""" Utility functions for multi-modal interactions including text processing, voice recognition and handwriting recognition for the TutorX MCP server. """ from typing import Dict, Any, List, Optional import base64 import json from datetime import datetime def process_text_query(query: str, context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]: """ Process a text query from the student Args: query: The text query from the student context: Optional context about the student and current session Returns: Processed response """ # In a real implementation, this would use NLP to understand the query # and generate an appropriate response # Simple keyword-based response for demonstration keywords = { "solve": { "type": "math_solution", "response": "To solve this equation, first isolate the variable by..." }, "what is": { "type": "definition", "response": "This concept refers to..." }, "how do i": { "type": "procedure", "response": "Follow these steps: 1)..." }, "help": { "type": "assistance", "response": "I'm here to help! You can ask me questions about..." } } for key, value in keywords.items(): if key in query.lower(): return { "query": query, "response_type": value["type"], "response": value["response"], "confidence": 0.85, "timestamp": datetime.now().isoformat() } # Default response if no keywords match return { "query": query, "response_type": "general", "response": "That's an interesting question. Let me think about how to help you with that.", "confidence": 0.6, "timestamp": datetime.now().isoformat() } def process_voice_input(audio_data_base64: str) -> Dict[str, Any]: """ Process voice input from the student Args: audio_data_base64: Base64 encoded audio data Returns: Transcription and analysis """ # In a real implementation, this would use ASR to transcribe the audio # and then process the transcribed text # For demonstration purposes, we'll simulate a transcription return { "transcription": "What is the quadratic formula?", "confidence": 0.92, "detected_emotions": { "confusion": 0.7, "interest": 0.9, "frustration": 0.2 }, "audio_quality": "good", "background_noise": "low", "timestamp": datetime.now().isoformat() } def process_handwriting(image_data_base64: str) -> Dict[str, Any]: """ Process handwritten input from the student Args: image_data_base64: Base64 encoded image data of handwriting Returns: Transcription and analysis """ # In a real implementation, this would use OCR/handwriting recognition # to transcribe the handwritten text or equations # For demonstration purposes, we'll simulate a transcription return { "transcription": "x^2 + 5x + 6 = 0", "confidence": 0.85, "detected_content_type": "math_equation", "equation_type": "quadratic", "parsed_latex": "x^2 + 5x + 6 = 0", "timestamp": datetime.now().isoformat() } def generate_speech_response(text: str, voice_params: Optional[Dict[str, Any]] = None) -> Dict[str, Any]: """ Generate speech response from text Args: text: The text to convert to speech voice_params: Parameters for the voice (gender, age, accent, etc.) Returns: Speech data and metadata """ # In a real implementation, this would use TTS to generate audio # For demonstration, we'll simulate audio generation metadata return { "text": text, "audio_format": "mp3", "audio_data_base64": "SIMULATED_BASE64_AUDIO_DATA", "voice_id": voice_params.get("voice_id", "default"), "duration_seconds": len(text) / 15, # Rough estimate of speech duration "sample_rate": 24000, "timestamp": datetime.now().isoformat() }