TutorX-MCP / app.py
Meet Patel
Core and Advanced Features is working with mock data.
bbd9cd6
raw
history blame
18.3 kB
"""
Gradio web interface for the TutorX MCP Server with SSE support
"""
import gradio as gr
import numpy as np
import json
import base64
from io import BytesIO
from PIL import Image
from datetime import datetime
import asyncio
import aiohttp
import sseclient
import requests
# Import MCP client to communicate with the MCP server
from client import client
# Server configuration
SERVER_URL = "http://localhost:8001" # Default port is now 8001 to match main.py
# Utility functions
def image_to_base64(img):
"""Convert a PIL image or numpy array to base64 string"""
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
async def load_concept_graph(concept_id: str = None):
"""
Load and visualize the concept graph for a given concept ID.
If no concept_id is provided, returns the first available concept.
Returns:
tuple: (figure, concept_details, related_concepts) or (None, error_dict, [])
"""
try:
print(f"[DEBUG] Loading concept graph for concept_id: {concept_id}")
# Get concept graph data from the server
# First try direct API call, fall back to MCP tool if needed
result = await client.get_concept_graph(concept_id, use_mcp=False)
# If direct API call fails, try MCP tool
if "error" in result:
print(f"[DEBUG] Direct API call failed, trying MCP tool: {result}")
result = await client.get_concept_graph(concept_id, use_mcp=True)
print(f"[DEBUG] Server response: {result}")
if not result or not isinstance(result, dict):
error_msg = "Invalid server response"
print(f"[ERROR] {error_msg}")
return None, {"error": error_msg}, []
if "error" in result:
print(f"[ERROR] Server returned error: {result['error']}")
return None, {"error": result["error"]}, []
# Handle response when no specific concept_id was requested
if "concepts" in result and not concept_id:
if not result["concepts"]:
error_msg = "No concepts available"
print(f"[ERROR] {error_msg}")
return None, {"error": error_msg}, []
concept = result["concepts"][0]
print(f"[DEBUG] Using first concept from list: {concept.get('id')}")
else:
concept = result
print(f"[DEBUG] Using direct concept: {concept.get('id')}")
# Validate the concept structure
if not isinstance(concept, dict) or not concept.get('id'):
error_msg = "Invalid concept data structure"
print(f"[ERROR] {error_msg}: {concept}")
return None, {"error": error_msg}, []
# Create a simple visualization using matplotlib
import matplotlib.pyplot as plt
import networkx as nx
# Create a directed graph
G = nx.DiGraph()
# Add the main concept node
G.add_node(concept["id"], label=concept["name"], type="concept")
# Add related concepts
related_concepts = []
if "related" in concept:
for rel_id in concept["related"]:
rel_result = await client.get_concept_graph(rel_id)
if "error" not in rel_result:
G.add_node(rel_id, label=rel_result["name"], type="related")
G.add_edge(concept["id"], rel_id, relationship="related_to")
related_concepts.append([rel_id, rel_result.get("name", ""), rel_result.get("description", "")])
# Add prerequisites if any
if "prerequisites" in concept:
for prereq_id in concept["prerequisites"]:
prereq_result = await client.get_concept_graph(prereq_id)
if "error" not in prereq_result:
G.add_node(prereq_id, label=prereq_result["name"], type="prerequisite")
G.add_edge(prereq_id, concept["id"], relationship="prerequisite_for")
# Draw the graph
plt.figure(figsize=(10, 8))
pos = nx.spring_layout(G)
# Draw nodes with different colors based on type
node_colors = []
for node in G.nodes():
if G.nodes[node].get("type") == "concept":
node_colors.append("lightblue")
elif G.nodes[node].get("type") == "prerequisite":
node_colors.append("lightcoral")
else:
node_colors.append("lightgreen")
nx.draw_networkx_nodes(G, pos, node_size=2000, node_color=node_colors, alpha=0.8)
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
# Add labels
labels = {node: G.nodes[node].get("label", node) for node in G.nodes()}
nx.draw_networkx_labels(G, pos, labels, font_size=10, font_weight="bold")
# Add edge labels
edge_labels = {(u, v): d["relationship"] for u, v, d in G.edges(data=True)}
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
plt.title(f"Concept Graph: {concept.get('name', concept_id)}")
plt.axis("off")
# Return the figure and concept details
concept_details = {
"id": concept.get("id", ""),
"name": concept.get("name", ""),
"description": concept.get("description", ""),
"related_concepts_count": len(concept.get("related", [])),
"prerequisites_count": len(concept.get("prerequisites", []))
}
return plt.gcf(), concept_details, related_concepts
except Exception as e:
import traceback
traceback.print_exc()
return None, {"error": f"Failed to load concept graph: {str(e)}"}, []
async def api_request(endpoint, method="GET", params=None, json_data=None):
"""Make an API request to the server"""
url = f"{SERVER_URL}/api/{endpoint}"
headers = {"Content-Type": "application/json"}
try:
async with aiohttp.ClientSession() as session:
if method.upper() == "GET":
async with session.get(url, params=params, headers=headers) as response:
if response.status == 200:
return await response.json()
else:
error = await response.text()
return {"error": f"API error: {response.status} - {error}"}
elif method.upper() == "POST":
async with session.post(url, json=json_data, headers=headers) as response:
if response.status == 200:
return await response.json()
else:
error = await response.text()
return {"error": f"API error: {response.status} - {error}"}
except Exception as e:
return {"error": f"Request failed: {str(e)}"}
# Create Gradio interface
with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 📚 TutorX Educational AI Platform")
gr.Markdown("""
An adaptive, multi-modal, and collaborative AI tutoring platform built with MCP.
This interface demonstrates the functionality of the TutorX MCP server using SSE connections.
""")
# Set a default student ID for the demo
student_id = "student_12345"
with gr.Tabs() as tabs:
# Tab 1: Core Features
with gr.Tab("Core Features"):
with gr.Blocks() as concept_graph_tab:
gr.Markdown("## Concept Graph Visualization")
with gr.Row():
with gr.Column(scale=3):
concept_id = gr.Dropdown(
label="Select a Concept",
choices=["python", "functions", "oop", "data_structures"],
value="python",
interactive=True
)
load_concept_btn = gr.Button("Load Concept Graph", variant="primary")
# Concept details
concept_details = gr.JSON(label="Concept Details")
# Related concepts
related_concepts = gr.Dataframe(
headers=["ID", "Name", "Description"],
datatype=["str", "str", "str"],
label="Related Concepts"
)
# Graph visualization
with gr.Column(scale=7):
graph_output = gr.Plot(label="Concept Graph")
# Button click handler
load_concept_btn.click(
fn=load_concept_graph,
inputs=[concept_id],
outputs=[graph_output, concept_details, related_concepts]
)
# Load default concept on tab click
concept_graph_tab.load(
fn=load_concept_graph,
inputs=[concept_id],
outputs=[graph_output, concept_details, related_concepts]
)
gr.Markdown("## Assessment Generation")
with gr.Row():
with gr.Column():
concepts_input = gr.CheckboxGroup(
choices=["math_algebra_basics", "math_algebra_linear_equations", "math_algebra_quadratic_equations"],
label="Select Concepts",
value=["math_algebra_linear_equations"]
)
diff_input = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Difficulty")
gen_quiz_btn = gr.Button("Generate Quiz")
with gr.Column():
quiz_output = gr.JSON(label="Generated Quiz")
async def on_generate_quiz(concepts, difficulty):
# Convert the request to match the expected format
request_data = {
"concept_ids": concepts if isinstance(concepts, list) else [concepts],
"difficulty": int(difficulty)
}
result = await api_request(
"generate_quiz",
"POST",
json_data=request_data
)
return result
gen_quiz_btn.click(
fn=on_generate_quiz,
inputs=[concepts_input, diff_input],
outputs=[quiz_output]
)
# Tab 2: Advanced Features
with gr.Tab("Advanced Features"):
gr.Markdown("## Lesson Generation")
with gr.Row():
with gr.Column():
topic_input = gr.Textbox(label="Lesson Topic", value="Solving Quadratic Equations")
grade_input = gr.Slider(minimum=1, maximum=12, value=9, step=1, label="Grade Level")
duration_input = gr.Slider(minimum=15, maximum=90, value=45, step=5, label="Duration (minutes)")
gen_lesson_btn = gr.Button("Generate Lesson Plan")
with gr.Column():
lesson_output = gr.JSON(label="Lesson Plan")
async def generate_lesson_async(topic, grade, duration):
return await client.generate_lesson(topic, grade, duration)
gen_lesson_btn.click(
fn=generate_lesson_async,
inputs=[topic_input, grade_input, duration_input],
outputs=[lesson_output]
)
gr.Markdown("## Curriculum Standards")
with gr.Row():
with gr.Column():
country_input = gr.Dropdown(
choices=["US", "UK"],
label="Country",
value="US"
)
standards_btn = gr.Button("Get Standards")
with gr.Column():
standards_output = gr.JSON(label="Curriculum Standards")
async def get_standards_async(country):
try:
# Convert display text to lowercase for the API
country_code = country.lower()
response = await client.get_curriculum_standards(country_code)
# Format the response for better display
if "standards" in response:
formatted = {
"country": response["standards"]["name"],
"subjects": {},
"website": response["standards"].get("website", "")
}
# Format subjects and domains
for subj_key, subj_info in response["standards"]["subjects"].items():
formatted["subjects"][subj_key] = {
"description": subj_info["description"],
"domains": subj_info["domains"]
}
# Add grade levels or key stages if available
if "grade_levels" in response["standards"]:
formatted["grade_levels"] = response["standards"]["grade_levels"]
elif "key_stages" in response["standards"]:
formatted["key_stages"] = response["standards"]["key_stages"]
return formatted
return response
except Exception as e:
return {"error": f"Failed to fetch standards: {str(e)}"}
standards_btn.click(
fn=get_standards_async,
inputs=[country_input],
outputs=[standards_output]
)
# Tab 3: Multi-Modal Interaction
with gr.Tab("Multi-Modal Interaction"):
gr.Markdown("## Text Interaction")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Ask a Question", value="How do I solve a quadratic equation?")
text_btn = gr.Button("Submit")
with gr.Column():
text_output = gr.JSON(label="Response")
async def text_interaction_async(text):
return await client.text_interaction(text, "student_12345")
text_btn.click(
fn=text_interaction_async,
inputs=[text_input],
outputs=[text_output]
)
gr.Markdown("## Handwriting Recognition")
with gr.Row():
with gr.Column():
drawing_input = gr.Sketchpad(label="Draw an Equation")
drawing_btn = gr.Button("Recognize")
with gr.Column():
drawing_output = gr.JSON(label="Recognition Results")
async def handwriting_async(drawing):
return await client.handwriting_recognition(image_to_base64(drawing), "student_12345")
drawing_btn.click(
fn=handwriting_async,
inputs=[drawing_input],
outputs=[drawing_output]
)
# Tab 4: Analytics
with gr.Tab("Analytics"):
gr.Markdown("## Student Performance")
# Error Pattern Analysis
error_concept = gr.Dropdown(
choices=["math_algebra_basics", "math_algebra_linear_equations", "math_algebra_quadratic_equations"],
label="Select Concept for Analysis",
value="math_algebra_linear_equations"
)
error_btn = gr.Button("Analyze Concept")
error_output = gr.JSON(label="Analysis Results")
async def analyze_errors_async(concept):
return await client.analyze_error_patterns("student_12345", concept)
error_btn.click(
fn=analyze_errors_async,
inputs=[error_concept],
outputs=[error_output]
)
gr.Markdown("## Plagiarism Detection")
with gr.Row():
with gr.Column():
submission_input = gr.Textbox(
label="Student Submission",
lines=5,
value="The quadratic formula states that if ax² + bx + c = 0, then x = (-b ± √(b² - 4ac)) / 2a."
)
reference_input = gr.Textbox(
label="Reference Source",
lines=5,
value="According to the quadratic formula, for any equation in the form ax² + bx + c = 0, the solutions are x = (-b ± √(b² - 4ac)) / 2a."
)
plagiarism_btn = gr.Button("Check Originality")
with gr.Column():
plagiarism_output = gr.JSON(label="Originality Report")
async def check_plagiarism_async(submission, reference):
return await client.check_submission_originality(submission, [reference])
plagiarism_btn.click(
fn=check_plagiarism_async,
inputs=[submission_input, reference_input],
outputs=[plagiarism_output]
)
# Launch the interface
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860)