Meet Patel commited on
Commit
a806ca2
·
1 Parent(s): 1af10cc

Refactor TutorX MCP server to integrate Mistral OCR for document processing, update concept graph tools for LLM-driven responses, and enhance learning path generation with Gemini. Transitioned various tools to utilize LLM for improved educational interactions and streamlined API responses.

Browse files
.vscode/PythonImportHelper-v2-Completion.json ADDED
@@ -0,0 +1,2111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "label": "runpy",
4
+ "kind": 6,
5
+ "isExtraImport": true,
6
+ "importPath": "runpy",
7
+ "description": "runpy",
8
+ "detail": "runpy",
9
+ "documentation": {}
10
+ },
11
+ {
12
+ "label": "annotations",
13
+ "importPath": "__future__",
14
+ "description": "__future__",
15
+ "isExtraImport": true,
16
+ "detail": "__future__",
17
+ "documentation": {}
18
+ },
19
+ {
20
+ "label": "os",
21
+ "kind": 6,
22
+ "isExtraImport": true,
23
+ "importPath": "os",
24
+ "description": "os",
25
+ "detail": "os",
26
+ "documentation": {}
27
+ },
28
+ {
29
+ "label": "site",
30
+ "kind": 6,
31
+ "isExtraImport": true,
32
+ "importPath": "site",
33
+ "description": "site",
34
+ "detail": "site",
35
+ "documentation": {}
36
+ },
37
+ {
38
+ "label": "sys",
39
+ "kind": 6,
40
+ "isExtraImport": true,
41
+ "importPath": "sys",
42
+ "description": "sys",
43
+ "detail": "sys",
44
+ "documentation": {}
45
+ },
46
+ {
47
+ "label": "zip",
48
+ "importPath": "builtins",
49
+ "description": "builtins",
50
+ "isExtraImport": true,
51
+ "detail": "builtins",
52
+ "documentation": {}
53
+ },
54
+ {
55
+ "label": "str",
56
+ "importPath": "builtins",
57
+ "description": "builtins",
58
+ "isExtraImport": true,
59
+ "detail": "builtins",
60
+ "documentation": {}
61
+ },
62
+ {
63
+ "label": "os.path",
64
+ "kind": 6,
65
+ "isExtraImport": true,
66
+ "importPath": "os.path",
67
+ "description": "os.path",
68
+ "detail": "os.path",
69
+ "documentation": {}
70
+ },
71
+ {
72
+ "label": "cElementTree",
73
+ "importPath": "xml.etree",
74
+ "description": "xml.etree",
75
+ "isExtraImport": true,
76
+ "detail": "xml.etree",
77
+ "documentation": {}
78
+ },
79
+ {
80
+ "label": "pyxnat",
81
+ "kind": 6,
82
+ "isExtraImport": true,
83
+ "importPath": "pyxnat",
84
+ "description": "pyxnat",
85
+ "detail": "pyxnat",
86
+ "documentation": {}
87
+ },
88
+ {
89
+ "label": "google.generativeai",
90
+ "kind": 6,
91
+ "isExtraImport": true,
92
+ "importPath": "google.generativeai",
93
+ "description": "google.generativeai",
94
+ "detail": "google.generativeai",
95
+ "documentation": {}
96
+ },
97
+ {
98
+ "label": "Dict",
99
+ "importPath": "typing",
100
+ "description": "typing",
101
+ "isExtraImport": true,
102
+ "detail": "typing",
103
+ "documentation": {}
104
+ },
105
+ {
106
+ "label": "Any",
107
+ "importPath": "typing",
108
+ "description": "typing",
109
+ "isExtraImport": true,
110
+ "detail": "typing",
111
+ "documentation": {}
112
+ },
113
+ {
114
+ "label": "Optional",
115
+ "importPath": "typing",
116
+ "description": "typing",
117
+ "isExtraImport": true,
118
+ "detail": "typing",
119
+ "documentation": {}
120
+ },
121
+ {
122
+ "label": "List",
123
+ "importPath": "typing",
124
+ "description": "typing",
125
+ "isExtraImport": true,
126
+ "detail": "typing",
127
+ "documentation": {}
128
+ },
129
+ {
130
+ "label": "Literal",
131
+ "importPath": "typing",
132
+ "description": "typing",
133
+ "isExtraImport": true,
134
+ "detail": "typing",
135
+ "documentation": {}
136
+ },
137
+ {
138
+ "label": "Union",
139
+ "importPath": "typing",
140
+ "description": "typing",
141
+ "isExtraImport": true,
142
+ "detail": "typing",
143
+ "documentation": {}
144
+ },
145
+ {
146
+ "label": "TypeVar",
147
+ "importPath": "typing",
148
+ "description": "typing",
149
+ "isExtraImport": true,
150
+ "detail": "typing",
151
+ "documentation": {}
152
+ },
153
+ {
154
+ "label": "Callable",
155
+ "importPath": "typing",
156
+ "description": "typing",
157
+ "isExtraImport": true,
158
+ "detail": "typing",
159
+ "documentation": {}
160
+ },
161
+ {
162
+ "label": "Dict",
163
+ "importPath": "typing",
164
+ "description": "typing",
165
+ "isExtraImport": true,
166
+ "detail": "typing",
167
+ "documentation": {}
168
+ },
169
+ {
170
+ "label": "Any",
171
+ "importPath": "typing",
172
+ "description": "typing",
173
+ "isExtraImport": true,
174
+ "detail": "typing",
175
+ "documentation": {}
176
+ },
177
+ {
178
+ "label": "Dict",
179
+ "importPath": "typing",
180
+ "description": "typing",
181
+ "isExtraImport": true,
182
+ "detail": "typing",
183
+ "documentation": {}
184
+ },
185
+ {
186
+ "label": "Any",
187
+ "importPath": "typing",
188
+ "description": "typing",
189
+ "isExtraImport": true,
190
+ "detail": "typing",
191
+ "documentation": {}
192
+ },
193
+ {
194
+ "label": "Dict",
195
+ "importPath": "typing",
196
+ "description": "typing",
197
+ "isExtraImport": true,
198
+ "detail": "typing",
199
+ "documentation": {}
200
+ },
201
+ {
202
+ "label": "Any",
203
+ "importPath": "typing",
204
+ "description": "typing",
205
+ "isExtraImport": true,
206
+ "detail": "typing",
207
+ "documentation": {}
208
+ },
209
+ {
210
+ "label": "Optional",
211
+ "importPath": "typing",
212
+ "description": "typing",
213
+ "isExtraImport": true,
214
+ "detail": "typing",
215
+ "documentation": {}
216
+ },
217
+ {
218
+ "label": "Dict",
219
+ "importPath": "typing",
220
+ "description": "typing",
221
+ "isExtraImport": true,
222
+ "detail": "typing",
223
+ "documentation": {}
224
+ },
225
+ {
226
+ "label": "Any",
227
+ "importPath": "typing",
228
+ "description": "typing",
229
+ "isExtraImport": true,
230
+ "detail": "typing",
231
+ "documentation": {}
232
+ },
233
+ {
234
+ "label": "Optional",
235
+ "importPath": "typing",
236
+ "description": "typing",
237
+ "isExtraImport": true,
238
+ "detail": "typing",
239
+ "documentation": {}
240
+ },
241
+ {
242
+ "label": "Dict",
243
+ "importPath": "typing",
244
+ "description": "typing",
245
+ "isExtraImport": true,
246
+ "detail": "typing",
247
+ "documentation": {}
248
+ },
249
+ {
250
+ "label": "Any",
251
+ "importPath": "typing",
252
+ "description": "typing",
253
+ "isExtraImport": true,
254
+ "detail": "typing",
255
+ "documentation": {}
256
+ },
257
+ {
258
+ "label": "List",
259
+ "importPath": "typing",
260
+ "description": "typing",
261
+ "isExtraImport": true,
262
+ "detail": "typing",
263
+ "documentation": {}
264
+ },
265
+ {
266
+ "label": "Optional",
267
+ "importPath": "typing",
268
+ "description": "typing",
269
+ "isExtraImport": true,
270
+ "detail": "typing",
271
+ "documentation": {}
272
+ },
273
+ {
274
+ "label": "Dict",
275
+ "importPath": "typing",
276
+ "description": "typing",
277
+ "isExtraImport": true,
278
+ "detail": "typing",
279
+ "documentation": {}
280
+ },
281
+ {
282
+ "label": "Any",
283
+ "importPath": "typing",
284
+ "description": "typing",
285
+ "isExtraImport": true,
286
+ "detail": "typing",
287
+ "documentation": {}
288
+ },
289
+ {
290
+ "label": "List",
291
+ "importPath": "typing",
292
+ "description": "typing",
293
+ "isExtraImport": true,
294
+ "detail": "typing",
295
+ "documentation": {}
296
+ },
297
+ {
298
+ "label": "Optional",
299
+ "importPath": "typing",
300
+ "description": "typing",
301
+ "isExtraImport": true,
302
+ "detail": "typing",
303
+ "documentation": {}
304
+ },
305
+ {
306
+ "label": "Dict",
307
+ "importPath": "typing",
308
+ "description": "typing",
309
+ "isExtraImport": true,
310
+ "detail": "typing",
311
+ "documentation": {}
312
+ },
313
+ {
314
+ "label": "Any",
315
+ "importPath": "typing",
316
+ "description": "typing",
317
+ "isExtraImport": true,
318
+ "detail": "typing",
319
+ "documentation": {}
320
+ },
321
+ {
322
+ "label": "List",
323
+ "importPath": "typing",
324
+ "description": "typing",
325
+ "isExtraImport": true,
326
+ "detail": "typing",
327
+ "documentation": {}
328
+ },
329
+ {
330
+ "label": "Dict",
331
+ "importPath": "typing",
332
+ "description": "typing",
333
+ "isExtraImport": true,
334
+ "detail": "typing",
335
+ "documentation": {}
336
+ },
337
+ {
338
+ "label": "Any",
339
+ "importPath": "typing",
340
+ "description": "typing",
341
+ "isExtraImport": true,
342
+ "detail": "typing",
343
+ "documentation": {}
344
+ },
345
+ {
346
+ "label": "Optional",
347
+ "importPath": "typing",
348
+ "description": "typing",
349
+ "isExtraImport": true,
350
+ "detail": "typing",
351
+ "documentation": {}
352
+ },
353
+ {
354
+ "label": "Dict",
355
+ "importPath": "typing",
356
+ "description": "typing",
357
+ "isExtraImport": true,
358
+ "detail": "typing",
359
+ "documentation": {}
360
+ },
361
+ {
362
+ "label": "Any",
363
+ "importPath": "typing",
364
+ "description": "typing",
365
+ "isExtraImport": true,
366
+ "detail": "typing",
367
+ "documentation": {}
368
+ },
369
+ {
370
+ "label": "List",
371
+ "importPath": "typing",
372
+ "description": "typing",
373
+ "isExtraImport": true,
374
+ "detail": "typing",
375
+ "documentation": {}
376
+ },
377
+ {
378
+ "label": "Optional",
379
+ "importPath": "typing",
380
+ "description": "typing",
381
+ "isExtraImport": true,
382
+ "detail": "typing",
383
+ "documentation": {}
384
+ },
385
+ {
386
+ "label": "wraps",
387
+ "importPath": "functools",
388
+ "description": "functools",
389
+ "isExtraImport": true,
390
+ "detail": "functools",
391
+ "documentation": {}
392
+ },
393
+ {
394
+ "label": "logging",
395
+ "kind": 6,
396
+ "isExtraImport": true,
397
+ "importPath": "logging",
398
+ "description": "logging",
399
+ "detail": "logging",
400
+ "documentation": {}
401
+ },
402
+ {
403
+ "label": "Path",
404
+ "importPath": "pathlib",
405
+ "description": "pathlib",
406
+ "isExtraImport": true,
407
+ "detail": "pathlib",
408
+ "documentation": {}
409
+ },
410
+ {
411
+ "label": "Path",
412
+ "importPath": "pathlib",
413
+ "description": "pathlib",
414
+ "isExtraImport": true,
415
+ "detail": "pathlib",
416
+ "documentation": {}
417
+ },
418
+ {
419
+ "label": "Path",
420
+ "importPath": "pathlib",
421
+ "description": "pathlib",
422
+ "isExtraImport": true,
423
+ "detail": "pathlib",
424
+ "documentation": {}
425
+ },
426
+ {
427
+ "label": "Path",
428
+ "importPath": "pathlib",
429
+ "description": "pathlib",
430
+ "isExtraImport": true,
431
+ "detail": "pathlib",
432
+ "documentation": {}
433
+ },
434
+ {
435
+ "label": "Path",
436
+ "importPath": "pathlib",
437
+ "description": "pathlib",
438
+ "isExtraImport": true,
439
+ "detail": "pathlib",
440
+ "documentation": {}
441
+ },
442
+ {
443
+ "label": "Path",
444
+ "importPath": "pathlib",
445
+ "description": "pathlib",
446
+ "isExtraImport": true,
447
+ "detail": "pathlib",
448
+ "documentation": {}
449
+ },
450
+ {
451
+ "label": "Path",
452
+ "importPath": "pathlib",
453
+ "description": "pathlib",
454
+ "isExtraImport": true,
455
+ "detail": "pathlib",
456
+ "documentation": {}
457
+ },
458
+ {
459
+ "label": "Path",
460
+ "importPath": "pathlib",
461
+ "description": "pathlib",
462
+ "isExtraImport": true,
463
+ "detail": "pathlib",
464
+ "documentation": {}
465
+ },
466
+ {
467
+ "label": "Path",
468
+ "importPath": "pathlib",
469
+ "description": "pathlib",
470
+ "isExtraImport": true,
471
+ "detail": "pathlib",
472
+ "documentation": {}
473
+ },
474
+ {
475
+ "label": "json",
476
+ "kind": 6,
477
+ "isExtraImport": true,
478
+ "importPath": "json",
479
+ "description": "json",
480
+ "detail": "json",
481
+ "documentation": {}
482
+ },
483
+ {
484
+ "label": "concept_graph",
485
+ "importPath": "resources",
486
+ "description": "resources",
487
+ "isExtraImport": true,
488
+ "detail": "resources",
489
+ "documentation": {}
490
+ },
491
+ {
492
+ "label": "concept_graph",
493
+ "importPath": "resources",
494
+ "description": "resources",
495
+ "isExtraImport": true,
496
+ "detail": "resources",
497
+ "documentation": {}
498
+ },
499
+ {
500
+ "label": "curriculum_standards",
501
+ "importPath": "resources",
502
+ "description": "resources",
503
+ "isExtraImport": true,
504
+ "detail": "resources",
505
+ "documentation": {}
506
+ },
507
+ {
508
+ "label": "mcp",
509
+ "importPath": "mcp_server.mcp_instance",
510
+ "description": "mcp_server.mcp_instance",
511
+ "isExtraImport": true,
512
+ "detail": "mcp_server.mcp_instance",
513
+ "documentation": {}
514
+ },
515
+ {
516
+ "label": "mcp",
517
+ "importPath": "mcp_server.mcp_instance",
518
+ "description": "mcp_server.mcp_instance",
519
+ "isExtraImport": true,
520
+ "detail": "mcp_server.mcp_instance",
521
+ "documentation": {}
522
+ },
523
+ {
524
+ "label": "mcp",
525
+ "importPath": "mcp_server.mcp_instance",
526
+ "description": "mcp_server.mcp_instance",
527
+ "isExtraImport": true,
528
+ "detail": "mcp_server.mcp_instance",
529
+ "documentation": {}
530
+ },
531
+ {
532
+ "label": "mcp",
533
+ "importPath": "mcp_server.mcp_instance",
534
+ "description": "mcp_server.mcp_instance",
535
+ "isExtraImport": true,
536
+ "detail": "mcp_server.mcp_instance",
537
+ "documentation": {}
538
+ },
539
+ {
540
+ "label": "mcp",
541
+ "importPath": "mcp_server.mcp_instance",
542
+ "description": "mcp_server.mcp_instance",
543
+ "isExtraImport": true,
544
+ "detail": "mcp_server.mcp_instance",
545
+ "documentation": {}
546
+ },
547
+ {
548
+ "label": "mcp",
549
+ "importPath": "mcp_server.mcp_instance",
550
+ "description": "mcp_server.mcp_instance",
551
+ "isExtraImport": true,
552
+ "detail": "mcp_server.mcp_instance",
553
+ "documentation": {}
554
+ },
555
+ {
556
+ "label": "mcp",
557
+ "importPath": "mcp_server.mcp_instance",
558
+ "description": "mcp_server.mcp_instance",
559
+ "isExtraImport": true,
560
+ "detail": "mcp_server.mcp_instance",
561
+ "documentation": {}
562
+ },
563
+ {
564
+ "label": "mcp",
565
+ "importPath": "mcp_server.mcp_instance",
566
+ "description": "mcp_server.mcp_instance",
567
+ "isExtraImport": true,
568
+ "detail": "mcp_server.mcp_instance",
569
+ "documentation": {}
570
+ },
571
+ {
572
+ "label": "GeminiFlash",
573
+ "importPath": "mcp_server.model.gemini_flash",
574
+ "description": "mcp_server.model.gemini_flash",
575
+ "isExtraImport": true,
576
+ "detail": "mcp_server.model.gemini_flash",
577
+ "documentation": {}
578
+ },
579
+ {
580
+ "label": "GeminiFlash",
581
+ "importPath": "mcp_server.model.gemini_flash",
582
+ "description": "mcp_server.model.gemini_flash",
583
+ "isExtraImport": true,
584
+ "detail": "mcp_server.model.gemini_flash",
585
+ "documentation": {}
586
+ },
587
+ {
588
+ "label": "GeminiFlash",
589
+ "importPath": "mcp_server.model.gemini_flash",
590
+ "description": "mcp_server.model.gemini_flash",
591
+ "isExtraImport": true,
592
+ "detail": "mcp_server.model.gemini_flash",
593
+ "documentation": {}
594
+ },
595
+ {
596
+ "label": "GeminiFlash",
597
+ "importPath": "mcp_server.model.gemini_flash",
598
+ "description": "mcp_server.model.gemini_flash",
599
+ "isExtraImport": true,
600
+ "detail": "mcp_server.model.gemini_flash",
601
+ "documentation": {}
602
+ },
603
+ {
604
+ "label": "GeminiFlash",
605
+ "importPath": "mcp_server.model.gemini_flash",
606
+ "description": "mcp_server.model.gemini_flash",
607
+ "isExtraImport": true,
608
+ "detail": "mcp_server.model.gemini_flash",
609
+ "documentation": {}
610
+ },
611
+ {
612
+ "label": "GeminiFlash",
613
+ "importPath": "mcp_server.model.gemini_flash",
614
+ "description": "mcp_server.model.gemini_flash",
615
+ "isExtraImport": true,
616
+ "detail": "mcp_server.model.gemini_flash",
617
+ "documentation": {}
618
+ },
619
+ {
620
+ "label": "random",
621
+ "kind": 6,
622
+ "isExtraImport": true,
623
+ "importPath": "random",
624
+ "description": "random",
625
+ "detail": "random",
626
+ "documentation": {}
627
+ },
628
+ {
629
+ "label": "datetime",
630
+ "importPath": "datetime",
631
+ "description": "datetime",
632
+ "isExtraImport": true,
633
+ "detail": "datetime",
634
+ "documentation": {}
635
+ },
636
+ {
637
+ "label": "timezone",
638
+ "importPath": "datetime",
639
+ "description": "datetime",
640
+ "isExtraImport": true,
641
+ "detail": "datetime",
642
+ "documentation": {}
643
+ },
644
+ {
645
+ "label": "datetime",
646
+ "importPath": "datetime",
647
+ "description": "datetime",
648
+ "isExtraImport": true,
649
+ "detail": "datetime",
650
+ "documentation": {}
651
+ },
652
+ {
653
+ "label": "timedelta",
654
+ "importPath": "datetime",
655
+ "description": "datetime",
656
+ "isExtraImport": true,
657
+ "detail": "datetime",
658
+ "documentation": {}
659
+ },
660
+ {
661
+ "label": "datetime",
662
+ "importPath": "datetime",
663
+ "description": "datetime",
664
+ "isExtraImport": true,
665
+ "detail": "datetime",
666
+ "documentation": {}
667
+ },
668
+ {
669
+ "label": "datetime",
670
+ "importPath": "datetime",
671
+ "description": "datetime",
672
+ "isExtraImport": true,
673
+ "detail": "datetime",
674
+ "documentation": {}
675
+ },
676
+ {
677
+ "label": "get_concept",
678
+ "importPath": "resources.concept_graph",
679
+ "description": "resources.concept_graph",
680
+ "isExtraImport": true,
681
+ "detail": "resources.concept_graph",
682
+ "documentation": {}
683
+ },
684
+ {
685
+ "label": "get_all_concepts",
686
+ "importPath": "resources.concept_graph",
687
+ "description": "resources.concept_graph",
688
+ "isExtraImport": true,
689
+ "detail": "resources.concept_graph",
690
+ "documentation": {}
691
+ },
692
+ {
693
+ "label": "CONCEPT_GRAPH",
694
+ "importPath": "resources.concept_graph",
695
+ "description": "resources.concept_graph",
696
+ "isExtraImport": true,
697
+ "detail": "resources.concept_graph",
698
+ "documentation": {}
699
+ },
700
+ {
701
+ "label": "re",
702
+ "kind": 6,
703
+ "isExtraImport": true,
704
+ "importPath": "re",
705
+ "description": "re",
706
+ "detail": "re",
707
+ "documentation": {}
708
+ },
709
+ {
710
+ "label": "SequenceMatcher",
711
+ "importPath": "difflib",
712
+ "description": "difflib",
713
+ "isExtraImport": true,
714
+ "detail": "difflib",
715
+ "documentation": {}
716
+ },
717
+ {
718
+ "label": "base64",
719
+ "kind": 6,
720
+ "isExtraImport": true,
721
+ "importPath": "base64",
722
+ "description": "base64",
723
+ "detail": "base64",
724
+ "documentation": {}
725
+ },
726
+ {
727
+ "label": "io",
728
+ "kind": 6,
729
+ "isExtraImport": true,
730
+ "importPath": "io",
731
+ "description": "io",
732
+ "detail": "io",
733
+ "documentation": {}
734
+ },
735
+ {
736
+ "label": "asyncio",
737
+ "kind": 6,
738
+ "isExtraImport": true,
739
+ "importPath": "asyncio",
740
+ "description": "asyncio",
741
+ "detail": "asyncio",
742
+ "documentation": {}
743
+ },
744
+ {
745
+ "label": "aiohttp",
746
+ "kind": 6,
747
+ "isExtraImport": true,
748
+ "importPath": "aiohttp",
749
+ "description": "aiohttp",
750
+ "detail": "aiohttp",
751
+ "documentation": {}
752
+ },
753
+ {
754
+ "label": "GeminiFlash",
755
+ "importPath": "model",
756
+ "description": "model",
757
+ "isExtraImport": true,
758
+ "detail": "model",
759
+ "documentation": {}
760
+ },
761
+ {
762
+ "label": "uuid",
763
+ "kind": 6,
764
+ "isExtraImport": true,
765
+ "importPath": "uuid",
766
+ "description": "uuid",
767
+ "detail": "uuid",
768
+ "documentation": {}
769
+ },
770
+ {
771
+ "label": "BlobServiceClient",
772
+ "importPath": "azure.storage.blob",
773
+ "description": "azure.storage.blob",
774
+ "isExtraImport": true,
775
+ "detail": "azure.storage.blob",
776
+ "documentation": {}
777
+ },
778
+ {
779
+ "label": "ContentSettings",
780
+ "importPath": "azure.storage.blob",
781
+ "description": "azure.storage.blob",
782
+ "isExtraImport": true,
783
+ "detail": "azure.storage.blob",
784
+ "documentation": {}
785
+ },
786
+ {
787
+ "label": "BlobServiceClient",
788
+ "importPath": "azure.storage.blob",
789
+ "description": "azure.storage.blob",
790
+ "isExtraImport": true,
791
+ "detail": "azure.storage.blob",
792
+ "documentation": {}
793
+ },
794
+ {
795
+ "label": "ContentSettings",
796
+ "importPath": "azure.storage.blob",
797
+ "description": "azure.storage.blob",
798
+ "isExtraImport": true,
799
+ "detail": "azure.storage.blob",
800
+ "documentation": {}
801
+ },
802
+ {
803
+ "label": "load_dotenv",
804
+ "importPath": "dotenv",
805
+ "description": "dotenv",
806
+ "isExtraImport": true,
807
+ "detail": "dotenv",
808
+ "documentation": {}
809
+ },
810
+ {
811
+ "label": "load_dotenv",
812
+ "importPath": "dotenv",
813
+ "description": "dotenv",
814
+ "isExtraImport": true,
815
+ "detail": "dotenv",
816
+ "documentation": {}
817
+ },
818
+ {
819
+ "label": "FastMCP",
820
+ "importPath": "mcp.server.fastmcp",
821
+ "description": "mcp.server.fastmcp",
822
+ "isExtraImport": true,
823
+ "detail": "mcp.server.fastmcp",
824
+ "documentation": {}
825
+ },
826
+ {
827
+ "label": "FastMCP",
828
+ "importPath": "mcp.server.fastmcp",
829
+ "description": "mcp.server.fastmcp",
830
+ "isExtraImport": true,
831
+ "detail": "mcp.server.fastmcp",
832
+ "documentation": {}
833
+ },
834
+ {
835
+ "label": "uvicorn",
836
+ "kind": 6,
837
+ "isExtraImport": true,
838
+ "importPath": "uvicorn",
839
+ "description": "uvicorn",
840
+ "detail": "uvicorn",
841
+ "documentation": {}
842
+ },
843
+ {
844
+ "label": "FastAPI",
845
+ "importPath": "fastapi",
846
+ "description": "fastapi",
847
+ "isExtraImport": true,
848
+ "detail": "fastapi",
849
+ "documentation": {}
850
+ },
851
+ {
852
+ "label": "HTTPException",
853
+ "importPath": "fastapi",
854
+ "description": "fastapi",
855
+ "isExtraImport": true,
856
+ "detail": "fastapi",
857
+ "documentation": {}
858
+ },
859
+ {
860
+ "label": "UploadFile",
861
+ "importPath": "fastapi",
862
+ "description": "fastapi",
863
+ "isExtraImport": true,
864
+ "detail": "fastapi",
865
+ "documentation": {}
866
+ },
867
+ {
868
+ "label": "File",
869
+ "importPath": "fastapi",
870
+ "description": "fastapi",
871
+ "isExtraImport": true,
872
+ "detail": "fastapi",
873
+ "documentation": {}
874
+ },
875
+ {
876
+ "label": "Form",
877
+ "importPath": "fastapi",
878
+ "description": "fastapi",
879
+ "isExtraImport": true,
880
+ "detail": "fastapi",
881
+ "documentation": {}
882
+ },
883
+ {
884
+ "label": "CORSMiddleware",
885
+ "importPath": "fastapi.middleware.cors",
886
+ "description": "fastapi.middleware.cors",
887
+ "isExtraImport": true,
888
+ "detail": "fastapi.middleware.cors",
889
+ "documentation": {}
890
+ },
891
+ {
892
+ "label": "concept_tools",
893
+ "importPath": "tools",
894
+ "description": "tools",
895
+ "isExtraImport": true,
896
+ "detail": "tools",
897
+ "documentation": {}
898
+ },
899
+ {
900
+ "label": "lesson_tools",
901
+ "importPath": "tools",
902
+ "description": "tools",
903
+ "isExtraImport": true,
904
+ "detail": "tools",
905
+ "documentation": {}
906
+ },
907
+ {
908
+ "label": "quiz_tools",
909
+ "importPath": "tools",
910
+ "description": "tools",
911
+ "isExtraImport": true,
912
+ "detail": "tools",
913
+ "documentation": {}
914
+ },
915
+ {
916
+ "label": "interaction_tools",
917
+ "importPath": "tools",
918
+ "description": "tools",
919
+ "isExtraImport": true,
920
+ "detail": "tools",
921
+ "documentation": {}
922
+ },
923
+ {
924
+ "label": "ocr_tools",
925
+ "importPath": "tools",
926
+ "description": "tools",
927
+ "isExtraImport": true,
928
+ "detail": "tools",
929
+ "documentation": {}
930
+ },
931
+ {
932
+ "label": "learning_path_tools",
933
+ "importPath": "tools",
934
+ "description": "tools",
935
+ "isExtraImport": true,
936
+ "detail": "tools",
937
+ "documentation": {}
938
+ },
939
+ {
940
+ "label": "concept_tools",
941
+ "importPath": "mcp_server.tools",
942
+ "description": "mcp_server.tools",
943
+ "isExtraImport": true,
944
+ "detail": "mcp_server.tools",
945
+ "documentation": {}
946
+ },
947
+ {
948
+ "label": "lesson_tools",
949
+ "importPath": "mcp_server.tools",
950
+ "description": "mcp_server.tools",
951
+ "isExtraImport": true,
952
+ "detail": "mcp_server.tools",
953
+ "documentation": {}
954
+ },
955
+ {
956
+ "label": "quiz_tools",
957
+ "importPath": "mcp_server.tools",
958
+ "description": "mcp_server.tools",
959
+ "isExtraImport": true,
960
+ "detail": "mcp_server.tools",
961
+ "documentation": {}
962
+ },
963
+ {
964
+ "label": "interaction_tools",
965
+ "importPath": "mcp_server.tools",
966
+ "description": "mcp_server.tools",
967
+ "isExtraImport": true,
968
+ "detail": "mcp_server.tools",
969
+ "documentation": {}
970
+ },
971
+ {
972
+ "label": "ocr_tools",
973
+ "importPath": "mcp_server.tools",
974
+ "description": "mcp_server.tools",
975
+ "isExtraImport": true,
976
+ "detail": "mcp_server.tools",
977
+ "documentation": {}
978
+ },
979
+ {
980
+ "label": "learning_path_tools",
981
+ "importPath": "mcp_server.tools",
982
+ "description": "mcp_server.tools",
983
+ "isExtraImport": true,
984
+ "detail": "mcp_server.tools",
985
+ "documentation": {}
986
+ },
987
+ {
988
+ "label": "concept_graph_tools",
989
+ "importPath": "mcp_server.tools",
990
+ "description": "mcp_server.tools",
991
+ "isExtraImport": true,
992
+ "detail": "mcp_server.tools",
993
+ "documentation": {}
994
+ },
995
+ {
996
+ "label": "assess_skill_tool",
997
+ "importPath": "tools.concept_tools",
998
+ "description": "tools.concept_tools",
999
+ "isExtraImport": true,
1000
+ "detail": "tools.concept_tools",
1001
+ "documentation": {}
1002
+ },
1003
+ {
1004
+ "label": "generate_lesson_tool",
1005
+ "importPath": "tools.lesson_tools",
1006
+ "description": "tools.lesson_tools",
1007
+ "isExtraImport": true,
1008
+ "detail": "tools.lesson_tools",
1009
+ "documentation": {}
1010
+ },
1011
+ {
1012
+ "label": "generate_quiz_tool",
1013
+ "importPath": "tools.quiz_tools",
1014
+ "description": "tools.quiz_tools",
1015
+ "isExtraImport": true,
1016
+ "detail": "tools.quiz_tools",
1017
+ "documentation": {}
1018
+ },
1019
+ {
1020
+ "label": "setup",
1021
+ "importPath": "setuptools",
1022
+ "description": "setuptools",
1023
+ "isExtraImport": true,
1024
+ "detail": "setuptools",
1025
+ "documentation": {}
1026
+ },
1027
+ {
1028
+ "label": "find_packages",
1029
+ "importPath": "setuptools",
1030
+ "description": "setuptools",
1031
+ "isExtraImport": true,
1032
+ "detail": "setuptools",
1033
+ "documentation": {}
1034
+ },
1035
+ {
1036
+ "label": "unittest",
1037
+ "kind": 6,
1038
+ "isExtraImport": true,
1039
+ "importPath": "unittest",
1040
+ "description": "unittest",
1041
+ "detail": "unittest",
1042
+ "documentation": {}
1043
+ },
1044
+ {
1045
+ "label": "patch",
1046
+ "importPath": "unittest.mock",
1047
+ "description": "unittest.mock",
1048
+ "isExtraImport": true,
1049
+ "detail": "unittest.mock",
1050
+ "documentation": {}
1051
+ },
1052
+ {
1053
+ "label": "MagicMock",
1054
+ "importPath": "unittest.mock",
1055
+ "description": "unittest.mock",
1056
+ "isExtraImport": true,
1057
+ "detail": "unittest.mock",
1058
+ "documentation": {}
1059
+ },
1060
+ {
1061
+ "label": "patch",
1062
+ "importPath": "unittest.mock",
1063
+ "description": "unittest.mock",
1064
+ "isExtraImport": true,
1065
+ "detail": "unittest.mock",
1066
+ "documentation": {}
1067
+ },
1068
+ {
1069
+ "label": "MagicMock",
1070
+ "importPath": "unittest.mock",
1071
+ "description": "unittest.mock",
1072
+ "isExtraImport": true,
1073
+ "detail": "unittest.mock",
1074
+ "documentation": {}
1075
+ },
1076
+ {
1077
+ "label": "patch",
1078
+ "importPath": "unittest.mock",
1079
+ "description": "unittest.mock",
1080
+ "isExtraImport": true,
1081
+ "detail": "unittest.mock",
1082
+ "documentation": {}
1083
+ },
1084
+ {
1085
+ "label": "MagicMock",
1086
+ "importPath": "unittest.mock",
1087
+ "description": "unittest.mock",
1088
+ "isExtraImport": true,
1089
+ "detail": "unittest.mock",
1090
+ "documentation": {}
1091
+ },
1092
+ {
1093
+ "label": "requests",
1094
+ "kind": 6,
1095
+ "isExtraImport": true,
1096
+ "importPath": "requests",
1097
+ "description": "requests",
1098
+ "detail": "requests",
1099
+ "documentation": {}
1100
+ },
1101
+ {
1102
+ "label": "TutorXClient",
1103
+ "importPath": "client",
1104
+ "description": "client",
1105
+ "isExtraImport": true,
1106
+ "detail": "client",
1107
+ "documentation": {}
1108
+ },
1109
+ {
1110
+ "label": "assess_skill",
1111
+ "importPath": "main",
1112
+ "description": "main",
1113
+ "isExtraImport": true,
1114
+ "detail": "main",
1115
+ "documentation": {}
1116
+ },
1117
+ {
1118
+ "label": "generate_quiz",
1119
+ "importPath": "main",
1120
+ "description": "main",
1121
+ "isExtraImport": true,
1122
+ "detail": "main",
1123
+ "documentation": {}
1124
+ },
1125
+ {
1126
+ "label": "get_concept_graph",
1127
+ "importPath": "main",
1128
+ "description": "main",
1129
+ "isExtraImport": true,
1130
+ "detail": "main",
1131
+ "documentation": {}
1132
+ },
1133
+ {
1134
+ "label": "pytest",
1135
+ "kind": 6,
1136
+ "isExtraImport": true,
1137
+ "importPath": "pytest",
1138
+ "description": "pytest",
1139
+ "detail": "pytest",
1140
+ "documentation": {}
1141
+ },
1142
+ {
1143
+ "label": "ClientSession",
1144
+ "importPath": "mcp",
1145
+ "description": "mcp",
1146
+ "isExtraImport": true,
1147
+ "detail": "mcp",
1148
+ "documentation": {}
1149
+ },
1150
+ {
1151
+ "label": "ClientSession",
1152
+ "importPath": "mcp",
1153
+ "description": "mcp",
1154
+ "isExtraImport": true,
1155
+ "detail": "mcp",
1156
+ "documentation": {}
1157
+ },
1158
+ {
1159
+ "label": "sse_client",
1160
+ "importPath": "mcp.client.sse",
1161
+ "description": "mcp.client.sse",
1162
+ "isExtraImport": true,
1163
+ "detail": "mcp.client.sse",
1164
+ "documentation": {}
1165
+ },
1166
+ {
1167
+ "label": "sse_client",
1168
+ "importPath": "mcp.client.sse",
1169
+ "description": "mcp.client.sse",
1170
+ "isExtraImport": true,
1171
+ "detail": "mcp.client.sse",
1172
+ "documentation": {}
1173
+ },
1174
+ {
1175
+ "label": "process_text_query",
1176
+ "importPath": "utils.multimodal",
1177
+ "description": "utils.multimodal",
1178
+ "isExtraImport": true,
1179
+ "detail": "utils.multimodal",
1180
+ "documentation": {}
1181
+ },
1182
+ {
1183
+ "label": "process_voice_input",
1184
+ "importPath": "utils.multimodal",
1185
+ "description": "utils.multimodal",
1186
+ "isExtraImport": true,
1187
+ "detail": "utils.multimodal",
1188
+ "documentation": {}
1189
+ },
1190
+ {
1191
+ "label": "process_handwriting",
1192
+ "importPath": "utils.multimodal",
1193
+ "description": "utils.multimodal",
1194
+ "isExtraImport": true,
1195
+ "detail": "utils.multimodal",
1196
+ "documentation": {}
1197
+ },
1198
+ {
1199
+ "label": "generate_question",
1200
+ "importPath": "utils.assessment",
1201
+ "description": "utils.assessment",
1202
+ "isExtraImport": true,
1203
+ "detail": "utils.assessment",
1204
+ "documentation": {}
1205
+ },
1206
+ {
1207
+ "label": "evaluate_student_answer",
1208
+ "importPath": "utils.assessment",
1209
+ "description": "utils.assessment",
1210
+ "isExtraImport": true,
1211
+ "detail": "utils.assessment",
1212
+ "documentation": {}
1213
+ },
1214
+ {
1215
+ "label": "gradio",
1216
+ "kind": 6,
1217
+ "isExtraImport": true,
1218
+ "importPath": "gradio",
1219
+ "description": "gradio",
1220
+ "detail": "gradio",
1221
+ "documentation": {}
1222
+ },
1223
+ {
1224
+ "label": "numpy",
1225
+ "kind": 6,
1226
+ "isExtraImport": true,
1227
+ "importPath": "numpy",
1228
+ "description": "numpy",
1229
+ "detail": "numpy",
1230
+ "documentation": {}
1231
+ },
1232
+ {
1233
+ "label": "sseclient",
1234
+ "kind": 6,
1235
+ "isExtraImport": true,
1236
+ "importPath": "sseclient",
1237
+ "description": "sseclient",
1238
+ "detail": "sseclient",
1239
+ "documentation": {}
1240
+ },
1241
+ {
1242
+ "label": "upload_to_azure",
1243
+ "importPath": "mcp_server.utils.azure_upload",
1244
+ "description": "mcp_server.utils.azure_upload",
1245
+ "isExtraImport": true,
1246
+ "detail": "mcp_server.utils.azure_upload",
1247
+ "documentation": {}
1248
+ },
1249
+ {
1250
+ "label": "api_app",
1251
+ "importPath": "mcp_server",
1252
+ "description": "mcp_server",
1253
+ "isExtraImport": true,
1254
+ "detail": "mcp_server",
1255
+ "documentation": {}
1256
+ },
1257
+ {
1258
+ "label": "mcp",
1259
+ "importPath": "mcp_server",
1260
+ "description": "mcp_server",
1261
+ "isExtraImport": true,
1262
+ "detail": "mcp_server",
1263
+ "documentation": {}
1264
+ },
1265
+ {
1266
+ "label": "argparse",
1267
+ "kind": 6,
1268
+ "isExtraImport": true,
1269
+ "importPath": "argparse",
1270
+ "description": "argparse",
1271
+ "detail": "argparse",
1272
+ "documentation": {}
1273
+ },
1274
+ {
1275
+ "label": "socket",
1276
+ "kind": 6,
1277
+ "isExtraImport": true,
1278
+ "importPath": "socket",
1279
+ "description": "socket",
1280
+ "detail": "socket",
1281
+ "documentation": {}
1282
+ },
1283
+ {
1284
+ "label": "bin_dir",
1285
+ "kind": 5,
1286
+ "importPath": ".venv.Scripts.activate_this",
1287
+ "description": ".venv.Scripts.activate_this",
1288
+ "peekOfCode": "bin_dir = os.path.dirname(abs_file)\nbase = bin_dir[: -len(\"Scripts\") - 1] # strip away the bin part from the __file__, plus the path separator\n# prepend bin to PATH (this file is inside the bin directory)\nos.environ[\"PATH\"] = os.pathsep.join([bin_dir, *os.environ.get(\"PATH\", \"\").split(os.pathsep)])\nos.environ[\"VIRTUAL_ENV\"] = base # virtual env is right above bin directory\nos.environ[\"VIRTUAL_ENV_PROMPT\"] = \"tutorx-mcp\" or os.path.basename(base) # noqa: SIM222\n# add the virtual environments libraries to the host python import mechanism\nprev_length = len(sys.path)\nfor lib in \"..\\\\Lib\\\\site-packages\".split(os.pathsep):\n path = os.path.realpath(os.path.join(bin_dir, lib))",
1289
+ "detail": ".venv.Scripts.activate_this",
1290
+ "documentation": {}
1291
+ },
1292
+ {
1293
+ "label": "base",
1294
+ "kind": 5,
1295
+ "importPath": ".venv.Scripts.activate_this",
1296
+ "description": ".venv.Scripts.activate_this",
1297
+ "peekOfCode": "base = bin_dir[: -len(\"Scripts\") - 1] # strip away the bin part from the __file__, plus the path separator\n# prepend bin to PATH (this file is inside the bin directory)\nos.environ[\"PATH\"] = os.pathsep.join([bin_dir, *os.environ.get(\"PATH\", \"\").split(os.pathsep)])\nos.environ[\"VIRTUAL_ENV\"] = base # virtual env is right above bin directory\nos.environ[\"VIRTUAL_ENV_PROMPT\"] = \"tutorx-mcp\" or os.path.basename(base) # noqa: SIM222\n# add the virtual environments libraries to the host python import mechanism\nprev_length = len(sys.path)\nfor lib in \"..\\\\Lib\\\\site-packages\".split(os.pathsep):\n path = os.path.realpath(os.path.join(bin_dir, lib))\n site.addsitedir(path)",
1298
+ "detail": ".venv.Scripts.activate_this",
1299
+ "documentation": {}
1300
+ },
1301
+ {
1302
+ "label": "os.environ[\"PATH\"]",
1303
+ "kind": 5,
1304
+ "importPath": ".venv.Scripts.activate_this",
1305
+ "description": ".venv.Scripts.activate_this",
1306
+ "peekOfCode": "os.environ[\"PATH\"] = os.pathsep.join([bin_dir, *os.environ.get(\"PATH\", \"\").split(os.pathsep)])\nos.environ[\"VIRTUAL_ENV\"] = base # virtual env is right above bin directory\nos.environ[\"VIRTUAL_ENV_PROMPT\"] = \"tutorx-mcp\" or os.path.basename(base) # noqa: SIM222\n# add the virtual environments libraries to the host python import mechanism\nprev_length = len(sys.path)\nfor lib in \"..\\\\Lib\\\\site-packages\".split(os.pathsep):\n path = os.path.realpath(os.path.join(bin_dir, lib))\n site.addsitedir(path)\nsys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length]\nsys.real_prefix = sys.prefix",
1307
+ "detail": ".venv.Scripts.activate_this",
1308
+ "documentation": {}
1309
+ },
1310
+ {
1311
+ "label": "os.environ[\"VIRTUAL_ENV\"]",
1312
+ "kind": 5,
1313
+ "importPath": ".venv.Scripts.activate_this",
1314
+ "description": ".venv.Scripts.activate_this",
1315
+ "peekOfCode": "os.environ[\"VIRTUAL_ENV\"] = base # virtual env is right above bin directory\nos.environ[\"VIRTUAL_ENV_PROMPT\"] = \"tutorx-mcp\" or os.path.basename(base) # noqa: SIM222\n# add the virtual environments libraries to the host python import mechanism\nprev_length = len(sys.path)\nfor lib in \"..\\\\Lib\\\\site-packages\".split(os.pathsep):\n path = os.path.realpath(os.path.join(bin_dir, lib))\n site.addsitedir(path)\nsys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length]\nsys.real_prefix = sys.prefix\nsys.prefix = base",
1316
+ "detail": ".venv.Scripts.activate_this",
1317
+ "documentation": {}
1318
+ },
1319
+ {
1320
+ "label": "os.environ[\"VIRTUAL_ENV_PROMPT\"]",
1321
+ "kind": 5,
1322
+ "importPath": ".venv.Scripts.activate_this",
1323
+ "description": ".venv.Scripts.activate_this",
1324
+ "peekOfCode": "os.environ[\"VIRTUAL_ENV_PROMPT\"] = \"tutorx-mcp\" or os.path.basename(base) # noqa: SIM222\n# add the virtual environments libraries to the host python import mechanism\nprev_length = len(sys.path)\nfor lib in \"..\\\\Lib\\\\site-packages\".split(os.pathsep):\n path = os.path.realpath(os.path.join(bin_dir, lib))\n site.addsitedir(path)\nsys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length]\nsys.real_prefix = sys.prefix\nsys.prefix = base",
1325
+ "detail": ".venv.Scripts.activate_this",
1326
+ "documentation": {}
1327
+ },
1328
+ {
1329
+ "label": "prev_length",
1330
+ "kind": 5,
1331
+ "importPath": ".venv.Scripts.activate_this",
1332
+ "description": ".venv.Scripts.activate_this",
1333
+ "peekOfCode": "prev_length = len(sys.path)\nfor lib in \"..\\\\Lib\\\\site-packages\".split(os.pathsep):\n path = os.path.realpath(os.path.join(bin_dir, lib))\n site.addsitedir(path)\nsys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length]\nsys.real_prefix = sys.prefix\nsys.prefix = base",
1334
+ "detail": ".venv.Scripts.activate_this",
1335
+ "documentation": {}
1336
+ },
1337
+ {
1338
+ "label": "sys.path[:]",
1339
+ "kind": 5,
1340
+ "importPath": ".venv.Scripts.activate_this",
1341
+ "description": ".venv.Scripts.activate_this",
1342
+ "peekOfCode": "sys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length]\nsys.real_prefix = sys.prefix\nsys.prefix = base",
1343
+ "detail": ".venv.Scripts.activate_this",
1344
+ "documentation": {}
1345
+ },
1346
+ {
1347
+ "label": "sys.real_prefix",
1348
+ "kind": 5,
1349
+ "importPath": ".venv.Scripts.activate_this",
1350
+ "description": ".venv.Scripts.activate_this",
1351
+ "peekOfCode": "sys.real_prefix = sys.prefix\nsys.prefix = base",
1352
+ "detail": ".venv.Scripts.activate_this",
1353
+ "documentation": {}
1354
+ },
1355
+ {
1356
+ "label": "sys.prefix",
1357
+ "kind": 5,
1358
+ "importPath": ".venv.Scripts.activate_this",
1359
+ "description": ".venv.Scripts.activate_this",
1360
+ "peekOfCode": "sys.prefix = base",
1361
+ "detail": ".venv.Scripts.activate_this",
1362
+ "documentation": {}
1363
+ },
1364
+ {
1365
+ "label": "cmp",
1366
+ "kind": 2,
1367
+ "importPath": ".venv.Scripts.sessionmirror",
1368
+ "description": ".venv.Scripts.sessionmirror",
1369
+ "peekOfCode": "def cmp(a, b):\n return (a > b) - (a < b)\nfrom builtins import zip\nfrom builtins import str\nimport os\nimport os.path as op\nimport sys\nfrom xml.etree import cElementTree as ET\nimport pyxnat\nPROJ_ATTRS = [",
1370
+ "detail": ".venv.Scripts.sessionmirror",
1371
+ "documentation": {}
1372
+ },
1373
+ {
1374
+ "label": "copy_attrs",
1375
+ "kind": 2,
1376
+ "importPath": ".venv.Scripts.sessionmirror",
1377
+ "description": ".venv.Scripts.sessionmirror",
1378
+ "peekOfCode": "def copy_attrs(src_obj, dest_obj, attr_list):\n \"\"\" Copies list of attributes form source to destination\"\"\"\n src_attrs = src_obj.attrs.mget(attr_list)\n src_list = dict(list(zip(attr_list, src_attrs)))\n # NOTE: For some reason need to set te again b/c a bug somewhere sets te\n # to sequence name\n te_key = 'xnat:mrScanData/parameters/te'\n if te_key in src_list:\n src_list[te_key] = src_obj.attrs.get(te_key)\n dest_obj.attrs.mset(src_list)",
1379
+ "detail": ".venv.Scripts.sessionmirror",
1380
+ "documentation": {}
1381
+ },
1382
+ {
1383
+ "label": "copy_attributes",
1384
+ "kind": 2,
1385
+ "importPath": ".venv.Scripts.sessionmirror",
1386
+ "description": ".venv.Scripts.sessionmirror",
1387
+ "peekOfCode": "def copy_attributes(src_obj, dest_obj):\n '''Copy attributes from src to dest'''\n src_type = src_obj.datatype()\n types = {'xnat:projectData': PROJ_ATTRS,\n 'xnat:subjectData': SUBJ_ATTRS,\n 'xnat:mrSessionData': MR_EXP_ATTRS,\n 'xnat:petSessionData': PET_EXP_ATTRS,\n 'xnat:ctSessionData': CT_EXP_ATTRS,\n 'xnat:mrScanData': MR_SCAN_ATTRS,\n 'xnat:petScanData': PET_SCAN_ATTRS,",
1388
+ "detail": ".venv.Scripts.sessionmirror",
1389
+ "documentation": {}
1390
+ },
1391
+ {
1392
+ "label": "subj_compare",
1393
+ "kind": 2,
1394
+ "importPath": ".venv.Scripts.sessionmirror",
1395
+ "description": ".venv.Scripts.sessionmirror",
1396
+ "peekOfCode": "def subj_compare(item1, item2):\n '''Compare sort of items'''\n return cmp(item1.label(), item2.label())\ndef copy_file(src_f, dest_r, cache_d):\n '''\n Copy file from XNAT file source to XNAT resource destination,\n using local cache in between'''\n f_label = src_f.label()\n loc_f = cache_d + '/' + f_label\n # Make subdirectories",
1397
+ "detail": ".venv.Scripts.sessionmirror",
1398
+ "documentation": {}
1399
+ },
1400
+ {
1401
+ "label": "copy_file",
1402
+ "kind": 2,
1403
+ "importPath": ".venv.Scripts.sessionmirror",
1404
+ "description": ".venv.Scripts.sessionmirror",
1405
+ "peekOfCode": "def copy_file(src_f, dest_r, cache_d):\n '''\n Copy file from XNAT file source to XNAT resource destination,\n using local cache in between'''\n f_label = src_f.label()\n loc_f = cache_d + '/' + f_label\n # Make subdirectories\n loc_d = op.dirname(loc_f)\n if not op.exists(loc_d):\n os.makedirs(loc_d)",
1406
+ "detail": ".venv.Scripts.sessionmirror",
1407
+ "documentation": {}
1408
+ },
1409
+ {
1410
+ "label": "copy_res_zip",
1411
+ "kind": 2,
1412
+ "importPath": ".venv.Scripts.sessionmirror",
1413
+ "description": ".venv.Scripts.sessionmirror",
1414
+ "peekOfCode": "def copy_res_zip(src_r, dest_r, cache_d):\n '''\n Copy a resource from XNAT source to XNAT destination using local cache\n in between\n '''\n try:\n # Download zip of resource\n print('INFO:Downloading resource as zip...')\n cache_z = src_r.get(cache_d, extract=False)\n # Upload zip of resource",
1415
+ "detail": ".venv.Scripts.sessionmirror",
1416
+ "documentation": {}
1417
+ },
1418
+ {
1419
+ "label": "is_empty_resource",
1420
+ "kind": 2,
1421
+ "importPath": ".venv.Scripts.sessionmirror",
1422
+ "description": ".venv.Scripts.sessionmirror",
1423
+ "peekOfCode": "def is_empty_resource(_res):\n '''Check if resource contains any files'''\n f_count = 0\n for f_in in _res.files().fetchall('obj'):\n f_count += 1\n break\n return f_count == 0\n# copy_project and copy_subject are untested\n# def copy_project(src_proj, dst_proj, proj_cache_dir):\n# '''Copy XNAT project from source to destination'''",
1424
+ "detail": ".venv.Scripts.sessionmirror",
1425
+ "documentation": {}
1426
+ },
1427
+ {
1428
+ "label": "copy_session",
1429
+ "kind": 2,
1430
+ "importPath": ".venv.Scripts.sessionmirror",
1431
+ "description": ".venv.Scripts.sessionmirror",
1432
+ "peekOfCode": "def copy_session(src_sess, dst_sess, sess_cache_dir):\n '''Copy XNAT session from source to destination'''\n print('INFO:uploading session attributes as xml')\n # Write xml to file\n if not op.exists(sess_cache_dir):\n os.makedirs(sess_cache_dir)\n sess_xml = src_sess.get()\n xml_path = op.join(sess_cache_dir, 'sess.xml')\n write_xml(sess_xml, xml_path)\n sess_type = src_sess.datatype()",
1433
+ "detail": ".venv.Scripts.sessionmirror",
1434
+ "documentation": {}
1435
+ },
1436
+ {
1437
+ "label": "copy_scan",
1438
+ "kind": 2,
1439
+ "importPath": ".venv.Scripts.sessionmirror",
1440
+ "description": ".venv.Scripts.sessionmirror",
1441
+ "peekOfCode": "def copy_scan(src_scan, dst_scan, scan_cache_dir):\n '''Copy scan from source XNAT to destination XNAT'''\n scan_type = src_scan.datatype()\n if scan_type == '':\n scan_type = 'xnat:otherDicomScanData'\n dst_scan.create(scans=scan_type)\n copy_attributes(src_scan, dst_scan)\n # Process each resource of scan\n for src_res in src_scan.resources().fetchall('obj'):\n res_label = src_res.label()",
1442
+ "detail": ".venv.Scripts.sessionmirror",
1443
+ "documentation": {}
1444
+ },
1445
+ {
1446
+ "label": "copy_res",
1447
+ "kind": 2,
1448
+ "importPath": ".venv.Scripts.sessionmirror",
1449
+ "description": ".venv.Scripts.sessionmirror",
1450
+ "peekOfCode": "def copy_res(src_res, dst_res, res_cache_dir, use_zip=False):\n '''Copy resource from source XNAT to destination XNAT'''\n # Create cache dir\n if not op.exists(res_cache_dir):\n os.makedirs(res_cache_dir)\n # Prepare resource and check for empty\n is_empty = False\n print(dst_res._uri)\n if not dst_res.exists():\n dst_res.create()",
1451
+ "detail": ".venv.Scripts.sessionmirror",
1452
+ "documentation": {}
1453
+ },
1454
+ {
1455
+ "label": "write_xml",
1456
+ "kind": 2,
1457
+ "importPath": ".venv.Scripts.sessionmirror",
1458
+ "description": ".venv.Scripts.sessionmirror",
1459
+ "peekOfCode": "def write_xml(xml_str, file_path, clean_tags=True):\n \"\"\"Writing XML.\"\"\"\n root = ET.fromstring(xml_str)\n # We only want the tags and attributes relevant to root, no children\n if clean_tags:\n # Remove ID\n if 'ID' in root.attrib:\n del root.attrib['ID']\n # Remove sharing tags\n tag = '{http://nrg.wustl.edu/xnat}sharing'",
1460
+ "detail": ".venv.Scripts.sessionmirror",
1461
+ "documentation": {}
1462
+ },
1463
+ {
1464
+ "label": "create_parser",
1465
+ "kind": 2,
1466
+ "importPath": ".venv.Scripts.sessionmirror",
1467
+ "description": ".venv.Scripts.sessionmirror",
1468
+ "peekOfCode": "def create_parser():\n import argparse\n \"\"\"Parse commandline arguments.\"\"\"\n arg_parser = argparse.ArgumentParser(\n description='Downloads a given experiment/session from an XNAT instance '\n 'and uploads it to an independent one. Only DICOM resources '\n 'will be imported.',\n formatter_class=argparse.RawTextHelpFormatter)\n arg_parser.add_argument(\n '--h1', '--source_config', dest='source_config',",
1469
+ "detail": ".venv.Scripts.sessionmirror",
1470
+ "documentation": {}
1471
+ },
1472
+ {
1473
+ "label": "main",
1474
+ "kind": 2,
1475
+ "importPath": ".venv.Scripts.sessionmirror",
1476
+ "description": ".venv.Scripts.sessionmirror",
1477
+ "peekOfCode": "def main(args):\n x1 = pyxnat.Interface(config=args.source_config)\n x2 = pyxnat.Interface(config=args.dest_config)\n columns = ['subject_label', 'label']\n e1 = x1.array.experiments(experiment_id=args.experiment_id,\n columns=columns).data[0]\n p = x2.select.project(args.project_id)\n s = p.subject(e1['subject_label'])\n if not s.exists():\n s.create()",
1478
+ "detail": ".venv.Scripts.sessionmirror",
1479
+ "documentation": {}
1480
+ },
1481
+ {
1482
+ "label": "PROJ_ATTRS",
1483
+ "kind": 5,
1484
+ "importPath": ".venv.Scripts.sessionmirror",
1485
+ "description": ".venv.Scripts.sessionmirror",
1486
+ "peekOfCode": "PROJ_ATTRS = [\n 'xnat:projectData/name',\n 'xnat:projectData/description',\n 'xnat:projectData/keywords',\n]\nSUBJ_ATTRS = [\n 'xnat:subjectData/group',\n 'xnat:subjectData/src',\n 'xnat:subjectData/investigator/firstname',\n 'xnat:subjectData/investigator/lastname',",
1487
+ "detail": ".venv.Scripts.sessionmirror",
1488
+ "documentation": {}
1489
+ },
1490
+ {
1491
+ "label": "SUBJ_ATTRS",
1492
+ "kind": 5,
1493
+ "importPath": ".venv.Scripts.sessionmirror",
1494
+ "description": ".venv.Scripts.sessionmirror",
1495
+ "peekOfCode": "SUBJ_ATTRS = [\n 'xnat:subjectData/group',\n 'xnat:subjectData/src',\n 'xnat:subjectData/investigator/firstname',\n 'xnat:subjectData/investigator/lastname',\n 'xnat:subjectData/demographics[@xsi:type=xnat:demographicData]/dob',\n 'xnat:subjectData/demographics[@xsi:type=xnat:demographicData]/yob',\n 'xnat:subjectData/demographics[@xsi:type=xnat:demographicData]/age',\n 'xnat:subjectData/demographics[@xsi:type=xnat:demographicData]/gender',\n 'xnat:subjectData/demographics[@xsi:type=xnat:demographicData]/handedness',",
1496
+ "detail": ".venv.Scripts.sessionmirror",
1497
+ "documentation": {}
1498
+ },
1499
+ {
1500
+ "label": "MR_EXP_ATTRS",
1501
+ "kind": 5,
1502
+ "importPath": ".venv.Scripts.sessionmirror",
1503
+ "description": ".venv.Scripts.sessionmirror",
1504
+ "peekOfCode": "MR_EXP_ATTRS = [\n 'xnat:experimentData/date',\n 'xnat:experimentData/visit_id',\n 'xnat:experimentData/time',\n 'xnat:experimentData/note',\n 'xnat:experimentData/investigator/firstname',\n 'xnat:experimentData/investigator/lastname',\n 'xnat:imageSessionData/scanner/manufacturer',\n 'xnat:imageSessionData/scanner/model',\n 'xnat:imageSessionData/operator',",
1505
+ "detail": ".venv.Scripts.sessionmirror",
1506
+ "documentation": {}
1507
+ },
1508
+ {
1509
+ "label": "OTHER_DICOM_SCAN_ATTRS",
1510
+ "kind": 5,
1511
+ "importPath": ".venv.Scripts.sessionmirror",
1512
+ "description": ".venv.Scripts.sessionmirror",
1513
+ "peekOfCode": "OTHER_DICOM_SCAN_ATTRS = [\n 'xnat:imageScanData/type',\n 'xnat:imageScanData/UID',\n 'xnat:imageScanData/note',\n 'xnat:imageScanData/quality',\n 'xnat:imageScanData/condition',\n 'xnat:imageScanData/series_description',\n 'xnat:imageScanData/documentation',\n 'xnat:imageScanData/frames',\n 'xnat:imageScanData/startTime',",
1514
+ "detail": ".venv.Scripts.sessionmirror",
1515
+ "documentation": {}
1516
+ },
1517
+ {
1518
+ "label": "MR_SCAN_ATTRS",
1519
+ "kind": 5,
1520
+ "importPath": ".venv.Scripts.sessionmirror",
1521
+ "description": ".venv.Scripts.sessionmirror",
1522
+ "peekOfCode": "MR_SCAN_ATTRS = [\n 'xnat:imageScanData/type',\n 'xnat:imageScanData/UID',\n 'xnat:imageScanData/note',\n 'xnat:imageScanData/quality',\n 'xnat:imageScanData/condition',\n 'xnat:imageScanData/series_description',\n 'xnat:imageScanData/documentation',\n 'xnat:imageScanData/frames',\n 'xnat:imageScanData/startTime',",
1523
+ "detail": ".venv.Scripts.sessionmirror",
1524
+ "documentation": {}
1525
+ },
1526
+ {
1527
+ "label": "SC_SCAN_ATTRS",
1528
+ "kind": 5,
1529
+ "importPath": ".venv.Scripts.sessionmirror",
1530
+ "description": ".venv.Scripts.sessionmirror",
1531
+ "peekOfCode": "SC_SCAN_ATTRS = [\n 'xnat:imageScanData/type',\n 'xnat:imageScanData/UID',\n 'xnat:imageScanData/note',\n 'xnat:imageScanData/quality',\n 'xnat:imageScanData/condition',\n 'xnat:imageScanData/series_description',\n 'xnat:imageScanData/documentation',\n 'xnat:imageScanData/frames',\n 'xnat:imageScanData/scanner/manufacturer',",
1532
+ "detail": ".venv.Scripts.sessionmirror",
1533
+ "documentation": {}
1534
+ },
1535
+ {
1536
+ "label": "PET_EXP_ATTRS",
1537
+ "kind": 5,
1538
+ "importPath": ".venv.Scripts.sessionmirror",
1539
+ "description": ".venv.Scripts.sessionmirror",
1540
+ "peekOfCode": "PET_EXP_ATTRS = [\n 'xnat:experimentData/date',\n 'xnat:experimentData/visit_id',\n 'xnat:experimentData/time',\n 'xnat:experimentData/note',\n 'xnat:experimentData/investigator/firstname',\n 'xnat:experimentData/investigator/lastname',\n 'xnat:imageSessionData/scanner/manufacturer',\n 'xnat:imageSessionData/scanner/model',\n 'xnat:imageSessionData/operator',",
1541
+ "detail": ".venv.Scripts.sessionmirror",
1542
+ "documentation": {}
1543
+ },
1544
+ {
1545
+ "label": "CT_EXP_ATTRS",
1546
+ "kind": 5,
1547
+ "importPath": ".venv.Scripts.sessionmirror",
1548
+ "description": ".venv.Scripts.sessionmirror",
1549
+ "peekOfCode": "CT_EXP_ATTRS = [\n 'xnat:experimentData/date',\n 'xnat:experimentData/visit_id',\n 'xnat:experimentData/time',\n 'xnat:experimentData/note',\n 'xnat:experimentData/investigator/firstname',\n 'xnat:experimentData/investigator/lastname',\n 'xnat:imageSessionData/scanner/manufacturer',\n 'xnat:imageSessionData/scanner/model',\n 'xnat:imageSessionData/operator',",
1550
+ "detail": ".venv.Scripts.sessionmirror",
1551
+ "documentation": {}
1552
+ },
1553
+ {
1554
+ "label": "PET_SCAN_ATTRS",
1555
+ "kind": 5,
1556
+ "importPath": ".venv.Scripts.sessionmirror",
1557
+ "description": ".venv.Scripts.sessionmirror",
1558
+ "peekOfCode": "PET_SCAN_ATTRS = [\n 'xnat:imageScanData/type',\n 'xnat:imageScanData/UID',\n 'xnat:imageScanData/note',\n 'xnat:imageScanData/quality',\n 'xnat:imageScanData/condition',\n 'xnat:imageScanData/series_description',\n 'xnat:imageScanData/documentation',\n 'xnat:imageScanData/frames',\n 'xnat:imageScanData/scanner/manufacturer',",
1559
+ "detail": ".venv.Scripts.sessionmirror",
1560
+ "documentation": {}
1561
+ },
1562
+ {
1563
+ "label": "CT_SCAN_ATTRS",
1564
+ "kind": 5,
1565
+ "importPath": ".venv.Scripts.sessionmirror",
1566
+ "description": ".venv.Scripts.sessionmirror",
1567
+ "peekOfCode": "CT_SCAN_ATTRS = [\n 'xnat:imageScanData/type',\n 'xnat:imageScanData/UID',\n 'xnat:imageScanData/note',\n 'xnat:imageScanData/quality',\n 'xnat:imageScanData/condition',\n 'xnat:imageScanData/series_description',\n 'xnat:imageScanData/documentation',\n 'xnat:imageScanData/frames',\n 'xnat:imageScanData/scanner/manufacturer',",
1568
+ "detail": ".venv.Scripts.sessionmirror",
1569
+ "documentation": {}
1570
+ },
1571
+ {
1572
+ "label": "PROC_ATTRS",
1573
+ "kind": 5,
1574
+ "importPath": ".venv.Scripts.sessionmirror",
1575
+ "description": ".venv.Scripts.sessionmirror",
1576
+ "peekOfCode": "PROC_ATTRS = [\n 'proc:genProcData/validation/status',\n 'proc:genProcData/procstatus',\n 'proc:genProcData/proctype',\n 'proc:genProcData/procversion',\n 'proc:genProcData/walltimeused',\n 'proc:genProcData/memused'\n]\ndef copy_attrs(src_obj, dest_obj, attr_list):\n \"\"\" Copies list of attributes form source to destination\"\"\"",
1577
+ "detail": ".venv.Scripts.sessionmirror",
1578
+ "documentation": {}
1579
+ },
1580
+ {
1581
+ "label": "ModelError",
1582
+ "kind": 6,
1583
+ "importPath": "mcp_server.model.gemini_flash",
1584
+ "description": "mcp_server.model.gemini_flash",
1585
+ "peekOfCode": "class ModelError(Exception):\n \"\"\"Custom exception for model-related errors\"\"\"\n pass\ndef fallback_to_15_flash(method: Callable[..., T]) -> Callable[..., T]:\n \"\"\"\n Decorator to automatically fall back to 1.5 if 2.0 fails.\n Only applies when the instance's version is '2.0'.\n \"\"\"\n @wraps(method)\n async def wrapper(self: 'GeminiFlash', *args: Any, **kwargs: Any) -> T:",
1586
+ "detail": "mcp_server.model.gemini_flash",
1587
+ "documentation": {}
1588
+ },
1589
+ {
1590
+ "label": "GeminiFlash",
1591
+ "kind": 6,
1592
+ "importPath": "mcp_server.model.gemini_flash",
1593
+ "description": "mcp_server.model.gemini_flash",
1594
+ "peekOfCode": "class GeminiFlash:\n \"\"\"\n Google Gemini Flash model implementation with automatic fallback from 2.0 to 1.5.\n \"\"\"\n SUPPORTED_VERSIONS = ['2.0', '1.5']\n def __init__(self, version: str = '2.0', api_key: Optional[str] = None, _is_fallback: bool = False):\n \"\"\"\n Initialize the Gemini Flash model.\n Args:\n version: Model version ('2.0' or '1.5')",
1595
+ "detail": "mcp_server.model.gemini_flash",
1596
+ "documentation": {}
1597
+ },
1598
+ {
1599
+ "label": "fallback_to_15_flash",
1600
+ "kind": 2,
1601
+ "importPath": "mcp_server.model.gemini_flash",
1602
+ "description": "mcp_server.model.gemini_flash",
1603
+ "peekOfCode": "def fallback_to_15_flash(method: Callable[..., T]) -> Callable[..., T]:\n \"\"\"\n Decorator to automatically fall back to 1.5 if 2.0 fails.\n Only applies when the instance's version is '2.0'.\n \"\"\"\n @wraps(method)\n async def wrapper(self: 'GeminiFlash', *args: Any, **kwargs: Any) -> T:\n if self.version != '2.0' or not self._should_fallback:\n return await method(self, *args, **kwargs)\n try:",
1604
+ "detail": "mcp_server.model.gemini_flash",
1605
+ "documentation": {}
1606
+ },
1607
+ {
1608
+ "label": "logger",
1609
+ "kind": 5,
1610
+ "importPath": "mcp_server.model.gemini_flash",
1611
+ "description": "mcp_server.model.gemini_flash",
1612
+ "peekOfCode": "logger = logging.getLogger(__name__)\nT = TypeVar('T')\nclass ModelError(Exception):\n \"\"\"Custom exception for model-related errors\"\"\"\n pass\ndef fallback_to_15_flash(method: Callable[..., T]) -> Callable[..., T]:\n \"\"\"\n Decorator to automatically fall back to 1.5 if 2.0 fails.\n Only applies when the instance's version is '2.0'.\n \"\"\"",
1613
+ "detail": "mcp_server.model.gemini_flash",
1614
+ "documentation": {}
1615
+ },
1616
+ {
1617
+ "label": "T",
1618
+ "kind": 5,
1619
+ "importPath": "mcp_server.model.gemini_flash",
1620
+ "description": "mcp_server.model.gemini_flash",
1621
+ "peekOfCode": "T = TypeVar('T')\nclass ModelError(Exception):\n \"\"\"Custom exception for model-related errors\"\"\"\n pass\ndef fallback_to_15_flash(method: Callable[..., T]) -> Callable[..., T]:\n \"\"\"\n Decorator to automatically fall back to 1.5 if 2.0 fails.\n Only applies when the instance's version is '2.0'.\n \"\"\"\n @wraps(method)",
1622
+ "detail": "mcp_server.model.gemini_flash",
1623
+ "documentation": {}
1624
+ },
1625
+ {
1626
+ "label": "get_concept",
1627
+ "kind": 2,
1628
+ "importPath": "mcp_server.resources.concept_graph",
1629
+ "description": "mcp_server.resources.concept_graph",
1630
+ "peekOfCode": "def get_concept(concept_id: str) -> Dict[str, Any]:\n \"\"\"Get a specific concept by ID or return None if not found.\"\"\"\n return CONCEPT_GRAPH.get(concept_id)\ndef get_all_concepts() -> Dict[str, Any]:\n \"\"\"Get all concepts in the graph.\"\"\"\n return {\"concepts\": list(CONCEPT_GRAPH.values())}\ndef get_concept_graph() -> Dict[str, Any]:\n \"\"\"Get the complete concept graph.\"\"\"\n return CONCEPT_GRAPH",
1631
+ "detail": "mcp_server.resources.concept_graph",
1632
+ "documentation": {}
1633
+ },
1634
+ {
1635
+ "label": "get_all_concepts",
1636
+ "kind": 2,
1637
+ "importPath": "mcp_server.resources.concept_graph",
1638
+ "description": "mcp_server.resources.concept_graph",
1639
+ "peekOfCode": "def get_all_concepts() -> Dict[str, Any]:\n \"\"\"Get all concepts in the graph.\"\"\"\n return {\"concepts\": list(CONCEPT_GRAPH.values())}\ndef get_concept_graph() -> Dict[str, Any]:\n \"\"\"Get the complete concept graph.\"\"\"\n return CONCEPT_GRAPH",
1640
+ "detail": "mcp_server.resources.concept_graph",
1641
+ "documentation": {}
1642
+ },
1643
+ {
1644
+ "label": "get_concept_graph",
1645
+ "kind": 2,
1646
+ "importPath": "mcp_server.resources.concept_graph",
1647
+ "description": "mcp_server.resources.concept_graph",
1648
+ "peekOfCode": "def get_concept_graph() -> Dict[str, Any]:\n \"\"\"Get the complete concept graph.\"\"\"\n return CONCEPT_GRAPH",
1649
+ "detail": "mcp_server.resources.concept_graph",
1650
+ "documentation": {}
1651
+ },
1652
+ {
1653
+ "label": "CONCEPT_GRAPH",
1654
+ "kind": 5,
1655
+ "importPath": "mcp_server.resources.concept_graph",
1656
+ "description": "mcp_server.resources.concept_graph",
1657
+ "peekOfCode": "CONCEPT_GRAPH = {\n \"python\": {\n \"id\": \"python\",\n \"name\": \"Python Programming\",\n \"description\": \"Fundamentals of Python programming language\",\n \"prerequisites\": [],\n \"related\": [\"functions\", \"oop\", \"data_structures\"]\n },\n \"functions\": {\n \"id\": \"functions\",",
1658
+ "detail": "mcp_server.resources.concept_graph",
1659
+ "documentation": {}
1660
+ },
1661
+ {
1662
+ "label": "get_curriculum_standards",
1663
+ "kind": 2,
1664
+ "importPath": "mcp_server.resources.curriculum_standards",
1665
+ "description": "mcp_server.resources.curriculum_standards",
1666
+ "peekOfCode": "def get_curriculum_standards(country_code: str = \"us\") -> Dict[str, Any]:\n \"\"\"\n Get curriculum standards for a specific country.\n Args:\n country_code: ISO country code (e.g., 'us', 'uk', 'in', 'sg', 'ca')\n Returns:\n Dictionary containing curriculum standards for the specified country\n \"\"\"\n country_code = country_code.lower()\n if country_code not in CURRICULUM_STANDARDS:",
1667
+ "detail": "mcp_server.resources.curriculum_standards",
1668
+ "documentation": {}
1669
+ },
1670
+ {
1671
+ "label": "CURRICULUM_STANDARDS",
1672
+ "kind": 5,
1673
+ "importPath": "mcp_server.resources.curriculum_standards",
1674
+ "description": "mcp_server.resources.curriculum_standards",
1675
+ "peekOfCode": "CURRICULUM_STANDARDS = {\n \"us\": {\n \"name\": \"Common Core State Standards (US)\",\n \"subjects\": {\n \"math\": {\n \"k-5\": [\"Counting & Cardinality\", \"Operations & Algebraic Thinking\", \"Number & Operations\"],\n \"6-8\": [\"Ratios & Proportional Relationships\", \"The Number System\", \"Expressions & Equations\"],\n \"9-12\": [\"Number & Quantity\", \"Algebra\", \"Functions\", \"Modeling\", \"Geometry\", \"Statistics & Probability\"]\n },\n \"ela\": {",
1676
+ "detail": "mcp_server.resources.curriculum_standards",
1677
+ "documentation": {}
1678
+ },
1679
+ {
1680
+ "label": "current_dir",
1681
+ "kind": 5,
1682
+ "importPath": "mcp_server.tools.concept_graph_tools",
1683
+ "description": "mcp_server.tools.concept_graph_tools",
1684
+ "peekOfCode": "current_dir = Path(__file__).parent\nparent_dir = current_dir.parent.parent\nsys.path.insert(0, str(parent_dir))\nimport sys\nimport os\nfrom pathlib import Path\n# Add the parent directory to the Python path\ncurrent_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))",
1685
+ "detail": "mcp_server.tools.concept_graph_tools",
1686
+ "documentation": {}
1687
+ },
1688
+ {
1689
+ "label": "parent_dir",
1690
+ "kind": 5,
1691
+ "importPath": "mcp_server.tools.concept_graph_tools",
1692
+ "description": "mcp_server.tools.concept_graph_tools",
1693
+ "peekOfCode": "parent_dir = current_dir.parent.parent\nsys.path.insert(0, str(parent_dir))\nimport sys\nimport os\nfrom pathlib import Path\n# Add the parent directory to the Python path\ncurrent_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources",
1694
+ "detail": "mcp_server.tools.concept_graph_tools",
1695
+ "documentation": {}
1696
+ },
1697
+ {
1698
+ "label": "current_dir",
1699
+ "kind": 5,
1700
+ "importPath": "mcp_server.tools.concept_graph_tools",
1701
+ "description": "mcp_server.tools.concept_graph_tools",
1702
+ "peekOfCode": "current_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources\nfrom resources import concept_graph\n# Import MCP\nfrom mcp_server.mcp_instance import mcp\nfrom mcp_server.model.gemini_flash import GeminiFlash\nMODEL = GeminiFlash()\[email protected]()",
1703
+ "detail": "mcp_server.tools.concept_graph_tools",
1704
+ "documentation": {}
1705
+ },
1706
+ {
1707
+ "label": "parent_dir",
1708
+ "kind": 5,
1709
+ "importPath": "mcp_server.tools.concept_graph_tools",
1710
+ "description": "mcp_server.tools.concept_graph_tools",
1711
+ "peekOfCode": "parent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources\nfrom resources import concept_graph\n# Import MCP\nfrom mcp_server.mcp_instance import mcp\nfrom mcp_server.model.gemini_flash import GeminiFlash\nMODEL = GeminiFlash()\[email protected]()\nasync def get_concept_graph_tool(concept_id: Optional[str] = None) -> dict:",
1712
+ "detail": "mcp_server.tools.concept_graph_tools",
1713
+ "documentation": {}
1714
+ },
1715
+ {
1716
+ "label": "MODEL",
1717
+ "kind": 5,
1718
+ "importPath": "mcp_server.tools.concept_graph_tools",
1719
+ "description": "mcp_server.tools.concept_graph_tools",
1720
+ "peekOfCode": "MODEL = GeminiFlash()\[email protected]()\nasync def get_concept_graph_tool(concept_id: Optional[str] = None) -> dict:\n \"\"\"\n Get the complete concept graph or a specific concept, fully LLM-driven.\n For a specific concept, use Gemini to generate a JSON object with explanation, related concepts, prerequisites, and summary.\n For the full graph, use Gemini to generate a JSON object with a list of all concepts and their relationships.\n \"\"\"\n if concept_id:\n prompt = (",
1721
+ "detail": "mcp_server.tools.concept_graph_tools",
1722
+ "documentation": {}
1723
+ },
1724
+ {
1725
+ "label": "current_dir",
1726
+ "kind": 5,
1727
+ "importPath": "mcp_server.tools.concept_tools",
1728
+ "description": "mcp_server.tools.concept_tools",
1729
+ "peekOfCode": "current_dir = Path(__file__).parent\nparent_dir = current_dir.parent.parent\nsys.path.insert(0, str(parent_dir))\nimport sys\nimport os\nfrom pathlib import Path\n# Add the parent directory to the Python path\ncurrent_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))",
1730
+ "detail": "mcp_server.tools.concept_tools",
1731
+ "documentation": {}
1732
+ },
1733
+ {
1734
+ "label": "parent_dir",
1735
+ "kind": 5,
1736
+ "importPath": "mcp_server.tools.concept_tools",
1737
+ "description": "mcp_server.tools.concept_tools",
1738
+ "peekOfCode": "parent_dir = current_dir.parent.parent\nsys.path.insert(0, str(parent_dir))\nimport sys\nimport os\nfrom pathlib import Path\n# Add the parent directory to the Python path\ncurrent_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources",
1739
+ "detail": "mcp_server.tools.concept_tools",
1740
+ "documentation": {}
1741
+ },
1742
+ {
1743
+ "label": "current_dir",
1744
+ "kind": 5,
1745
+ "importPath": "mcp_server.tools.concept_tools",
1746
+ "description": "mcp_server.tools.concept_tools",
1747
+ "peekOfCode": "current_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources\nfrom resources.concept_graph import get_concept, get_all_concepts\n# Import MCP\nfrom mcp_server.mcp_instance import mcp\nfrom mcp_server.model.gemini_flash import GeminiFlash\nMODEL = GeminiFlash()\[email protected]()",
1748
+ "detail": "mcp_server.tools.concept_tools",
1749
+ "documentation": {}
1750
+ },
1751
+ {
1752
+ "label": "parent_dir",
1753
+ "kind": 5,
1754
+ "importPath": "mcp_server.tools.concept_tools",
1755
+ "description": "mcp_server.tools.concept_tools",
1756
+ "peekOfCode": "parent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources\nfrom resources.concept_graph import get_concept, get_all_concepts\n# Import MCP\nfrom mcp_server.mcp_instance import mcp\nfrom mcp_server.model.gemini_flash import GeminiFlash\nMODEL = GeminiFlash()\[email protected]()\nasync def get_concept_tool(concept_id: str = None) -> dict:",
1757
+ "detail": "mcp_server.tools.concept_tools",
1758
+ "documentation": {}
1759
+ },
1760
+ {
1761
+ "label": "MODEL",
1762
+ "kind": 5,
1763
+ "importPath": "mcp_server.tools.concept_tools",
1764
+ "description": "mcp_server.tools.concept_tools",
1765
+ "peekOfCode": "MODEL = GeminiFlash()\[email protected]()\nasync def get_concept_tool(concept_id: str = None) -> dict:\n \"\"\"\n Get a specific concept or all concepts from the knowledge graph, fully LLM-driven.\n If a concept_id is provided, use Gemini to generate a JSON object with explanation, key points, and example.\n \"\"\"\n if not concept_id:\n return {\"error\": \"concept_id is required for LLM-driven mode\"}\n prompt = (",
1766
+ "detail": "mcp_server.tools.concept_tools",
1767
+ "documentation": {}
1768
+ },
1769
+ {
1770
+ "label": "calculate_similarity",
1771
+ "kind": 2,
1772
+ "importPath": "mcp_server.tools.interaction_tools",
1773
+ "description": "mcp_server.tools.interaction_tools",
1774
+ "peekOfCode": "def calculate_similarity(text1: str, text2: str) -> float:\n \"\"\"Calculate the similarity ratio between two texts.\"\"\"\n return 0.0 # No longer used, LLM-driven\[email protected]()\nasync def text_interaction(query: str, student_id: str) -> dict:\n \"\"\"\n Process a text query from a student and provide an educational response, fully LLM-driven.\n Use Gemini to generate a JSON object with a response and suggested actions/resources.\n \"\"\"\n prompt = (",
1775
+ "detail": "mcp_server.tools.interaction_tools",
1776
+ "documentation": {}
1777
+ },
1778
+ {
1779
+ "label": "MODEL",
1780
+ "kind": 5,
1781
+ "importPath": "mcp_server.tools.interaction_tools",
1782
+ "description": "mcp_server.tools.interaction_tools",
1783
+ "peekOfCode": "MODEL = GeminiFlash()\ndef calculate_similarity(text1: str, text2: str) -> float:\n \"\"\"Calculate the similarity ratio between two texts.\"\"\"\n return 0.0 # No longer used, LLM-driven\[email protected]()\nasync def text_interaction(query: str, student_id: str) -> dict:\n \"\"\"\n Process a text query from a student and provide an educational response, fully LLM-driven.\n Use Gemini to generate a JSON object with a response and suggested actions/resources.\n \"\"\"",
1784
+ "detail": "mcp_server.tools.interaction_tools",
1785
+ "documentation": {}
1786
+ },
1787
+ {
1788
+ "label": "get_prerequisites",
1789
+ "kind": 2,
1790
+ "importPath": "mcp_server.tools.learning_path_tools",
1791
+ "description": "mcp_server.tools.learning_path_tools",
1792
+ "peekOfCode": "def get_prerequisites(concept_id: str, visited: Optional[set] = None) -> List[Dict[str, Any]]:\n \"\"\"\n Get all prerequisites for a concept recursively.\n Args:\n concept_id: ID of the concept to get prerequisites for\n visited: Set of already visited concepts to avoid cycles\n Returns:\n List of prerequisite concepts in order\n \"\"\"\n if visited is None:",
1793
+ "detail": "mcp_server.tools.learning_path_tools",
1794
+ "documentation": {}
1795
+ },
1796
+ {
1797
+ "label": "generate_learning_path",
1798
+ "kind": 2,
1799
+ "importPath": "mcp_server.tools.learning_path_tools",
1800
+ "description": "mcp_server.tools.learning_path_tools",
1801
+ "peekOfCode": "def generate_learning_path(concept_ids: List[str], student_level: str = \"beginner\") -> Dict[str, Any]:\n \"\"\"\n Generate a personalized learning path for a student.\n Args:\n concept_ids: List of concept IDs to include in the learning path\n student_level: Student's current level (beginner, intermediate, advanced)\n Returns:\n Dictionary containing the learning path\n \"\"\"\n if not concept_ids:",
1802
+ "detail": "mcp_server.tools.learning_path_tools",
1803
+ "documentation": {}
1804
+ },
1805
+ {
1806
+ "label": "current_dir",
1807
+ "kind": 5,
1808
+ "importPath": "mcp_server.tools.learning_path_tools",
1809
+ "description": "mcp_server.tools.learning_path_tools",
1810
+ "peekOfCode": "current_dir = Path(__file__).parent\nparent_dir = current_dir.parent.parent\nsys.path.insert(0, str(parent_dir))\nimport sys\nimport os\nfrom pathlib import Path\n# Add the parent directory to the Python path\ncurrent_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))",
1811
+ "detail": "mcp_server.tools.learning_path_tools",
1812
+ "documentation": {}
1813
+ },
1814
+ {
1815
+ "label": "parent_dir",
1816
+ "kind": 5,
1817
+ "importPath": "mcp_server.tools.learning_path_tools",
1818
+ "description": "mcp_server.tools.learning_path_tools",
1819
+ "peekOfCode": "parent_dir = current_dir.parent.parent\nsys.path.insert(0, str(parent_dir))\nimport sys\nimport os\nfrom pathlib import Path\n# Add the parent directory to the Python path\ncurrent_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources",
1820
+ "detail": "mcp_server.tools.learning_path_tools",
1821
+ "documentation": {}
1822
+ },
1823
+ {
1824
+ "label": "current_dir",
1825
+ "kind": 5,
1826
+ "importPath": "mcp_server.tools.learning_path_tools",
1827
+ "description": "mcp_server.tools.learning_path_tools",
1828
+ "peekOfCode": "current_dir = Path(__file__).parent\nparent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources\nfrom resources.concept_graph import CONCEPT_GRAPH\n# Import MCP\nfrom mcp_server.mcp_instance import mcp\nfrom mcp_server.model.gemini_flash import GeminiFlash\nMODEL = GeminiFlash()\ndef get_prerequisites(concept_id: str, visited: Optional[set] = None) -> List[Dict[str, Any]]:",
1829
+ "detail": "mcp_server.tools.learning_path_tools",
1830
+ "documentation": {}
1831
+ },
1832
+ {
1833
+ "label": "parent_dir",
1834
+ "kind": 5,
1835
+ "importPath": "mcp_server.tools.learning_path_tools",
1836
+ "description": "mcp_server.tools.learning_path_tools",
1837
+ "peekOfCode": "parent_dir = current_dir.parent\nsys.path.insert(0, str(parent_dir))\n# Import from local resources\nfrom resources.concept_graph import CONCEPT_GRAPH\n# Import MCP\nfrom mcp_server.mcp_instance import mcp\nfrom mcp_server.model.gemini_flash import GeminiFlash\nMODEL = GeminiFlash()\ndef get_prerequisites(concept_id: str, visited: Optional[set] = None) -> List[Dict[str, Any]]:\n \"\"\"",
1838
+ "detail": "mcp_server.tools.learning_path_tools",
1839
+ "documentation": {}
1840
+ },
1841
+ {
1842
+ "label": "MODEL",
1843
+ "kind": 5,
1844
+ "importPath": "mcp_server.tools.learning_path_tools",
1845
+ "description": "mcp_server.tools.learning_path_tools",
1846
+ "peekOfCode": "MODEL = GeminiFlash()\ndef get_prerequisites(concept_id: str, visited: Optional[set] = None) -> List[Dict[str, Any]]:\n \"\"\"\n Get all prerequisites for a concept recursively.\n Args:\n concept_id: ID of the concept to get prerequisites for\n visited: Set of already visited concepts to avoid cycles\n Returns:\n List of prerequisite concepts in order\n \"\"\"",
1847
+ "detail": "mcp_server.tools.learning_path_tools",
1848
+ "documentation": {}
1849
+ },
1850
+ {
1851
+ "label": "MODEL",
1852
+ "kind": 5,
1853
+ "importPath": "mcp_server.tools.lesson_tools",
1854
+ "description": "mcp_server.tools.lesson_tools",
1855
+ "peekOfCode": "MODEL = GeminiFlash()\[email protected]()\nasync def generate_lesson_tool(topic: str, grade_level: int, duration_minutes: int) -> dict:\n \"\"\"\n Generate a lesson plan for the given topic, grade level, and duration, fully LLM-driven.\n Use Gemini to generate a JSON object with objectives, activities, materials, assessment, differentiation, and homework.\n \"\"\"\n prompt = (\n f\"Generate a detailed lesson plan as a JSON object for the topic '{topic}', grade {grade_level}, duration {duration_minutes} minutes. \"\n f\"Include fields: objectives (list), activities (list), materials (list), assessment (dict), differentiation (dict), and homework (dict).\"",
1856
+ "detail": "mcp_server.tools.lesson_tools",
1857
+ "documentation": {}
1858
+ },
1859
+ {
1860
+ "label": "MODEL",
1861
+ "kind": 5,
1862
+ "importPath": "mcp_server.tools.ocr_tools",
1863
+ "description": "mcp_server.tools.ocr_tools",
1864
+ "peekOfCode": "MODEL = GeminiFlash()\nasync def mistral_ocr_request(document_url: str) -> dict:\n \"\"\"\n Send OCR request to Mistral OCR service using document URL.\n Args:\n document_url: URL of the document to process\n Returns:\n OCR response from Mistral\n \"\"\"\n try:",
1865
+ "detail": "mcp_server.tools.ocr_tools",
1866
+ "documentation": {}
1867
+ },
1868
+ {
1869
+ "label": "result",
1870
+ "kind": 5,
1871
+ "importPath": "mcp_server.tools.ocr_tools",
1872
+ "description": "mcp_server.tools.ocr_tools",
1873
+ "peekOfCode": "result = await mistral_document_ocr(\"https://example.com/document.pdf\")\n# For image document \nresult = await mistral_document_ocr(\"https://example.com/image.jpg\")\n\"\"\"",
1874
+ "detail": "mcp_server.tools.ocr_tools",
1875
+ "documentation": {}
1876
+ },
1877
+ {
1878
+ "label": "result",
1879
+ "kind": 5,
1880
+ "importPath": "mcp_server.tools.ocr_tools",
1881
+ "description": "mcp_server.tools.ocr_tools",
1882
+ "peekOfCode": "result = await mistral_document_ocr(\"https://example.com/image.jpg\")\n\"\"\"",
1883
+ "detail": "mcp_server.tools.ocr_tools",
1884
+ "documentation": {}
1885
+ },
1886
+ {
1887
+ "label": "PROMPT_TEMPLATE",
1888
+ "kind": 5,
1889
+ "importPath": "mcp_server.tools.quiz_tools",
1890
+ "description": "mcp_server.tools.quiz_tools",
1891
+ "peekOfCode": "PROMPT_TEMPLATE = (Path(__file__).parent.parent / \"prompts\" / \"quiz_generation.txt\").read_text(encoding=\"utf-8\")\n# Initialize Gemini model\nMODEL = GeminiFlash()\[email protected]()\nasync def generate_quiz_tool(concept: str, difficulty: str = \"medium\") -> dict:\n \"\"\"\n Generate a quiz based on a concept and difficulty using Gemini, fully LLM-driven.\n The JSON should include a list of questions, each with options and the correct answer.\n \"\"\"\n try:",
1892
+ "detail": "mcp_server.tools.quiz_tools",
1893
+ "documentation": {}
1894
+ },
1895
+ {
1896
+ "label": "MODEL",
1897
+ "kind": 5,
1898
+ "importPath": "mcp_server.tools.quiz_tools",
1899
+ "description": "mcp_server.tools.quiz_tools",
1900
+ "peekOfCode": "MODEL = GeminiFlash()\[email protected]()\nasync def generate_quiz_tool(concept: str, difficulty: str = \"medium\") -> dict:\n \"\"\"\n Generate a quiz based on a concept and difficulty using Gemini, fully LLM-driven.\n The JSON should include a list of questions, each with options and the correct answer.\n \"\"\"\n try:\n if not concept or not isinstance(concept, str):\n return {\"error\": \"concept must be a non-empty string\"}",
1901
+ "detail": "mcp_server.tools.quiz_tools",
1902
+ "documentation": {}
1903
+ },
1904
+ {
1905
+ "label": "upload_to_azure",
1906
+ "kind": 2,
1907
+ "importPath": "mcp_server.utils.azure_upload",
1908
+ "description": "mcp_server.utils.azure_upload",
1909
+ "peekOfCode": "def upload_to_azure(file_path: str, content_type: str = None) -> str:\n \"\"\"\n Upload a file to Azure Blob Storage and return the public URL.\n Args:\n file_path: Path to the file to upload.\n content_type: Optional MIME type (e.g., 'application/pdf'). If not provided, guessed from extension.\n Returns:\n The public URL of the uploaded blob.\n \"\"\"\n if not AZURE_CONNECTION_STRING or not AZURE_CONTAINER_NAME:",
1910
+ "detail": "mcp_server.utils.azure_upload",
1911
+ "documentation": {}
1912
+ },
1913
+ {
1914
+ "label": "AZURE_CONNECTION_STRING",
1915
+ "kind": 5,
1916
+ "importPath": "mcp_server.utils.azure_upload",
1917
+ "description": "mcp_server.utils.azure_upload",
1918
+ "peekOfCode": "AZURE_CONNECTION_STRING = os.getenv(\"AZURE_CONNECTION_STRING\")\nAZURE_CONTAINER_NAME = os.getenv(\"AZURE_CONTAINER_NAME\")\ndef upload_to_azure(file_path: str, content_type: str = None) -> str:\n \"\"\"\n Upload a file to Azure Blob Storage and return the public URL.\n Args:\n file_path: Path to the file to upload.\n content_type: Optional MIME type (e.g., 'application/pdf'). If not provided, guessed from extension.\n Returns:\n The public URL of the uploaded blob.",
1919
+ "detail": "mcp_server.utils.azure_upload",
1920
+ "documentation": {}
1921
+ },
1922
+ {
1923
+ "label": "AZURE_CONTAINER_NAME",
1924
+ "kind": 5,
1925
+ "importPath": "mcp_server.utils.azure_upload",
1926
+ "description": "mcp_server.utils.azure_upload",
1927
+ "peekOfCode": "AZURE_CONTAINER_NAME = os.getenv(\"AZURE_CONTAINER_NAME\")\ndef upload_to_azure(file_path: str, content_type: str = None) -> str:\n \"\"\"\n Upload a file to Azure Blob Storage and return the public URL.\n Args:\n file_path: Path to the file to upload.\n content_type: Optional MIME type (e.g., 'application/pdf'). If not provided, guessed from extension.\n Returns:\n The public URL of the uploaded blob.\n \"\"\"",
1928
+ "detail": "mcp_server.utils.azure_upload",
1929
+ "documentation": {}
1930
+ },
1931
+ {
1932
+ "label": "mcp",
1933
+ "kind": 5,
1934
+ "importPath": "mcp_server.mcp_instance",
1935
+ "description": "mcp_server.mcp_instance",
1936
+ "peekOfCode": "mcp = FastMCP(\n \"TutorX\",\n dependencies=[\"mcp[cli]>=1.9.3\"],\n cors_origins=[\"*\"]\n)",
1937
+ "detail": "mcp_server.mcp_instance",
1938
+ "documentation": {}
1939
+ },
1940
+ {
1941
+ "label": "current_dir",
1942
+ "kind": 5,
1943
+ "importPath": "mcp_server.server",
1944
+ "description": "mcp_server.server",
1945
+ "peekOfCode": "current_dir = Path(__file__).parent\nsys.path.insert(0, str(current_dir))\nimport uvicorn\nfrom fastapi import FastAPI, HTTPException, UploadFile, File, Form\nfrom fastapi.middleware.cors import CORSMiddleware\nfrom mcp.server.fastmcp import FastMCP\n# Import all tools to register them with MCP\nfrom tools import (\n concept_tools,\n lesson_tools,",
1946
+ "detail": "mcp_server.server",
1947
+ "documentation": {}
1948
+ },
1949
+ {
1950
+ "label": "api_app",
1951
+ "kind": 5,
1952
+ "importPath": "mcp_server.server",
1953
+ "description": "mcp_server.server",
1954
+ "peekOfCode": "api_app = FastAPI(\n title=\"TutorX MCP Server\",\n description=\"Model Context Protocol server for TutorX educational platform\",\n version=\"1.0.0\"\n)\n# Add CORS middleware\napi_app.add_middleware(\n CORSMiddleware,\n allow_origins=[\"*\"],\n allow_credentials=True,",
1955
+ "detail": "mcp_server.server",
1956
+ "documentation": {}
1957
+ },
1958
+ {
1959
+ "label": "TestTutorXClient",
1960
+ "kind": 6,
1961
+ "importPath": "tests.test_client",
1962
+ "description": "tests.test_client",
1963
+ "peekOfCode": "class TestTutorXClient(unittest.TestCase):\n \"\"\"Test cases for the TutorX MCP client\"\"\"\n def setUp(self):\n \"\"\"Set up test fixtures\"\"\"\n self.client = TutorXClient(\"http://localhost:8000\")\n self.student_id = \"test_student_123\"\n self.concept_id = \"math_algebra_basics\"\n @patch('client.requests.post')\n def test_call_tool(self, mock_post):\n \"\"\"Test _call_tool method\"\"\"",
1964
+ "detail": "tests.test_client",
1965
+ "documentation": {}
1966
+ },
1967
+ {
1968
+ "label": "TestMCPServer",
1969
+ "kind": 6,
1970
+ "importPath": "tests.test_mcp_server",
1971
+ "description": "tests.test_mcp_server",
1972
+ "peekOfCode": "class TestMCPServer(unittest.TestCase):\n \"\"\"Test cases for the TutorX MCP server\"\"\"\n def setUp(self):\n \"\"\"Set up test fixtures\"\"\"\n self.student_id = \"test_student_123\"\n self.concept_id = \"math_algebra_basics\"\n def test_assess_skill(self):\n \"\"\"Test assess_skill tool\"\"\"\n result = assess_skill(self.student_id, self.concept_id)\n # Verify the structure of the result",
1973
+ "detail": "tests.test_mcp_server",
1974
+ "documentation": {}
1975
+ },
1976
+ {
1977
+ "label": "SERVER_URL",
1978
+ "kind": 5,
1979
+ "importPath": "tests.test_tools_integration",
1980
+ "description": "tests.test_tools_integration",
1981
+ "peekOfCode": "SERVER_URL = \"http://localhost:8000/sse\" # Adjust if needed\[email protected]\nasync def test_get_concept_graph_tool():\n async with sse_client(SERVER_URL) as (sse, write):\n async with ClientSession(sse, write) as session:\n await session.initialize()\n result = await session.call_tool(\"get_concept_graph_tool\", {\"concept_id\": \"python\"})\n assert result and \"error\" not in result\[email protected]\nasync def test_generate_quiz_tool():",
1982
+ "detail": "tests.test_tools_integration",
1983
+ "documentation": {}
1984
+ },
1985
+ {
1986
+ "label": "TestMultimodalUtils",
1987
+ "kind": 6,
1988
+ "importPath": "tests.test_utils",
1989
+ "description": "tests.test_utils",
1990
+ "peekOfCode": "class TestMultimodalUtils(unittest.TestCase):\n \"\"\"Test cases for multimodal utility functions\"\"\"\n def test_process_text_query(self):\n \"\"\"Test text query processing\"\"\"\n # Test with a \"solve\" query\n solve_query = \"Please solve this equation: 2x + 3 = 7\"\n result = process_text_query(solve_query)\n self.assertIsInstance(result, dict)\n self.assertEqual(result[\"query\"], solve_query)\n self.assertEqual(result[\"response_type\"], \"math_solution\")",
1991
+ "detail": "tests.test_utils",
1992
+ "documentation": {}
1993
+ },
1994
+ {
1995
+ "label": "TestAssessmentUtils",
1996
+ "kind": 6,
1997
+ "importPath": "tests.test_utils",
1998
+ "description": "tests.test_utils",
1999
+ "peekOfCode": "class TestAssessmentUtils(unittest.TestCase):\n \"\"\"Test cases for assessment utility functions\"\"\"\n def test_generate_question_algebra_basics(self):\n \"\"\"Test question generation for algebra basics\"\"\"\n concept_id = \"math_algebra_basics\"\n difficulty = 2\n question = generate_question(concept_id, difficulty)\n self.assertIsInstance(question, dict)\n self.assertIn(\"id\", question)\n self.assertEqual(question[\"concept_id\"], concept_id)",
2000
+ "detail": "tests.test_utils",
2001
+ "documentation": {}
2002
+ },
2003
+ {
2004
+ "label": "upload_to_azure",
2005
+ "kind": 2,
2006
+ "importPath": "utils.azure_upload",
2007
+ "description": "utils.azure_upload",
2008
+ "peekOfCode": "def upload_to_azure(file_path: str, content_type: str = None) -> str:\n \"\"\"\n Upload a file to Azure Blob Storage and return the public URL.\n Args:\n file_path: Path to the file to upload.\n content_type: Optional MIME type (e.g., 'application/pdf'). If not provided, guessed from extension.\n Returns:\n The public URL of the uploaded blob.\n \"\"\"\n if not AZURE_CONNECTION_STRING or not AZURE_CONTAINER_NAME:",
2009
+ "detail": "utils.azure_upload",
2010
+ "documentation": {}
2011
+ },
2012
+ {
2013
+ "label": "AZURE_CONNECTION_STRING",
2014
+ "kind": 5,
2015
+ "importPath": "utils.azure_upload",
2016
+ "description": "utils.azure_upload",
2017
+ "peekOfCode": "AZURE_CONNECTION_STRING = os.getenv(\"AZURE_CONNECTION_STRING\")\nAZURE_CONTAINER_NAME = os.getenv(\"AZURE_CONTAINER_NAME\")\ndef upload_to_azure(file_path: str, content_type: str = None) -> str:\n \"\"\"\n Upload a file to Azure Blob Storage and return the public URL.\n Args:\n file_path: Path to the file to upload.\n content_type: Optional MIME type (e.g., 'application/pdf'). If not provided, guessed from extension.\n Returns:\n The public URL of the uploaded blob.",
2018
+ "detail": "utils.azure_upload",
2019
+ "documentation": {}
2020
+ },
2021
+ {
2022
+ "label": "AZURE_CONTAINER_NAME",
2023
+ "kind": 5,
2024
+ "importPath": "utils.azure_upload",
2025
+ "description": "utils.azure_upload",
2026
+ "peekOfCode": "AZURE_CONTAINER_NAME = os.getenv(\"AZURE_CONTAINER_NAME\")\ndef upload_to_azure(file_path: str, content_type: str = None) -> str:\n \"\"\"\n Upload a file to Azure Blob Storage and return the public URL.\n Args:\n file_path: Path to the file to upload.\n content_type: Optional MIME type (e.g., 'application/pdf'). If not provided, guessed from extension.\n Returns:\n The public URL of the uploaded blob.\n \"\"\"",
2027
+ "detail": "utils.azure_upload",
2028
+ "documentation": {}
2029
+ },
2030
+ {
2031
+ "label": "SERVER_URL",
2032
+ "kind": 5,
2033
+ "importPath": "app",
2034
+ "description": "app",
2035
+ "peekOfCode": "SERVER_URL = \"http://localhost:8000/sse\" # Ensure this is the SSE endpoint\n# Utility functions\nasync def load_concept_graph(concept_id: str = None):\n \"\"\"\n Load and visualize the concept graph for a given concept ID.\n If no concept_id is provided, returns the first available concept.\n Uses call_resource for concept graph retrieval (not a tool).\n Returns:\n tuple: (figure, concept_details, related_concepts) or (None, error_dict, [])\n \"\"\"",
2036
+ "detail": "app",
2037
+ "documentation": {}
2038
+ },
2039
+ {
2040
+ "label": "run_server",
2041
+ "kind": 2,
2042
+ "importPath": "main",
2043
+ "description": "main",
2044
+ "peekOfCode": "def run_server():\n \"\"\"Run the MCP server with the configured settings.\"\"\"\n print(f\"Starting TutorX MCP server on {SERVER_HOST}:{SERVER_PORT}...\")\n print(f\"MCP transport: {SERVER_TRANSPORT}\")\n print(f\"API docs: http://{SERVER_HOST}:{SERVER_PORT}/docs\")\n print(f\"MCP endpoint: http://{SERVER_HOST}:{SERVER_PORT}/mcp\")\n # Configure uvicorn to run the FastAPI app\n uvicorn.run(\n \"server:api_app\",\n host=SERVER_HOST,",
2045
+ "detail": "main",
2046
+ "documentation": {}
2047
+ },
2048
+ {
2049
+ "label": "SERVER_HOST",
2050
+ "kind": 5,
2051
+ "importPath": "main",
2052
+ "description": "main",
2053
+ "peekOfCode": "SERVER_HOST = os.getenv(\"MCP_HOST\", \"0.0.0.0\")\nSERVER_PORT = int(os.getenv(\"MCP_PORT\", \"8001\"))\nSERVER_TRANSPORT = os.getenv(\"MCP_TRANSPORT\", \"sse\")\ndef run_server():\n \"\"\"Run the MCP server with the configured settings.\"\"\"\n print(f\"Starting TutorX MCP server on {SERVER_HOST}:{SERVER_PORT}...\")\n print(f\"MCP transport: {SERVER_TRANSPORT}\")\n print(f\"API docs: http://{SERVER_HOST}:{SERVER_PORT}/docs\")\n print(f\"MCP endpoint: http://{SERVER_HOST}:{SERVER_PORT}/mcp\")\n # Configure uvicorn to run the FastAPI app",
2054
+ "detail": "main",
2055
+ "documentation": {}
2056
+ },
2057
+ {
2058
+ "label": "SERVER_PORT",
2059
+ "kind": 5,
2060
+ "importPath": "main",
2061
+ "description": "main",
2062
+ "peekOfCode": "SERVER_PORT = int(os.getenv(\"MCP_PORT\", \"8001\"))\nSERVER_TRANSPORT = os.getenv(\"MCP_TRANSPORT\", \"sse\")\ndef run_server():\n \"\"\"Run the MCP server with the configured settings.\"\"\"\n print(f\"Starting TutorX MCP server on {SERVER_HOST}:{SERVER_PORT}...\")\n print(f\"MCP transport: {SERVER_TRANSPORT}\")\n print(f\"API docs: http://{SERVER_HOST}:{SERVER_PORT}/docs\")\n print(f\"MCP endpoint: http://{SERVER_HOST}:{SERVER_PORT}/mcp\")\n # Configure uvicorn to run the FastAPI app\n uvicorn.run(",
2063
+ "detail": "main",
2064
+ "documentation": {}
2065
+ },
2066
+ {
2067
+ "label": "SERVER_TRANSPORT",
2068
+ "kind": 5,
2069
+ "importPath": "main",
2070
+ "description": "main",
2071
+ "peekOfCode": "SERVER_TRANSPORT = os.getenv(\"MCP_TRANSPORT\", \"sse\")\ndef run_server():\n \"\"\"Run the MCP server with the configured settings.\"\"\"\n print(f\"Starting TutorX MCP server on {SERVER_HOST}:{SERVER_PORT}...\")\n print(f\"MCP transport: {SERVER_TRANSPORT}\")\n print(f\"API docs: http://{SERVER_HOST}:{SERVER_PORT}/docs\")\n print(f\"MCP endpoint: http://{SERVER_HOST}:{SERVER_PORT}/mcp\")\n # Configure uvicorn to run the FastAPI app\n uvicorn.run(\n \"server:api_app\",",
2072
+ "detail": "main",
2073
+ "documentation": {}
2074
+ },
2075
+ {
2076
+ "label": "run_mcp_server",
2077
+ "kind": 2,
2078
+ "importPath": "run",
2079
+ "description": "run",
2080
+ "peekOfCode": "def run_mcp_server(host=\"0.0.0.0\", port=8001):\n \"\"\"\n Run the MCP server using uvicorn\n Args:\n host: Host to bind the server to\n port: Port to run the server on\n \"\"\"\n print(f\"Starting TutorX MCP Server on {host}:{port}...\")\n # Set environment variables\n os.environ[\"MCP_HOST\"] = host",
2081
+ "detail": "run",
2082
+ "documentation": {}
2083
+ },
2084
+ {
2085
+ "label": "run_gradio_interface",
2086
+ "kind": 2,
2087
+ "importPath": "run",
2088
+ "description": "run",
2089
+ "peekOfCode": "def run_gradio_interface(port=7860):\n \"\"\"\n Run the Gradio interface\n Args:\n port: Port to run the Gradio interface on\n \"\"\"\n print(f\"Starting TutorX Gradio Interface on port {port}...\")\n try:\n # Make sure the mcp-server directory is in the path\n mcp_server_dir = str(Path(__file__).parent / \"mcp-server\")",
2090
+ "detail": "run",
2091
+ "documentation": {}
2092
+ },
2093
+ {
2094
+ "label": "check_port_available",
2095
+ "kind": 2,
2096
+ "importPath": "run",
2097
+ "description": "run",
2098
+ "peekOfCode": "def check_port_available(port):\n \"\"\"\n Check if a port is available\n Args:\n port: Port number to check\n Returns:\n bool: True if port is available, False otherwise\n \"\"\"\n with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:\n return s.connect_ex(('localhost', port)) != 0",
2099
+ "detail": "run",
2100
+ "documentation": {}
2101
+ },
2102
+ {
2103
+ "label": "run_tests",
2104
+ "kind": 2,
2105
+ "importPath": "run_tests",
2106
+ "description": "run_tests",
2107
+ "peekOfCode": "def run_tests():\n \"\"\"Run all tests\"\"\"\n print(\"Running TutorX-MCP Tests...\")\n # First run unittest tests\n unittest_loader = unittest.TestLoader()\n test_directory = os.path.join(os.path.dirname(__file__), \"tests\")\n test_suite = unittest_loader.discover(test_directory)\n test_runner = unittest.TextTestRunner(verbosity=2)\n unittest_result = test_runner.run(test_suite)\n # Then run pytest tests (with coverage)",
2108
+ "detail": "run_tests",
2109
+ "documentation": {}
2110
+ }
2111
+ ]
app.py CHANGED
@@ -37,8 +37,7 @@ async def load_concept_graph(concept_id: str = None):
37
  async with sse_client(SERVER_URL) as (sse, write):
38
  async with ClientSession(sse, write) as session:
39
  await session.initialize()
40
- # Use MCP resource call for concept graph
41
- result = await session.call_resource("resources/read", {"uri": f"concept-graph://{concept_id}" if concept_id else "concept-graph://"})
42
  print(f"[DEBUG] Server response: {result}")
43
  if not result or not isinstance(result, dict):
44
  error_msg = "Invalid server response"
@@ -68,16 +67,18 @@ async def load_concept_graph(concept_id: str = None):
68
  related_concepts = []
69
  if "related" in concept:
70
  for rel_id in concept["related"]:
71
- rel_result = await session.call_tool("get_concept_graph", {"concept_id": rel_id})
72
  if "error" not in rel_result:
73
- G.add_node(rel_id, label=rel_result["name"], type="related")
 
74
  G.add_edge(concept["id"], rel_id, relationship="related_to")
75
- related_concepts.append([rel_id, rel_result.get("name", ""), rel_result.get("description", "")])
76
  if "prerequisites" in concept:
77
  for prereq_id in concept["prerequisites"]:
78
- prereq_result = await session.call_tool("get_concept_graph", {"concept_id": prereq_id})
79
  if "error" not in prereq_result:
80
- G.add_node(prereq_id, label=prereq_result["name"], type="prerequisite")
 
81
  G.add_edge(prereq_id, concept["id"], relationship="prerequisite_for")
82
  plt.figure(figsize=(10, 8))
83
  pos = nx.spring_layout(G)
@@ -97,13 +98,7 @@ async def load_concept_graph(concept_id: str = None):
97
  nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
98
  plt.title(f"Concept Graph: {concept.get('name', concept_id)}")
99
  plt.axis("off")
100
- concept_details = {
101
- "id": concept.get("id", ""),
102
- "name": concept.get("name", ""),
103
- "description": concept.get("description", ""),
104
- "related_concepts_count": len(concept.get("related", [])),
105
- "prerequisites_count": len(concept.get("prerequisites", []))
106
- }
107
  return plt.gcf(), concept_details, related_concepts
108
  except Exception as e:
109
  import traceback
@@ -129,10 +124,11 @@ with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
129
  gr.Markdown("## Concept Graph Visualization")
130
  with gr.Row():
131
  with gr.Column(scale=3):
132
- concept_id = gr.Dropdown(
133
- label="Select a Concept",
134
- choices=["python", "functions", "oop", "data_structures"],
135
- value="python",
 
136
  interactive=True
137
  )
138
  load_concept_btn = gr.Button("Load Concept Graph", variant="primary")
@@ -154,14 +150,14 @@ with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
154
  # Button click handler
155
  load_concept_btn.click(
156
  fn=load_concept_graph,
157
- inputs=[concept_id],
158
  outputs=[graph_output, concept_details, related_concepts]
159
  )
160
 
161
  # Load default concept on tab click
162
  concept_graph_tab.load(
163
  fn=load_concept_graph,
164
- inputs=[concept_id],
165
  outputs=[graph_output, concept_details, related_concepts]
166
  )
167
 
@@ -196,7 +192,6 @@ with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
196
  difficulty = max(1, min(5, difficulty))
197
  except (ValueError, TypeError):
198
  difficulty = 3
199
- # Map numeric difficulty to string
200
  if difficulty <= 2:
201
  difficulty_str = "easy"
202
  elif difficulty == 3:
@@ -247,59 +242,32 @@ with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
247
  outputs=[lesson_output]
248
  )
249
 
250
- gr.Markdown("## Curriculum Standards")
251
-
252
  with gr.Row():
253
  with gr.Column():
254
- country_input = gr.Dropdown(
255
- choices=["US", "UK"],
256
- label="Country",
257
- value="US"
258
- )
259
- standards_btn = gr.Button("Get Standards")
260
-
261
  with gr.Column():
262
- standards_output = gr.JSON(label="Curriculum Standards")
263
-
264
- async def get_standards_async(country):
265
  try:
266
- # Convert display text to lowercase for the API
267
- country_code = country.lower()
268
  async with sse_client(SERVER_URL) as (sse, write):
269
  async with ClientSession(sse, write) as session:
270
  await session.initialize()
271
- response = await session.call_tool("get_curriculum_standards", {"country_code": country_code})
272
-
273
- # Format the response for better display
274
- if "standards" in response:
275
- formatted = {
276
- "country": response["standards"]["name"],
277
- "subjects": {},
278
- "website": response["standards"].get("website", "")
279
- }
280
-
281
- # Format subjects and domains
282
- for subj_key, subj_info in response["standards"]["subjects"].items():
283
- formatted["subjects"][subj_key] = {
284
- "description": subj_info["description"],
285
- "domains": subj_info["domains"]
286
- }
287
-
288
- # Add grade levels or key stages if available
289
- if "grade_levels" in response["standards"]:
290
- formatted["grade_levels"] = response["standards"]["grade_levels"]
291
- elif "key_stages" in response["standards"]:
292
- formatted["key_stages"] = response["standards"]["key_stages"]
293
-
294
- return formatted
295
- return response
296
  except Exception as e:
297
- return {"error": f"Failed to fetch standards: {str(e)}"}
298
-
299
- standards_btn.click(
300
- fn=get_standards_async,
301
- inputs=[country_input],
302
- outputs=[standards_output]
303
  )
304
 
305
  # Tab 3: Multi-Modal Interaction
@@ -326,40 +294,59 @@ with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
326
  outputs=[text_output]
327
  )
328
 
329
- gr.Markdown("## PDF OCR and Summarization (Coming Soon)")
 
330
  with gr.Row():
331
  with gr.Column():
332
- pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
333
- ocr_btn = gr.Button("Extract Text")
334
-
335
  with gr.Column():
336
- summary_output = gr.JSON(label="Summary")
337
-
338
- async def pdf_ocr_async(pdf_file):
339
- if not pdf_file:
340
- return {"error": "No PDF file provided", "success": False}
341
  try:
342
- # Get the file path from the Gradio file object
343
- if isinstance(pdf_file, dict):
344
- file_path = pdf_file.get("path", "")
 
 
 
 
 
 
 
 
 
 
 
 
345
  else:
346
- file_path = pdf_file
347
-
348
  if not file_path or not os.path.exists(file_path):
349
  return {"error": "File not found", "success": False}
350
-
 
 
 
 
 
 
 
 
 
 
 
351
  async with sse_client(SERVER_URL) as (sse, write):
352
  async with ClientSession(sse, write) as session:
353
  await session.initialize()
354
- response = await session.call_tool("pdf_ocr", {"pdf_file": file_path})
355
  return response
356
  except Exception as e:
357
- return {"error": f"Error processing PDF: {str(e)}", "success": False}
358
-
359
- ocr_btn.click(
360
- fn=pdf_ocr_async,
361
- inputs=[pdf_input],
362
- outputs=[summary_output]
363
  )
364
 
365
  # Tab 4: Analytics
@@ -387,7 +374,7 @@ with gr.Blocks(title="TutorX Educational AI", theme=gr.themes.Soft()) as demo:
387
  async with sse_client(SERVER_URL) as (sse, write):
388
  async with ClientSession(sse, write) as session:
389
  await session.initialize()
390
- response = await session.call_tool("check_submission_originality", {"submission": submission, "reference_sources": reference})
391
  return response
392
 
393
  plagiarism_btn.click(
 
37
  async with sse_client(SERVER_URL) as (sse, write):
38
  async with ClientSession(sse, write) as session:
39
  await session.initialize()
40
+ result = await session.call_tool("get_concept_graph_tool", {"concept_id": concept_id} if concept_id else {})
 
41
  print(f"[DEBUG] Server response: {result}")
42
  if not result or not isinstance(result, dict):
43
  error_msg = "Invalid server response"
 
67
  related_concepts = []
68
  if "related" in concept:
69
  for rel_id in concept["related"]:
70
+ rel_result = await session.call_tool("get_concept_graph_tool", {"concept_id": rel_id})
71
  if "error" not in rel_result:
72
+ rel_concept = rel_result.get("concept", {})
73
+ G.add_node(rel_id, label=rel_concept.get("name", rel_id), type="related")
74
  G.add_edge(concept["id"], rel_id, relationship="related_to")
75
+ related_concepts.append([rel_id, rel_concept.get("name", ""), rel_concept.get("description", "")])
76
  if "prerequisites" in concept:
77
  for prereq_id in concept["prerequisites"]:
78
+ prereq_result = await session.call_tool("get_concept_graph_tool", {"concept_id": prereq_id})
79
  if "error" not in prereq_result:
80
+ prereq_concept = prereq_result.get("concept", {})
81
+ G.add_node(prereq_id, label=prereq_concept.get("name", prereq_id), type="prerequisite")
82
  G.add_edge(prereq_id, concept["id"], relationship="prerequisite_for")
83
  plt.figure(figsize=(10, 8))
84
  pos = nx.spring_layout(G)
 
98
  nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8)
99
  plt.title(f"Concept Graph: {concept.get('name', concept_id)}")
100
  plt.axis("off")
101
+ concept_details = concept
 
 
 
 
 
 
102
  return plt.gcf(), concept_details, related_concepts
103
  except Exception as e:
104
  import traceback
 
124
  gr.Markdown("## Concept Graph Visualization")
125
  with gr.Row():
126
  with gr.Column(scale=3):
127
+ # Change from dropdown to textbox for concept input
128
+ concept_input_box = gr.Textbox(
129
+ label="Enter Concept Name",
130
+ placeholder="e.g., python, functions, oop, data_structures",
131
+ lines=1,
132
  interactive=True
133
  )
134
  load_concept_btn = gr.Button("Load Concept Graph", variant="primary")
 
150
  # Button click handler
151
  load_concept_btn.click(
152
  fn=load_concept_graph,
153
+ inputs=[concept_input_box],
154
  outputs=[graph_output, concept_details, related_concepts]
155
  )
156
 
157
  # Load default concept on tab click
158
  concept_graph_tab.load(
159
  fn=load_concept_graph,
160
+ inputs=[concept_input_box],
161
  outputs=[graph_output, concept_details, related_concepts]
162
  )
163
 
 
192
  difficulty = max(1, min(5, difficulty))
193
  except (ValueError, TypeError):
194
  difficulty = 3
 
195
  if difficulty <= 2:
196
  difficulty_str = "easy"
197
  elif difficulty == 3:
 
242
  outputs=[lesson_output]
243
  )
244
 
245
+ gr.Markdown("## Learning Path Generation")
 
246
  with gr.Row():
247
  with gr.Column():
248
+ lp_student_id = gr.Textbox(label="Student ID", value=student_id)
249
+ lp_concept_ids = gr.Textbox(label="Concept IDs (comma-separated)", placeholder="e.g., python,functions,oop")
250
+ lp_student_level = gr.Dropdown(choices=["beginner", "intermediate", "advanced"], value="beginner", label="Student Level")
251
+ lp_btn = gr.Button("Generate Learning Path")
 
 
 
252
  with gr.Column():
253
+ lp_output = gr.JSON(label="Learning Path")
254
+ async def on_generate_learning_path(student_id, concept_ids, student_level):
 
255
  try:
 
 
256
  async with sse_client(SERVER_URL) as (sse, write):
257
  async with ClientSession(sse, write) as session:
258
  await session.initialize()
259
+ result = await session.call_tool("get_learning_path", {
260
+ "student_id": student_id,
261
+ "concept_ids": [c.strip() for c in concept_ids.split(",") if c.strip()],
262
+ "student_level": student_level
263
+ })
264
+ return result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265
  except Exception as e:
266
+ return {"error": str(e)}
267
+ lp_btn.click(
268
+ fn=on_generate_learning_path,
269
+ inputs=[lp_student_id, lp_concept_ids, lp_student_level],
270
+ outputs=[lp_output]
 
271
  )
272
 
273
  # Tab 3: Multi-Modal Interaction
 
294
  outputs=[text_output]
295
  )
296
 
297
+ # Document OCR (PDF, images, etc.)
298
+ gr.Markdown("## Document OCR & LLM Analysis")
299
  with gr.Row():
300
  with gr.Column():
301
+ doc_input = gr.File(label="Upload PDF or Document", file_types=[".pdf", ".jpg", ".jpeg", ".png"])
302
+ doc_ocr_btn = gr.Button("Extract Text & Analyze")
 
303
  with gr.Column():
304
+ doc_output = gr.JSON(label="Document OCR & LLM Analysis")
305
+ async def upload_file_to_storage(file_path):
306
+ """Helper function to upload file to storage API"""
 
 
307
  try:
308
+ url = "https://storage-bucket-api.vercel.app/upload"
309
+ with open(file_path, 'rb') as f:
310
+ files = {'file': (os.path.basename(file_path), f)}
311
+ response = requests.post(url, files=files)
312
+ response.raise_for_status()
313
+ return response.json()
314
+ except Exception as e:
315
+ return {"error": f"Error uploading file to storage: {str(e)}", "success": False}
316
+
317
+ async def document_ocr_async(file):
318
+ if not file:
319
+ return {"error": "No file provided", "success": False}
320
+ try:
321
+ if isinstance(file, dict):
322
+ file_path = file.get("path", "")
323
  else:
324
+ file_path = file
 
325
  if not file_path or not os.path.exists(file_path):
326
  return {"error": "File not found", "success": False}
327
+
328
+ # Upload file to storage API
329
+ upload_result = await upload_file_to_storage(file_path)
330
+ if not upload_result.get("success"):
331
+ return upload_result
332
+
333
+ # Get the storage URL from the upload response
334
+ storage_url = upload_result.get("storage_url")
335
+ if not storage_url:
336
+ return {"error": "No storage URL returned from upload", "success": False}
337
+
338
+ # Use the storage URL for OCR processing
339
  async with sse_client(SERVER_URL) as (sse, write):
340
  async with ClientSession(sse, write) as session:
341
  await session.initialize()
342
+ response = await session.call_tool("mistral_document_ocr", {"document_url": storage_url})
343
  return response
344
  except Exception as e:
345
+ return {"error": f"Error processing document: {str(e)}", "success": False}
346
+ doc_ocr_btn.click(
347
+ fn=document_ocr_async,
348
+ inputs=[doc_input],
349
+ outputs=[doc_output]
 
350
  )
351
 
352
  # Tab 4: Analytics
 
374
  async with sse_client(SERVER_URL) as (sse, write):
375
  async with ClientSession(sse, write) as session:
376
  await session.initialize()
377
+ response = await session.call_tool("check_submission_originality", {"submission": submission, "reference_sources": [reference] if isinstance(reference, str) else reference})
378
  return response
379
 
380
  plagiarism_btn.click(
mcp_server/server.py CHANGED
@@ -110,22 +110,43 @@ async def check_originality_endpoint(request: dict):
110
  raise HTTPException(status_code=400, detail="submission (string) and reference_sources (array) are required")
111
  return await interaction_tools.check_submission_originality(submission, reference_sources)
112
 
113
- # API endpoints - PDF OCR
114
- @api_app.post("/api/pdf-ocr")
115
- async def pdf_ocr_endpoint(
116
- file: UploadFile = File(...),
117
- filename: str = Form(None)
118
  ):
119
  try:
120
- pdf_data = await file.read()
121
- pdf_b64 = base64.b64encode(pdf_data).decode('utf-8')
122
- result = await ocr_tools.pdf_ocr({
123
- "pdf_data": pdf_b64,
124
- "filename": filename or file.filename
125
- })
126
- return result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  except Exception as e:
128
- raise HTTPException(status_code=500, detail=str(e))
129
 
130
  # API endpoints - Learning Path
131
  @api_app.post("/api/learning-path")
 
110
  raise HTTPException(status_code=400, detail="submission (string) and reference_sources (array) are required")
111
  return await interaction_tools.check_submission_originality(submission, reference_sources)
112
 
113
+ # API endpoints - Document OCR
114
+ @api_app.post("/api/document-ocr")
115
+ async def document_ocr_endpoint(
116
+ file: UploadFile = File(...)
 
117
  ):
118
  try:
119
+ # Save the uploaded file to a temporary location
120
+ import tempfile
121
+ import os
122
+
123
+ # Get the file extension
124
+ file_extension = os.path.splitext(file.filename)[1].lower()
125
+
126
+ # Create a temporary file with the same extension
127
+ with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file:
128
+ content = await file.read()
129
+ temp_file.write(content)
130
+ temp_file_path = temp_file.name
131
+
132
+ try:
133
+ # Upload the file to storage and get the URL
134
+ from mcp_server.utils.azure_upload import upload_to_azure
135
+ document_url = upload_to_azure(temp_file_path)
136
+
137
+ # Process the document with OCR
138
+ result = await ocr_tools.mistral_document_ocr(document_url)
139
+ return result
140
+
141
+ finally:
142
+ # Clean up the temporary file
143
+ try:
144
+ os.unlink(temp_file_path)
145
+ except:
146
+ pass
147
+
148
  except Exception as e:
149
+ raise HTTPException(status_code=500, detail=f"Error processing document: {str(e)}")
150
 
151
  # API endpoints - Learning Path
152
  @api_app.post("/api/learning-path")
mcp_server/tools/__init__.py CHANGED
@@ -10,7 +10,7 @@ from .concept_graph_tools import get_concept_graph_tool # noqa
10
  from .lesson_tools import generate_lesson_tool # noqa
11
  from .quiz_tools import generate_quiz_tool # noqa
12
  from .interaction_tools import text_interaction, check_submission_originality # noqa
13
- from .ocr_tools import pdf_ocr, image_to_text # noqa
14
  from .learning_path_tools import get_learning_path # noqa
15
 
16
  __all__ = [
@@ -30,8 +30,7 @@ __all__ = [
30
  'check_submission_originality',
31
 
32
  # OCR tools
33
- 'pdf_ocr',
34
- 'image_to_text',
35
 
36
  # Learning path tools
37
  'get_learning_path',
 
10
  from .lesson_tools import generate_lesson_tool # noqa
11
  from .quiz_tools import generate_quiz_tool # noqa
12
  from .interaction_tools import text_interaction, check_submission_originality # noqa
13
+ from .ocr_tools import mistral_document_ocr # noqa
14
  from .learning_path_tools import get_learning_path # noqa
15
 
16
  __all__ = [
 
30
  'check_submission_originality',
31
 
32
  # OCR tools
33
+ 'mistral_document_ocr',
 
34
 
35
  # Learning path tools
36
  'get_learning_path',
mcp_server/tools/concept_graph_tools.py CHANGED
@@ -5,6 +5,7 @@ from typing import Dict, Any, Optional
5
  import sys
6
  import os
7
  from pathlib import Path
 
8
 
9
  # Add the parent directory to the Python path
10
  current_dir = Path(__file__).parent
@@ -25,22 +26,29 @@ from resources import concept_graph
25
 
26
  # Import MCP
27
  from mcp_server.mcp_instance import mcp
 
 
 
28
 
29
  @mcp.tool()
30
- async def get_concept_graph_tool(concept_id: Optional[str] = None) -> Dict[str, Any]:
31
  """
32
- Get the complete concept graph or a specific concept.
33
-
34
- Args:
35
- concept_id: Optional concept ID to get a specific concept
36
-
37
- Returns:
38
- Dictionary containing the concept graph or a specific concept
39
  """
40
  if concept_id:
41
- concept = concept_graph.get_concept(concept_id)
42
- if not concept:
43
- return {"error": f"Concept {concept_id} not found"}
44
- return {"concept": concept}
45
-
46
- return {"concepts": list(concept_graph.get_concept_graph().values())}
 
 
 
 
 
 
 
 
 
5
  import sys
6
  import os
7
  from pathlib import Path
8
+ import json
9
 
10
  # Add the parent directory to the Python path
11
  current_dir = Path(__file__).parent
 
26
 
27
  # Import MCP
28
  from mcp_server.mcp_instance import mcp
29
+ from mcp_server.model.gemini_flash import GeminiFlash
30
+
31
+ MODEL = GeminiFlash()
32
 
33
  @mcp.tool()
34
+ async def get_concept_graph_tool(concept_id: Optional[str] = None) -> dict:
35
  """
36
+ Get the complete concept graph or a specific concept, fully LLM-driven.
37
+ For a specific concept, use Gemini to generate a JSON object with explanation, related concepts, prerequisites, and summary.
38
+ For the full graph, use Gemini to generate a JSON object with a list of all concepts and their relationships.
 
 
 
 
39
  """
40
  if concept_id:
41
+ prompt = (
42
+ f"Provide a JSON object for the concept '{concept_id}' with fields: explanation (string), related_concepts (list of strings), prerequisites (list of strings), and summary (string)."
43
+ )
44
+ else:
45
+ prompt = (
46
+ "Provide a JSON object with a list of all concepts in a knowledge graph. "
47
+ "Each concept should have fields: id, name, description, related_concepts (list), prerequisites (list)."
48
+ )
49
+ llm_response = await MODEL.generate_text(prompt)
50
+ try:
51
+ data = json.loads(llm_response)
52
+ except Exception:
53
+ data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
54
+ return data
mcp_server/tools/concept_tools.py CHANGED
@@ -7,6 +7,7 @@ from datetime import datetime, timezone
7
  import sys
8
  import os
9
  from pathlib import Path
 
10
 
11
  # Add the parent directory to the Python path
12
  current_dir = Path(__file__).parent
@@ -27,74 +28,42 @@ from resources.concept_graph import get_concept, get_all_concepts
27
 
28
  # Import MCP
29
  from mcp_server.mcp_instance import mcp
 
 
 
30
 
31
  @mcp.tool()
32
- async def get_concept_tool(concept_id: str = None) -> Dict[str, Any]:
33
  """
34
- Get a specific concept or all concepts from the knowledge graph.
35
-
36
- Args:
37
- concept_id: Optional concept ID to retrieve a specific concept
38
-
39
- Returns:
40
- Dictionary containing the requested concept(s)
41
  """
42
- if concept_id:
43
- concept = get_concept(concept_id)
44
- if not concept:
45
- return {"error": f"Concept {concept_id} not found"}
46
- return {"concept": concept}
47
- return get_all_concepts()
 
 
 
 
 
 
48
 
49
  @mcp.tool()
50
- async def assess_skill_tool(student_id: str, concept_id: str) -> Dict[str, Any]:
51
  """
52
- Assess a student's understanding of a specific concept.
53
-
54
- Args:
55
- student_id: Unique identifier for the student
56
- concept_id: ID of the concept to assess
57
-
58
- Returns:
59
- Dictionary containing assessment results
60
  """
61
- # Get concept data
62
- concept_data = get_concept(concept_id)
63
- if not concept_data:
64
- return {"error": f"Cannot assess skill: Concept {concept_id} not found"}
65
-
66
- concept_name = concept_data.get("name", concept_id)
67
-
68
- # Generate a score based on concept difficulty or random
69
- score = random.uniform(0.2, 1.0) # Random score between 0.2 and 1.0
70
-
71
- # Set timestamp with timezone
72
- timestamp = datetime.now(timezone.utc).isoformat()
73
-
74
- # Generate feedback based on score
75
- feedback = {
76
- "strengths": [f"Good understanding of {concept_name} fundamentals"],
77
- "areas_for_improvement": [f"Could work on advanced applications of {concept_name}"],
78
- "recommendations": [
79
- f"Review {concept_name} practice problems",
80
- f"Watch tutorial videos on {concept_name}"
81
- ]
82
- }
83
-
84
- # Adjust feedback based on score
85
- if score < 0.5:
86
- feedback["strengths"] = [f"Basic understanding of {concept_name}"]
87
- feedback["areas_for_improvement"] = [
88
- f"Needs to strengthen fundamental knowledge of {concept_name}",
89
- f"Practice more exercises on {concept_name}"
90
- ]
91
-
92
- # Return assessment results
93
- return {
94
- "student_id": student_id,
95
- "concept_id": concept_id,
96
- "concept_name": concept_name,
97
- "score": round(score, 2), # Round to 2 decimal places
98
- "timestamp": timestamp,
99
- "feedback": feedback
100
- }
 
7
  import sys
8
  import os
9
  from pathlib import Path
10
+ import json
11
 
12
  # Add the parent directory to the Python path
13
  current_dir = Path(__file__).parent
 
28
 
29
  # Import MCP
30
  from mcp_server.mcp_instance import mcp
31
+ from mcp_server.model.gemini_flash import GeminiFlash
32
+
33
+ MODEL = GeminiFlash()
34
 
35
  @mcp.tool()
36
+ async def get_concept_tool(concept_id: str = None) -> dict:
37
  """
38
+ Get a specific concept or all concepts from the knowledge graph, fully LLM-driven.
39
+ If a concept_id is provided, use Gemini to generate a JSON object with explanation, key points, and example.
 
 
 
 
 
40
  """
41
+ if not concept_id:
42
+ return {"error": "concept_id is required for LLM-driven mode"}
43
+ prompt = (
44
+ f"Explain the concept '{concept_id}' in detail. "
45
+ f"Return a JSON object with fields: explanation (string), key_points (list of strings), and example (string)."
46
+ )
47
+ llm_response = await MODEL.generate_text(prompt)
48
+ try:
49
+ data = json.loads(llm_response)
50
+ except Exception:
51
+ data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
52
+ return data
53
 
54
  @mcp.tool()
55
+ async def assess_skill_tool(student_id: str, concept_id: str) -> dict:
56
  """
57
+ Assess a student's understanding of a specific concept, fully LLM-driven.
58
+ Use Gemini to generate a JSON object with a score (0-1), feedback, and recommendations.
 
 
 
 
 
 
59
  """
60
+ prompt = (
61
+ f"A student (ID: {student_id}) is being assessed on the concept '{concept_id}'. "
62
+ f"Generate a JSON object with: score (float 0-1), feedback (string), and recommendations (list of strings)."
63
+ )
64
+ llm_response = await MODEL.generate_text(prompt)
65
+ try:
66
+ data = json.loads(llm_response)
67
+ except Exception:
68
+ data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
69
+ return data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mcp_server/tools/interaction_tools.py CHANGED
@@ -5,123 +5,45 @@ import re
5
  from difflib import SequenceMatcher
6
  from typing import Dict, Any, List, Optional
7
  from mcp_server.mcp_instance import mcp
 
 
 
 
8
 
9
  def calculate_similarity(text1: str, text2: str) -> float:
10
  """Calculate the similarity ratio between two texts."""
11
- return SequenceMatcher(None, text1, text2).ratio()
12
 
13
  @mcp.tool()
14
- async def text_interaction(query: str, student_id: str) -> Dict[str, Any]:
15
  """
16
- Process a text query from a student and provide an educational response.
17
-
18
- Args:
19
- query: The student's question or input text
20
- student_id: Unique identifier for the student
21
-
22
- Returns:
23
- Dictionary containing the response and metadata
24
  """
25
- # Simple response generation based on keywords
26
- query_lower = query.lower()
27
-
28
- # Check for greetings
29
- if any(word in query_lower for word in ["hello", "hi", "hey"]):
30
- return {
31
- "response": f"Hello! I'm your TutorX assistant. How can I help you today, Student {student_id}?",
32
- "suggested_actions": [
33
- "Ask a question about programming",
34
- "Request a lesson on a topic",
35
- "Take a quiz"
36
- ]
37
- }
38
-
39
- # Check for help request
40
- if "help" in query_lower or "confused" in query_lower:
41
- return {
42
- "response": "I'm here to help! Could you please tell me what specific topic or concept you're struggling with?",
43
- "suggested_actions": [
44
- "Explain functions in Python",
45
- "What is object-oriented programming?",
46
- "Help me debug my code"
47
- ]
48
- }
49
-
50
- # Default response for other queries
51
- return {
52
- "response": f"I understand you're asking about: {query}. Here's what I can tell you...",
53
- "metadata": {
54
- "student_id": student_id,
55
- "query_type": "general_inquiry"
56
- },
57
- "suggested_resources": [
58
- {"title": "Related Documentation", "url": "https://docs.python.org/3/"},
59
- {"title": "Tutorial Video", "url": "https://www.youtube.com/"},
60
- {"title": "Practice Exercises", "url": "https://www.hackerrank.com/"}
61
- ]
62
- }
63
 
64
  @mcp.tool()
65
- async def check_submission_originality(submission: str, reference_sources: List[str]) -> Dict[str, Any]:
66
  """
67
- Check a student's submission for potential plagiarism against reference sources.
68
-
69
- Args:
70
- submission: The student's submission text
71
- reference_sources: List of reference texts to check against
72
-
73
- Returns:
74
- Dictionary with originality analysis results
75
  """
76
- if not submission or not reference_sources:
77
- return {"error": "Both submission and reference_sources are required"}
78
-
79
- # Simple plagiarism check using string similarity
80
- results = []
81
- for i, source in enumerate(reference_sources, 1):
82
- if not source:
83
- continue
84
-
85
- similarity = calculate_similarity(submission, source)
86
- results.append({
87
- "source_index": i,
88
- "similarity_score": round(similarity, 4),
89
- "is_original": similarity < 0.7, # Threshold for originality
90
- "suspicious_sections": []
91
- })
92
-
93
- # Check for exact matches
94
- exact_matches = []
95
- submission_words = submission.split()
96
- for i in range(len(submission_words) - 4): # Check 5-word sequences
97
- seq = ' '.join(submission_words[i:i+5])
98
- for j, source in enumerate(reference_sources):
99
- if seq in source:
100
- exact_matches.append({
101
- "source_index": j + 1,
102
- "matched_text": seq,
103
- "position": i
104
- })
105
-
106
- # Calculate overall originality score (weighted average)
107
- if results:
108
- avg_similarity = sum(r["similarity_score"] for r in results) / len(results)
109
- originality_score = max(0, 1 - avg_similarity)
110
- else:
111
- originality_score = 1.0
112
-
113
- return {
114
- "originality_score": round(originality_score, 2),
115
- "is_original": all(r["is_original"] for r in results) if results else True,
116
- "sources_checked": len(reference_sources),
117
- "source_comparisons": results,
118
- "exact_matches": exact_matches,
119
- "recommendations": [
120
- "Paraphrase any sections with high similarity scores",
121
- "Add proper citations for referenced material",
122
- "Use your own words to explain concepts"
123
- ] if any(not r["is_original"] for r in results) else [
124
- "Good job! Your work appears to be original.",
125
- "Remember to always cite your sources properly."
126
- ]
127
- }
 
5
  from difflib import SequenceMatcher
6
  from typing import Dict, Any, List, Optional
7
  from mcp_server.mcp_instance import mcp
8
+ from mcp_server.model.gemini_flash import GeminiFlash
9
+ import json
10
+
11
+ MODEL = GeminiFlash()
12
 
13
  def calculate_similarity(text1: str, text2: str) -> float:
14
  """Calculate the similarity ratio between two texts."""
15
+ return 0.0 # No longer used, LLM-driven
16
 
17
  @mcp.tool()
18
+ async def text_interaction(query: str, student_id: str) -> dict:
19
  """
20
+ Process a text query from a student and provide an educational response, fully LLM-driven.
21
+ Use Gemini to generate a JSON object with a response and suggested actions/resources.
 
 
 
 
 
 
22
  """
23
+ prompt = (
24
+ f"A student (ID: {student_id}) asked: '{query}'. "
25
+ f"Return a JSON object with fields: response (string), suggested_actions (list of strings), and suggested_resources (list of strings)."
26
+ )
27
+ llm_response = await MODEL.generate_text(prompt)
28
+ try:
29
+ data = json.loads(llm_response)
30
+ except Exception:
31
+ data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
32
+ return data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  @mcp.tool()
35
+ async def check_submission_originality(submission: str, reference_sources: list) -> dict:
36
  """
37
+ Check a student's submission for potential plagiarism, fully LLM-driven.
38
+ Use Gemini to generate a JSON object with originality_score (0-1), is_original (bool), and recommendations (list of strings).
 
 
 
 
 
 
39
  """
40
+ prompt = (
41
+ f"Given the following student submission: '{submission}' and reference sources: {reference_sources}, "
42
+ f"return a JSON object with fields: originality_score (float 0-1), is_original (bool), and recommendations (list of strings)."
43
+ )
44
+ llm_response = await MODEL.generate_text(prompt)
45
+ try:
46
+ data = json.loads(llm_response)
47
+ except Exception:
48
+ data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
49
+ return data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mcp_server/tools/learning_path_tools.py CHANGED
@@ -7,6 +7,7 @@ from datetime import datetime, timedelta
7
  import sys
8
  import os
9
  from pathlib import Path
 
10
 
11
  # Add the parent directory to the Python path
12
  current_dir = Path(__file__).parent
@@ -27,6 +28,9 @@ from resources.concept_graph import CONCEPT_GRAPH
27
 
28
  # Import MCP
29
  from mcp_server.mcp_instance import mcp
 
 
 
30
 
31
  def get_prerequisites(concept_id: str, visited: Optional[set] = None) -> List[Dict[str, Any]]:
32
  """
@@ -143,20 +147,18 @@ def generate_learning_path(concept_ids: List[str], student_level: str = "beginne
143
  }
144
 
145
  @mcp.tool()
146
- async def get_learning_path(student_id: str, concept_ids: List[str], student_level: Optional[str] = None) -> Dict[str, Any]:
147
  """
148
- Generate a personalized learning path for a student.
149
-
150
- Args:
151
- student_id: Unique identifier for the student
152
- concept_ids: List of concept IDs to include in the learning path
153
- student_level: Optional student level (beginner, intermediate, advanced)
154
-
155
- Returns:
156
- Dictionary containing the learning path
157
  """
158
- # In a real implementation, we would look up the student's level from their profile
159
- if not student_level:
160
- student_level = "beginner" # Default level
161
-
162
- return generate_learning_path(concept_ids, student_level)
 
 
 
 
 
 
7
  import sys
8
  import os
9
  from pathlib import Path
10
+ import json
11
 
12
  # Add the parent directory to the Python path
13
  current_dir = Path(__file__).parent
 
28
 
29
  # Import MCP
30
  from mcp_server.mcp_instance import mcp
31
+ from mcp_server.model.gemini_flash import GeminiFlash
32
+
33
+ MODEL = GeminiFlash()
34
 
35
  def get_prerequisites(concept_id: str, visited: Optional[set] = None) -> List[Dict[str, Any]]:
36
  """
 
147
  }
148
 
149
  @mcp.tool()
150
+ async def get_learning_path(student_id: str, concept_ids: list, student_level: str = "beginner") -> dict:
151
  """
152
+ Generate a personalized learning path for a student, fully LLM-driven.
153
+ Use Gemini to generate a JSON object with a list of steps, each with concept name, description, estimated time, and recommended resources.
 
 
 
 
 
 
 
154
  """
155
+ prompt = (
156
+ f"A student (ID: {student_id}) with level '{student_level}' needs a learning path for these concepts: {concept_ids}. "
157
+ f"Return a JSON object with a 'learning_path' field: a list of steps, each with concept_name, description, estimated_time_minutes, and resources (list)."
158
+ )
159
+ llm_response = await MODEL.generate_text(prompt)
160
+ try:
161
+ data = json.loads(llm_response)
162
+ except Exception:
163
+ data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
164
+ return data
mcp_server/tools/lesson_tools.py CHANGED
@@ -3,121 +3,24 @@ Lesson generation tools for TutorX MCP.
3
  """
4
  from typing import Dict, Any, List
5
  from mcp_server.mcp_instance import mcp
 
 
 
 
6
 
7
  @mcp.tool()
8
- async def generate_lesson_tool(topic: str, grade_level: int, duration_minutes: int) -> Dict[str, Any]:
9
  """
10
- Generate a lesson plan for the given topic, grade level, and duration.
11
-
12
- Args:
13
- topic: The topic for the lesson
14
- grade_level: The grade level (1-12)
15
- duration_minutes: Duration of the lesson in minutes
16
-
17
- Returns:
18
- Dictionary containing the generated lesson plan
19
  """
20
- # Validate inputs
21
- if not topic or not isinstance(topic, str):
22
- return {"error": "Topic must be a non-empty string"}
23
-
24
- if not isinstance(grade_level, int) or grade_level < 1 or grade_level > 12:
25
- return {"error": "Grade level must be an integer between 1 and 12"}
26
-
27
- if not isinstance(duration_minutes, (int, float)) or duration_minutes <= 0:
28
- return {"error": "Duration must be a positive number"}
29
-
30
- # Calculate time allocation (example: 10% intro, 30% instruction, 40% practice, 20% review)
31
- intro_time = max(5, duration_minutes * 0.1) # At least 5 minutes
32
- instruction_time = duration_minutes * 0.3
33
- practice_time = duration_minutes * 0.4
34
- review_time = duration_minutes - (intro_time + instruction_time + practice_time)
35
-
36
- # Generate learning objectives based on grade level and topic
37
- difficulty = {
38
- 1: "basic",
39
- 2: "basic",
40
- 3: "basic",
41
- 4: "intermediate",
42
- 5: "intermediate",
43
- 6: "intermediate",
44
- 7: "advanced",
45
- 8: "advanced",
46
- 9: "advanced",
47
- 10: "expert",
48
- 11: "expert",
49
- 12: "expert"
50
- }.get(grade_level, "intermediate")
51
-
52
- # Create lesson plan
53
- lesson_plan = {
54
- "topic": topic,
55
- "grade_level": grade_level,
56
- "duration_minutes": duration_minutes,
57
- "difficulty": difficulty,
58
- "objectives": [
59
- f"Understand the {difficulty} concepts of {topic}",
60
- f"Apply {topic} concepts to solve problems",
61
- f"Analyze and evaluate {topic} in different contexts"
62
- ],
63
- "materials": [
64
- "Whiteboard and markers",
65
- "Printed worksheets",
66
- "Example code snippets",
67
- "Interactive coding environment"
68
- ],
69
- "activities": [
70
- {
71
- "type": "introduction",
72
- "duration_minutes": intro_time,
73
- "description": f"Introduce the topic of {topic} and its importance"
74
- },
75
- {
76
- "type": "direct_instruction",
77
- "duration_minutes": instruction_time,
78
- "description": f"Teach the core concepts of {topic}"
79
- },
80
- {
81
- "type": "guided_practice",
82
- "duration_minutes": practice_time,
83
- "description": "Work through examples together"
84
- },
85
- {
86
- "type": "independent_practice",
87
- "duration_minutes": practice_time,
88
- "description": "Students work on exercises independently"
89
- },
90
- {
91
- "type": "review",
92
- "duration_minutes": review_time,
93
- "description": "Review key concepts and answer questions"
94
- }
95
- ],
96
- "assessment": {
97
- "type": "formative",
98
- "methods": ["Exit ticket", "Class participation", "Worksheet completion"]
99
- },
100
- "differentiation": {
101
- "for_struggling_students": [
102
- "Provide additional examples",
103
- "Offer one-on-one support",
104
- "Use visual aids"
105
- ],
106
- "for_advanced_students": [
107
- "Provide extension activities",
108
- "Challenge with advanced problems",
109
- "Encourage to help peers"
110
- ]
111
- },
112
- "homework": {
113
- "description": f"Complete practice problems on {topic}",
114
- "estimated_time_minutes": 20,
115
- "resources": [
116
- f"{topic} practice worksheet",
117
- "Online practice problems",
118
- "Reading assignment"
119
- ]
120
- }
121
- }
122
-
123
- return lesson_plan
 
3
  """
4
  from typing import Dict, Any, List
5
  from mcp_server.mcp_instance import mcp
6
+ from mcp_server.model.gemini_flash import GeminiFlash
7
+ import json
8
+
9
+ MODEL = GeminiFlash()
10
 
11
  @mcp.tool()
12
+ async def generate_lesson_tool(topic: str, grade_level: int, duration_minutes: int) -> dict:
13
  """
14
+ Generate a lesson plan for the given topic, grade level, and duration, fully LLM-driven.
15
+ Use Gemini to generate a JSON object with objectives, activities, materials, assessment, differentiation, and homework.
 
 
 
 
 
 
 
16
  """
17
+ prompt = (
18
+ f"Generate a detailed lesson plan as a JSON object for the topic '{topic}', grade {grade_level}, duration {duration_minutes} minutes. "
19
+ f"Include fields: objectives (list), activities (list), materials (list), assessment (dict), differentiation (dict), and homework (dict)."
20
+ )
21
+ llm_response = await MODEL.generate_text(prompt)
22
+ try:
23
+ data = json.loads(llm_response)
24
+ except Exception:
25
+ data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
26
+ return data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mcp_server/tools/ocr_tools.py CHANGED
@@ -1,166 +1,142 @@
1
  """
2
- OCR (Optical Character Recognition) tools for TutorX.
3
  """
4
- import base64
5
- import io
6
- import tempfile
7
- from typing import Dict, Any, Optional, Tuple
8
- # import fitz # PyMuPDFuv run
9
- import pytesseract
10
- from PIL import Image, ImageEnhance
11
- import numpy as np
12
  from mcp_server.mcp_instance import mcp
 
 
13
 
14
- def preprocess_image(image: Image.Image) -> Image.Image:
15
- """
16
- Preprocess image to improve OCR accuracy.
17
-
18
- Args:
19
- image: Input PIL Image
20
-
21
- Returns:
22
- Preprocessed PIL Image
23
- """
24
- # Convert to grayscale
25
- image = image.convert('L')
26
-
27
- # Enhance contrast
28
- enhancer = ImageEnhance.Contrast(image)
29
- image = enhancer.enhance(2.0)
30
-
31
- # Enhance sharpness
32
- enhancer = ImageEnhance.Sharpness(image)
33
- image = enhancer.enhance(2.0)
34
-
35
- return image
36
 
37
- def extract_text_from_image(image: Image.Image) -> str:
38
  """
39
- Extract text from an image using Tesseract OCR.
40
 
41
  Args:
42
- image: PIL Image to process
43
 
44
  Returns:
45
- Extracted text
46
  """
47
  try:
48
- # Preprocess the image
49
- processed_image = preprocess_image(image)
 
 
 
 
 
 
 
50
 
51
- # Use Tesseract to do OCR on the image
52
- text = pytesseract.image_to_string(processed_image, lang='eng')
53
- return text.strip()
54
- except Exception as e:
55
- raise RuntimeError(f"Error during OCR processing: {str(e)}")
56
-
57
- def extract_text_from_pdf(pdf_data: bytes) -> Tuple[str, int]:
58
- """
59
- Extract text from a PDF file.
60
-
61
- Args:
62
- pdf_data: PDF file content as bytes
63
 
64
- Returns:
65
- Tuple of (extracted_text, page_count)
66
- """
67
- try:
68
- # Open the PDF file
69
- with fitz.open(stream=pdf_data, filetype="pdf") as doc:
70
- page_count = len(doc)
71
- extracted_text = []
72
-
73
- # Extract text from each page
74
- for page_num in range(page_count):
75
- page = doc.load_page(page_num)
76
- text = page.get_text()
77
-
78
- # If no text is found, try OCR
79
- if not text.strip():
80
- pix = page.get_pixmap()
81
- img_data = pix.tobytes("png")
82
- img = Image.open(io.BytesIO(img_data))
83
- text = extract_text_from_image(img)
84
-
85
- extracted_text.append(text)
86
-
87
- return "\n\n".join(extracted_text), page_count
88
  except Exception as e:
89
- raise RuntimeError(f"Error processing PDF: {str(e)}")
90
 
91
  @mcp.tool()
92
- async def pdf_ocr(request: Dict[str, Any]) -> Dict[str, Any]:
93
  """
94
- Extract text from a PDF file using OCR.
 
95
 
96
- Expected request format:
97
- {
98
- "pdf_data": "base64_encoded_pdf_data",
99
- "filename": "document.pdf" # Optional
100
- }
101
 
102
  Returns:
103
- Dictionary containing extracted text and metadata
104
  """
105
  try:
106
- # Get and validate input
107
- pdf_data_b64 = request.get("pdf_data")
108
- if not pdf_data_b64:
109
- return {"error": "Missing required field: pdf_data"}
 
 
 
 
 
 
 
 
110
 
111
- # Decode base64 data
112
- try:
113
- pdf_data = base64.b64decode(pdf_data_b64)
114
- except Exception as e:
115
- return {"error": f"Invalid base64 data: {str(e)}"}
 
 
 
116
 
117
- # Extract text from PDF
118
- extracted_text, page_count = extract_text_from_pdf(pdf_data)
 
119
 
120
- # Prepare response
121
  result = {
122
  "success": True,
123
- "filename": request.get("filename", "document.pdf"),
124
- "page_count": page_count,
125
  "extracted_text": extracted_text,
126
- "character_count": len(extracted_text),
127
- "word_count": len(extracted_text.split()),
128
- "processing_time_ms": 0 # Could be calculated if needed
 
 
 
 
 
 
 
 
129
  }
130
 
131
- return result
132
-
133
- except Exception as e:
134
- return {"error": f"Error processing PDF: {str(e)}"}
 
135
 
136
- @mcp.tool()
137
- async def image_to_text(image_data: str) -> Dict[str, Any]:
138
- """
139
- Extract text from an image using OCR.
140
-
141
- Args:
142
- image_data: Base64 encoded image data
143
-
144
- Returns:
145
- Dictionary containing extracted text and metadata
146
- """
147
- try:
148
- # Decode base64 image data
149
- image_bytes = base64.b64decode(image_data)
150
-
151
- # Open image
152
- image = Image.open(io.BytesIO(image_bytes))
 
 
 
 
 
 
 
 
 
 
153
 
154
- # Extract text
155
- text = extract_text_from_image(image)
156
 
157
- return {
158
- "success": True,
159
- "extracted_text": text,
160
- "character_count": len(text),
161
- "word_count": len(text.split()),
162
- "image_size": image.size,
163
- "image_mode": image.mode
164
- }
165
  except Exception as e:
166
- return {"error": f"Error processing image: {str(e)}"}
 
 
 
 
 
1
  """
2
+ OCR (Optical Character Recognition) tools for TutorX with Mistral OCR integration.
3
  """
4
+ import os
5
+ from typing import Dict, Any, Optional
 
 
 
 
 
 
6
  from mcp_server.mcp_instance import mcp
7
+ from mcp_server.model.gemini_flash import GeminiFlash
8
+ from mistralai import Mistral
9
 
10
+ # Initialize models
11
+ MODEL = GeminiFlash()
12
+ client = Mistral(api_key="5oHGQTYDGD3ecQZSqdLsr5ZL4nOsfGYj")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ async def mistral_ocr_request(document_url: str) -> dict:
15
  """
16
+ Send OCR request to Mistral OCR service using document URL.
17
 
18
  Args:
19
+ document_url: URL of the document to process
20
 
21
  Returns:
22
+ OCR response from Mistral
23
  """
24
  try:
25
+ # Process document with Mistral OCR
26
+ ocr_response = client.ocr.process(
27
+ model="mistral-ocr-latest",
28
+ document={
29
+ "type": "document_url",
30
+ "document_url": document_url
31
+ },
32
+ include_image_base64=True
33
+ )
34
 
35
+ # Convert the response to a dictionary
36
+ if hasattr(ocr_response, 'model_dump'):
37
+ return ocr_response.model_dump()
38
+ return ocr_response or {}
 
 
 
 
 
 
 
 
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  except Exception as e:
41
+ raise RuntimeError(f"Error processing document with Mistral OCR: {str(e)}")
42
 
43
  @mcp.tool()
44
+ async def mistral_document_ocr(document_url: str) -> dict:
45
  """
46
+ Extract text from any document (PDF, image, etc.) using Mistral OCR service with document URL,
47
+ then use Gemini to summarize and extract key points as JSON.
48
 
49
+ Args:
50
+ document_url (str): URL of the document to process
 
 
 
51
 
52
  Returns:
53
+ Dictionary with OCR results and AI analysis
54
  """
55
  try:
56
+ if not document_url:
57
+ return {"error": "Document URL is required"}
58
+
59
+ # Extract filename from URL
60
+ filename = document_url.split('/')[-1] if '/' in document_url else "document"
61
+
62
+ # Call Mistral OCR API
63
+ ocr_response = await mistral_ocr_request(document_url)
64
+
65
+ # Extract text from Mistral response
66
+ extracted_text = ""
67
+ page_count = 0
68
 
69
+ if "pages" in ocr_response and isinstance(ocr_response["pages"], list):
70
+ # Extract text from each page's markdown field
71
+ extracted_text = "\n\n".join(
72
+ page.get("markdown", "")
73
+ for page in ocr_response["pages"]
74
+ if isinstance(page, dict) and "markdown" in page
75
+ )
76
+ page_count = len(ocr_response["pages"])
77
 
78
+ # Count words and characters
79
+ word_count = len(extracted_text.split())
80
+ char_count = len(extracted_text)
81
 
82
+ # Build result
83
  result = {
84
  "success": True,
85
+ "filename": filename,
86
+ "document_url": document_url,
87
  "extracted_text": extracted_text,
88
+ "character_count": char_count,
89
+ "word_count": word_count,
90
+ "page_count": page_count,
91
+ "mistral_response": ocr_response,
92
+ "processing_service": "Mistral OCR",
93
+ "llm_analysis": {
94
+ "error": None,
95
+ "summary": "",
96
+ "key_points": [],
97
+ "document_type": "unknown"
98
+ }
99
  }
100
 
101
+ # If we have text, try to analyze it with the LLM
102
+ if extracted_text.strip():
103
+ try:
104
+ # Use the LLM to analyze the extracted text
105
+ llm_prompt = f"""Analyze the following document and provide a brief summary, 3-5 key points, and the document type.
106
 
107
+ Document:
108
+ {extracted_text[:4000]} # Limit to first 4000 chars to avoid context window issues
109
+ """
110
+
111
+ # Await the coroutine
112
+ llm_response = await MODEL.generate_text(llm_prompt)
113
+
114
+ # Parse the LLM response
115
+ if llm_response:
116
+ # Try to parse as JSON if the response is in JSON format
117
+ try:
118
+ import json
119
+ llm_data = json.loads(llm_response)
120
+ result["llm_analysis"].update({
121
+ "summary": llm_data.get("summary", ""),
122
+ "key_points": llm_data.get("key_points", []),
123
+ "document_type": llm_data.get("document_type", "document")
124
+ })
125
+ except (json.JSONDecodeError, AttributeError):
126
+ # If not JSON, use the raw response as summary
127
+ result["llm_analysis"].update({
128
+ "summary": str(llm_response),
129
+ "document_type": "document"
130
+ })
131
+
132
+ except Exception as e:
133
+ result["llm_analysis"]["error"] = f"LLM analysis error: {str(e)}"
134
 
135
+ return result
 
136
 
 
 
 
 
 
 
 
 
137
  except Exception as e:
138
+ return {
139
+ "success": False,
140
+ "error": f"Error processing document with Mistral OCR: {str(e)}",
141
+ "document_url": document_url
142
+ }
mcp_server/tools/quiz_tools.py CHANGED
@@ -15,48 +15,26 @@ PROMPT_TEMPLATE = (Path(__file__).parent.parent / "prompts" / "quiz_generation.t
15
  MODEL = GeminiFlash()
16
 
17
  @mcp.tool()
18
- async def generate_quiz_tool(concept: str, difficulty: str = "medium") -> Dict[str, Any]:
19
  """
20
- Generate a quiz based on a concept and difficulty using Gemini.
21
-
22
- Args:
23
- concept: The concept to generate a quiz about
24
- difficulty: Difficulty level (easy, medium, hard)
25
-
26
- Returns:
27
- Dict containing the generated quiz in JSON format
28
  """
29
  try:
30
- # Validate inputs
31
  if not concept or not isinstance(concept, str):
32
  return {"error": "concept must be a non-empty string"}
33
-
34
  valid_difficulties = ["easy", "medium", "hard"]
35
  if difficulty.lower() not in valid_difficulties:
36
  return {"error": f"difficulty must be one of {valid_difficulties}"}
37
-
38
- # Format the prompt
39
- prompt = PROMPT_TEMPLATE.format(
40
- concept=concept,
41
- difficulty=difficulty.lower()
42
  )
43
-
44
- # Generate quiz using Gemini
45
- response = await MODEL.generate_text(prompt, temperature=0.7)
46
-
47
- # Try to parse the JSON response
48
  try:
49
- # Extract JSON from markdown code block if present
50
- if '```json' in response:
51
- json_str = response.split('```json')[1].split('```')[0].strip()
52
- else:
53
- json_str = response
54
-
55
- quiz_data = json.loads(json_str)
56
- return quiz_data
57
-
58
- except json.JSONDecodeError as e:
59
- return {"error": f"Failed to parse quiz response: {str(e)}", "raw_response": response}
60
-
61
  except Exception as e:
62
  return {"error": f"Error generating quiz: {str(e)}"}
 
15
  MODEL = GeminiFlash()
16
 
17
  @mcp.tool()
18
+ async def generate_quiz_tool(concept: str, difficulty: str = "medium") -> dict:
19
  """
20
+ Generate a quiz based on a concept and difficulty using Gemini, fully LLM-driven.
21
+ The JSON should include a list of questions, each with options and the correct answer.
 
 
 
 
 
 
22
  """
23
  try:
 
24
  if not concept or not isinstance(concept, str):
25
  return {"error": "concept must be a non-empty string"}
 
26
  valid_difficulties = ["easy", "medium", "hard"]
27
  if difficulty.lower() not in valid_difficulties:
28
  return {"error": f"difficulty must be one of {valid_difficulties}"}
29
+ prompt = (
30
+ f"Generate a {difficulty} quiz on the concept '{concept}'. "
31
+ f"Return a JSON object with a 'questions' field: a list of questions, each with 'question', 'options' (list), and 'answer'."
 
 
32
  )
33
+ llm_response = await MODEL.generate_text(prompt, temperature=0.7)
 
 
 
 
34
  try:
35
+ quiz_data = json.loads(llm_response)
36
+ except Exception:
37
+ quiz_data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"}
38
+ return quiz_data
 
 
 
 
 
 
 
 
39
  except Exception as e:
40
  return {"error": f"Error generating quiz: {str(e)}"}
tests/ocr_app.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Gradio app for document OCR processing with Mistral OCR.
3
+
4
+ Features:
5
+ - File upload to storage API
6
+ - Document processing using Mistral OCR
7
+ - Display of OCR results
8
+ """
9
+
10
+ import os
11
+ import requests
12
+ import gradio as gr
13
+ import asyncio
14
+ import json
15
+ import tempfile
16
+ from typing import Dict, Any, Optional
17
+ from pathlib import Path
18
+
19
+ # Mistral AI
20
+ from mistralai import Mistral
21
+
22
+ # API Configuration
23
+ STORAGE_API_URL = "https://storage-bucket-api.vercel.app/upload"
24
+ MISTRAL_API_KEY = "5oHGQTYDGD3ecQZSqdLsr5ZL4nOsfGYj" # In production, use environment variables
25
+
26
+ # Initialize Mistral client
27
+ client = Mistral(api_key=MISTRAL_API_KEY)
28
+
29
+ class MistralOCRProcessor:
30
+ """Handles document OCR processing using Mistral AI"""
31
+
32
+ def __init__(self, client: Mistral = None):
33
+ self.client = client or Mistral(api_key=MISTRAL_API_KEY)
34
+
35
+ async def process_document(self, document_path: str) -> Dict[str, Any]:
36
+ """
37
+ Process a document using Mistral OCR
38
+
39
+ Args:
40
+ document_path: Local path to the document to process
41
+
42
+ Returns:
43
+ Dict containing OCR results or error information
44
+ """
45
+ try:
46
+ # For local files, we need to upload to a temporary URL first
47
+ upload_result = await StorageManager().upload_file(document_path)
48
+ if not upload_result.get("success"):
49
+ return {
50
+ "success": False,
51
+ "result": None,
52
+ "error": f"Upload failed: {upload_result.get('error')}"
53
+ }
54
+
55
+ document_url = upload_result.get("storage_url")
56
+ if not document_url:
57
+ return {
58
+ "success": False,
59
+ "result": None,
60
+ "error": "No storage URL returned from upload"
61
+ }
62
+
63
+ # Process with Mistral OCR
64
+ ocr_response = self.client.ocr.process(
65
+ model="mistral-ocr-latest",
66
+ document={
67
+ "type": "document_url",
68
+ "document_url": document_url
69
+ },
70
+ include_image_base64=True
71
+ )
72
+
73
+ # Convert response to dict if it's a Pydantic model
74
+ if hasattr(ocr_response, 'model_dump'):
75
+ result = ocr_response.model_dump()
76
+ else:
77
+ result = ocr_response
78
+
79
+ return {
80
+ "success": True,
81
+ "result": result,
82
+ "document_url": document_url,
83
+ "error": None
84
+ }
85
+
86
+ except Exception as e:
87
+ return {
88
+ "success": False,
89
+ "result": None,
90
+ "error": f"OCR processing error: {str(e)}"
91
+ }
92
+
93
+ class StorageManager:
94
+ """Handles file uploads to the storage service"""
95
+
96
+ def __init__(self, api_url: str = STORAGE_API_URL):
97
+ self.api_url = api_url
98
+
99
+ async def upload_file(self, file_path: str) -> Dict[str, Any]:
100
+ """
101
+ Upload a file to the storage service
102
+
103
+ Args:
104
+ file_path: Path to the file to upload
105
+
106
+ Returns:
107
+ Dict containing upload result or error information
108
+ """
109
+ try:
110
+ with open(file_path, 'rb') as f:
111
+ files = {'file': (os.path.basename(file_path), f)}
112
+ response = requests.post(self.api_url, files=files)
113
+ response.raise_for_status()
114
+ result = response.json()
115
+
116
+ if not result.get('success'):
117
+ raise Exception(result.get('message', 'Upload failed'))
118
+
119
+ return {
120
+ "success": True,
121
+ "storage_url": result.get('storage_url'),
122
+ "original_filename": result.get('original_filename'),
123
+ "file_size": result.get('file_size'),
124
+ "error": None
125
+ }
126
+
127
+ except Exception as e:
128
+ return {
129
+ "success": False,
130
+ "storage_url": None,
131
+ "original_filename": os.path.basename(file_path),
132
+ "file_size": os.path.getsize(file_path) if os.path.exists(file_path) else 0,
133
+ "error": f"Upload failed: {str(e)}"
134
+ }
135
+
136
+ # Initialize processors
137
+ ocr_processor = MistralOCRProcessor()
138
+ storage_manager = StorageManager()
139
+
140
+ async def process_document_ocr(file_path: str) -> Dict[str, Any]:
141
+ """
142
+ Process a document through the complete OCR pipeline
143
+
144
+ Args:
145
+ file_path: Path to the document file
146
+
147
+ Returns:
148
+ Dict containing processing results
149
+ """
150
+ # Process with Mistral OCR (handles upload internally)
151
+ result = await ocr_processor.process_document(file_path)
152
+
153
+ if not result.get("success"):
154
+ return {
155
+ "success": False,
156
+ "upload": {"success": False},
157
+ "ocr": None,
158
+ "error": result.get("error", "Unknown error")
159
+ }
160
+
161
+ # Get the original filename from the file path
162
+ original_filename = Path(file_path).name
163
+ file_size = os.path.getsize(file_path)
164
+
165
+ return {
166
+ "success": True,
167
+ "upload": {
168
+ "success": True,
169
+ "storage_url": result.get("document_url"),
170
+ "original_filename": original_filename,
171
+ "file_size": file_size
172
+ },
173
+ "ocr": result.get("result"),
174
+ "error": None,
175
+ "storage_url": result.get("document_url")
176
+ }
177
+
178
+ # Gradio Interface
179
+ def create_gradio_interface():
180
+ """Create and return the Gradio interface"""
181
+ with gr.Blocks(title="Document OCR Processor", theme=gr.themes.Soft()) as demo:
182
+ gr.Markdown("# Document OCR Processor")
183
+ gr.Markdown("Upload a document (PDF, JPG, JPEG, PNG) to process with Mistral OCR")
184
+
185
+ with gr.Row():
186
+ with gr.Column(scale=2):
187
+ file_input = gr.File(label="Upload Document", type="filepath")
188
+ process_btn = gr.Button("Process Document", variant="primary")
189
+
190
+ with gr.Accordion("Debug Info", open=False):
191
+ status_text = gr.Textbox(label="Status", interactive=False)
192
+
193
+ with gr.Column(scale=3):
194
+ with gr.Tabs():
195
+ with gr.TabItem("OCR Results"):
196
+ ocr_output = gr.JSON(label="OCR Output")
197
+ with gr.TabItem("Extracted Text"):
198
+ text_output = gr.Textbox(label="Extracted Text", lines=20, max_lines=50)
199
+ with gr.TabItem("Upload Info"):
200
+ upload_info = gr.JSON(label="Upload Information")
201
+
202
+ def update_status(message):
203
+ return message
204
+
205
+ async def process_file(file_path):
206
+ try:
207
+ status = "Starting document processing..."
208
+ yield {status_text: update_status(status)}
209
+
210
+ # Process the document
211
+ result = await process_document_ocr(file_path)
212
+
213
+ if not result["success"]:
214
+ error_msg = result.get('error', 'Unknown error')
215
+ yield {
216
+ status_text: update_status(f"❌ {error_msg}"),
217
+ ocr_output: None,
218
+ text_output: "",
219
+ upload_info: None
220
+ }
221
+ return
222
+
223
+ # Extract text from OCR result
224
+ extracted_text = ""
225
+ ocr_data = result.get("ocr", {})
226
+
227
+ # Handle different OCR result formats
228
+ if isinstance(ocr_data, dict):
229
+ if "text" in ocr_data:
230
+ extracted_text = ocr_data["text"]
231
+ elif "pages" in ocr_data and isinstance(ocr_data["pages"], list):
232
+ extracted_text = "\n\n".join(
233
+ page.get("text", "")
234
+ for page in ocr_data["pages"]
235
+ if page and isinstance(page, dict) and "text" in page
236
+ )
237
+
238
+ # Prepare upload info
239
+ upload_info_data = {
240
+ "original_filename": result["upload"].get("original_filename"),
241
+ "file_size": result["upload"].get("file_size"),
242
+ "storage_url": result["upload"].get("storage_url"),
243
+ }
244
+
245
+ yield {
246
+ status_text: update_status("✅ Document processed successfully"),
247
+ ocr_output: ocr_data,
248
+ text_output: extracted_text,
249
+ upload_info: upload_info_data
250
+ }
251
+
252
+ except Exception as e:
253
+ import traceback
254
+ error_trace = traceback.format_exc()
255
+ error_msg = f"Unexpected error: {str(e)}"
256
+ yield {
257
+ status_text: update_status(f"❌ {error_msg}"),
258
+ ocr_output: None,
259
+ text_output: "",
260
+ upload_info: None
261
+ }
262
+
263
+ # Connect the process button to the processing function
264
+ process_btn.click(
265
+ fn=process_file,
266
+ inputs=file_input,
267
+ outputs=[status_text, ocr_output, text_output, upload_info]
268
+ )
269
+
270
+ # Auto-process when a file is uploaded
271
+ file_input.change(
272
+ fn=lambda x: "Ready to process. Click 'Process Document' to continue.",
273
+ inputs=file_input,
274
+ outputs=status_text
275
+ )
276
+
277
+ return demo.launch(server_name="0.0.0.0", server_port=7860)
278
+
279
+ if __name__ == "__main__":
280
+ # Create and launch the interface
281
+ create_gradio_interface()
tests/test_tools_integration.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+ import asyncio
3
+ import base64
4
+ import os
5
+ from mcp import ClientSession
6
+ from mcp.client.sse import sse_client
7
+
8
+ SERVER_URL = "http://localhost:8000/sse" # Adjust if needed
9
+
10
+ @pytest.mark.asyncio
11
+ async def test_get_concept_graph_tool():
12
+ async with sse_client(SERVER_URL) as (sse, write):
13
+ async with ClientSession(sse, write) as session:
14
+ await session.initialize()
15
+ result = await session.call_tool("get_concept_graph_tool", {"concept_id": "python"})
16
+ assert result and "error" not in result
17
+
18
+ @pytest.mark.asyncio
19
+ async def test_generate_quiz_tool():
20
+ async with sse_client(SERVER_URL) as (sse, write):
21
+ async with ClientSession(sse, write) as session:
22
+ await session.initialize()
23
+ result = await session.call_tool("generate_quiz_tool", {"concept": "python", "difficulty": "easy"})
24
+ assert result and "error" not in result
25
+
26
+ @pytest.mark.asyncio
27
+ async def test_generate_lesson_tool():
28
+ async with sse_client(SERVER_URL) as (sse, write):
29
+ async with ClientSession(sse, write) as session:
30
+ await session.initialize()
31
+ result = await session.call_tool("generate_lesson_tool", {"topic": "Algebra", "grade_level": 8, "duration_minutes": 45})
32
+ assert result and "error" not in result
33
+
34
+ @pytest.mark.asyncio
35
+ async def test_get_learning_path():
36
+ async with sse_client(SERVER_URL) as (sse, write):
37
+ async with ClientSession(sse, write) as session:
38
+ await session.initialize()
39
+ result = await session.call_tool("get_learning_path", {"student_id": "student_1", "concept_ids": ["python", "oop"], "student_level": "beginner"})
40
+ assert result and "error" not in result
41
+
42
+ @pytest.mark.asyncio
43
+ async def test_text_interaction():
44
+ async with sse_client(SERVER_URL) as (sse, write):
45
+ async with ClientSession(sse, write) as session:
46
+ await session.initialize()
47
+ result = await session.call_tool("text_interaction", {"query": "What is a function in Python?", "student_id": "student_1"})
48
+ assert result and "error" not in result
49
+
50
+ @pytest.mark.asyncio
51
+ async def test_check_submission_originality():
52
+ async with sse_client(SERVER_URL) as (sse, write):
53
+ async with ClientSession(sse, write) as session:
54
+ await session.initialize()
55
+ result = await session.call_tool("check_submission_originality", {"submission": "Python is a programming language.", "reference_sources": ["Python is a programming language.", "Java is another language."]})
56
+ assert result and "error" not in result
57
+
58
+ @pytest.mark.asyncio
59
+ async def test_pdf_ocr(tmp_path):
60
+ # Create a dummy PDF file
61
+ pdf_path = tmp_path / "test.pdf"
62
+ with open(pdf_path, "wb") as f:
63
+ f.write(b"%PDF-1.4 test pdf content")
64
+ with open(pdf_path, "rb") as f:
65
+ pdf_data = f.read()
66
+ pdf_b64 = base64.b64encode(pdf_data).decode("utf-8")
67
+ async with sse_client(SERVER_URL) as (sse, write):
68
+ async with ClientSession(sse, write) as session:
69
+ await session.initialize()
70
+ result = await session.call_tool("pdf_ocr", {"pdf_data": pdf_b64, "filename": "test.pdf"})
71
+ assert result and ("error" not in result or "Error processing PDF" in result.get("error", ""))
72
+
73
+ @pytest.mark.asyncio
74
+ async def test_image_to_text():
75
+ # Create a dummy image (1x1 pixel PNG)
76
+ import io
77
+ from PIL import Image
78
+ img = Image.new("RGB", (1, 1), color="white")
79
+ buf = io.BytesIO()
80
+ img.save(buf, format="PNG")
81
+ img_b64 = base64.b64encode(buf.getvalue()).decode("utf-8")
82
+ async with sse_client(SERVER_URL) as (sse, write):
83
+ async with ClientSession(sse, write) as session:
84
+ await session.initialize()
85
+ result = await session.call_tool("image_to_text", {"image_data": img_b64})
86
+ assert result and "error" not in result
87
+
88
+ @pytest.mark.asyncio
89
+ async def test_get_concept_tool():
90
+ async with sse_client(SERVER_URL) as (sse, write):
91
+ async with ClientSession(sse, write) as session:
92
+ await session.initialize()
93
+ result = await session.call_tool("get_concept_tool", {"concept_id": "python"})
94
+ assert result and "error" not in result
95
+
96
+ @pytest.mark.asyncio
97
+ async def test_assess_skill_tool():
98
+ async with sse_client(SERVER_URL) as (sse, write):
99
+ async with ClientSession(sse, write) as session:
100
+ await session.initialize()
101
+ result = await session.call_tool("assess_skill_tool", {"student_id": "student_1", "concept_id": "python"})
102
+ assert result and "error" not in result
103
+
104
+ if __name__ == "__main__":
105
+ import sys
106
+ import pytest
107
+ sys.exit(pytest.main([__file__]))
tests/test_upload_ocr.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Test script for file upload and OCR functionality.
3
+
4
+ This script tests the file upload to the storage API and verifies the OCR functionality with the returned storage URL.
5
+ """
6
+
7
+ import os
8
+ import requests
9
+ import asyncio
10
+ import argparse
11
+ from pathlib import Path
12
+
13
+ # Configuration
14
+ STORAGE_API_URL = "https://storage-bucket-api.vercel.app/upload"
15
+
16
+ async def upload_file_to_storage(file_path):
17
+ """Helper function to upload file to storage API"""
18
+ try:
19
+ with open(file_path, 'rb') as f:
20
+ files = {'file': (os.path.basename(file_path), f)}
21
+ print(f"Uploading {file_path} to storage...")
22
+ response = requests.post(STORAGE_API_URL, files=files)
23
+ response.raise_for_status()
24
+ result = response.json()
25
+ print("\nUpload successful! Response:")
26
+ print(f"- Success: {result.get('success')}")
27
+ print(f"- Message: {result.get('message')}")
28
+ print(f"- Original filename: {result.get('original_filename')}")
29
+ print(f"- Uploaded filename: {result.get('uploaded_filename')}")
30
+ print(f"- File size: {result.get('file_size')} bytes")
31
+ print(f"- Content type: {result.get('content_type')}")
32
+ print(f"- Storage URL: {result.get('storage_url')}")
33
+ return result
34
+ except Exception as e:
35
+ print(f"Error uploading file: {str(e)}")
36
+ if hasattr(e, 'response') and e.response is not None:
37
+ print(f"Server response: {e.response.text}")
38
+ return {"error": str(e), "success": False}
39
+
40
+ async def test_ocr_with_storage_url(storage_url):
41
+ """Test OCR functionality with a storage URL"""
42
+ print(f"\nTesting OCR with URL: {storage_url}")
43
+ # This is a placeholder for the actual OCR test
44
+ # You would typically call your OCR service here
45
+ print("OCR test would process the document at:", storage_url)
46
+ print("OCR test completed (mock implementation)")
47
+ return {"success": True, "message": "OCR test completed (mock implementation)"}
48
+
49
+ async def main():
50
+ parser = argparse.ArgumentParser(description='Test file upload and OCR functionality')
51
+ parser.add_argument('file_path', type=str, help='Path to the file to upload and test')
52
+ parser.add_argument('--test-ocr', action='store_true',
53
+ help='Test OCR functionality with the uploaded file')
54
+
55
+ args = parser.parse_args()
56
+
57
+ # Verify file exists
58
+ if not os.path.exists(args.file_path):
59
+ print(f"Error: File not found: {args.file_path}")
60
+ return
61
+
62
+ # Upload the file
63
+ upload_result = await upload_file_to_storage(args.file_path)
64
+
65
+ if not upload_result.get('success'):
66
+ print("\nUpload failed. Cannot proceed with OCR test.")
67
+ return
68
+
69
+ storage_url = upload_result.get('storage_url')
70
+ if not storage_url:
71
+ print("\nNo storage URL in upload response. Cannot test OCR functionality.")
72
+ return
73
+
74
+ # Test OCR if requested
75
+ if args.test_ocr:
76
+ await test_ocr_with_storage_url(storage_url)
77
+
78
+ if __name__ == "__main__":
79
+ asyncio.run(main())