gr.Column(): | |
topic_input = gr.Textbox(label="Lesson Topic", value="Solving Quadratic Equations") | |
grade_input = gr.Slider(minimum=1, maximum=12, value=9, step=1, label="Grade Level") | |
duration_input = gr.Slider(minimum=15, maximum=90, value=45, step=5, label="Duration (minutes)") | |
gen_lesson_btn = gr.Button("Generate Lesson Plan") | |
with gr.Column(): | |
lesson_output = gr.JSON(label="Lesson Plan") | |
async def generate_lesson_async(topic, grade, duration): | |
async with sse_client(SERVER_URL) as (sse, write): | |
async with ClientSession(sse, write) as session: | |
await session.initialize() | |
response = await session.call_tool("generate_lesson_tool", {"topic": topic, "grade_level": grade, "duration_minutes": duration}) | |
return response | |
gen_lesson_btn.click( | |
fn=generate_lesson_async, | |
inputs=[topic_input, grade_input, duration_input], | |
outputs=[lesson_output] | |
) | |
gr.Markdown("## Curriculum Standards") | |
with gr.Row(): | |
with gr.Column(): | |
country_input = gr.Dropdown( | |
choices=["US", "UK"], | |
label="Country", | |
value="US" | |
) | |
standards_btn = gr.Button("Get Standards") | |
with gr.Column(): | |
standards_output = gr.JSON(label="Curriculum Standards") | |
async def get_standards_async(country): | |
try: | |
# Convert display text to lowercase for the API | |
country_code = country.lower() | |
async with sse_client(SERVER_URL) as (sse, write): | |
async with ClientSession(sse, write) as session: | |
await session.initialize() | |
response = await session.call_tool("get_curriculum_standards", {"country_code": country_code}) | |
# Format the response for better display | |
if "standards" in response: | |
formatted = { | |
"country": response["standards"]["name"], | |
"subjects": {}, | |
"website": response["standards"].get("website", "") | |
} | |
# Format subjects and domains | |
for subj_key, subj_info in response["standards"]["subjects"].items(): | |
formatted["subjects"][subj_key] = { | |
"description": subj_info["description"], | |
"domains": subj_info["domains"] | |
} | |
# Add grade levels or key stages if available | |
if "grade_levels" in response["standards"]: | |
formatted["grade_levels"] = response["standards"]["grade_levels"] | |
elif "key_stages" in response["standards"]: | |
formatted["key_stages"] = response["standards"]["key_stages"] | |
return formatted | |
return response | |
except Exception as e: | |
return {"error": f"Failed to fetch standards: {str(e)}"} | |
standards_btn.click( | |
fn=get_standards_async, | |
inputs=[country_input], | |
outputs=[standards_output] | |
) | |
# Tab 3: Multi-Modal Interaction | |
with gr.Tab("Multi-Modal Interaction"): | |
gr.Markdown("## Text Interaction") | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox(label="Ask a Question", value="How do I solve a quadratic equation?") | |
text_btn = gr.Button("Submit") | |
with gr.Column(): | |
text_output = gr.JSON(label="Response") | |
async def text_interaction_async(text): | |
async with sse_client(SERVER_URL) as (sse, write): | |
async with ClientSession(sse, write) as session: | |
await session.initialize() | |
response = await session.call_tool("text_interaction", {"query": text, "student_id": student_id}) | |
return response | |
text_btn.click( | |
fn=text_interaction_async, | |
inputs=[text_input], | |
outputs=[text_output] | |
) | |
gr.Markdown("## PDF OCR and Summarization (Coming Soon)") | |
with gr.Row(): | |
with gr.Column(): | |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"]) | |
ocr_btn = gr.Button("Extract Text") | |
with gr.Column(): | |
summary_output = gr.JSON(label="Summary") | |
async def pdf_ocr_async(pdf_file): | |
if not pdf_file: | |
return {"error": "No PDF file provided", "success": False} | |
try: | |
# Get the file path from the Gradio file object | |
if isinstance(pdf_file, dict): | |
file_path = pdf_file.get("path", "") | |
else: | |
file_path = pdf_file | |
if not file_path or not os.path.exists(file_path): | |
return {"error": "File not found", "success": False} | |
async with sse_client(SERVER_URL) as (sse, write): | |
async with ClientSession(sse, write) as session: | |
await session.initialize() | |
response = await session.call_tool("pdf_ocr", {"pdf_file": file_path}) | |
return response | |
except Exception as e: | |
return {"error": f"Error processing PDF: {str(e)}", "success": False} | |
ocr_btn.click( | |
fn=pdf_ocr_async, | |
inputs=[pdf_input], | |
outputs=[summary_output] | |
) | |
# Tab 4: Analytics | |
with gr.Tab("Analytics"): | |
gr.Markdown("## Plagiarism Detection") | |
with gr.Row(): | |
with gr.Column(): | |
submission_input = gr.Textbox( | |
label="Student Submission", | |
lines=5, | |
value="The quadratic formula states that if ax² + bx + c = 0, then x = (-b ± √(b² - 4ac)) / 2a." | |
) | |
reference_input = gr.Textbox( | |
label="Reference Source", | |
lines=5, | |
value="According to the quadratic formula, for any equation in the form ax² + bx + c = 0, the solutions are x = (-b ± √(b² - 4ac)) / 2a." | |
) | |
plagiarism_btn = gr.Button("Check Originality") | |
with gr.Column(): | |
plagiarism_output = gr.JSON(label="Originality Report") | |
async def check_plagiarism_async(submission, reference): | |
async with sse_client(SERVER_URL) as (sse, write): | |
async with ClientSession(sse, write) as session: | |
await session.initialize() | |
response = await session.call_tool("check_submission_originality", {"submission": submission, "reference_sources": reference}) | |
return response | |
plagiarism_btn.click( | |
fn=check_plagiarism_async, | |
inputs=[submission_input, reference_input], | |
outputs=[plagiarism_output] | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
demo.queue().launch(server_name="0.0.0.0", server_port=7860) | |