# MCP Python SDK
Python implementation of the Model Context Protocol (MCP) [![PyPI][pypi-badge]][pypi-url] [![MIT licensed][mit-badge]][mit-url] [![Python Version][python-badge]][python-url] [![Documentation][docs-badge]][docs-url] [![Specification][spec-badge]][spec-url] [![GitHub Discussions][discussions-badge]][discussions-url]
## Table of Contents - [MCP Python SDK](#mcp-python-sdk) - [Overview](#overview) - [Installation](#installation) - [Adding MCP to your python project](#adding-mcp-to-your-python-project) - [Running the standalone MCP development tools](#running-the-standalone-mcp-development-tools) - [Quickstart](#quickstart) - [What is MCP?](#what-is-mcp) - [Core Concepts](#core-concepts) - [Server](#server) - [Resources](#resources) - [Tools](#tools) - [Prompts](#prompts) - [Images](#images) - [Context](#context) - [Running Your Server](#running-your-server) - [Development Mode](#development-mode) - [Claude Desktop Integration](#claude-desktop-integration) - [Direct Execution](#direct-execution) - [Mounting to an Existing ASGI Server](#mounting-to-an-existing-asgi-server) - [Examples](#examples) - [Echo Server](#echo-server) - [SQLite Explorer](#sqlite-explorer) - [Advanced Usage](#advanced-usage) - [Low-Level Server](#low-level-server) - [Writing MCP Clients](#writing-mcp-clients) - [MCP Primitives](#mcp-primitives) - [Server Capabilities](#server-capabilities) - [Documentation](#documentation) - [Contributing](#contributing) - [License](#license) [pypi-badge]: https://img.shields.io/pypi/v/mcp.svg [pypi-url]: https://pypi.org/project/mcp/ [mit-badge]: https://img.shields.io/pypi/l/mcp.svg [mit-url]: https://github.com/modelcontextprotocol/python-sdk/blob/main/LICENSE [python-badge]: https://img.shields.io/pypi/pyversions/mcp.svg [python-url]: https://www.python.org/downloads/ [docs-badge]: https://img.shields.io/badge/docs-modelcontextprotocol.io-blue.svg [docs-url]: https://modelcontextprotocol.io [spec-badge]: https://img.shields.io/badge/spec-spec.modelcontextprotocol.io-blue.svg [spec-url]: https://spec.modelcontextprotocol.io [discussions-badge]: https://img.shields.io/github/discussions/modelcontextprotocol/python-sdk [discussions-url]: https://github.com/modelcontextprotocol/python-sdk/discussions ## Overview The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to: - Build MCP clients that can connect to any MCP server - Create MCP servers that expose resources, prompts and tools - Use standard transports like stdio, SSE, and Streamable HTTP - Handle all MCP protocol messages and lifecycle events ## Installation ### Adding MCP to your python project We recommend using [uv](https://docs.astral.sh/uv/) to manage your Python projects. If you haven't created a uv-managed project yet, create one: ```bash uv init mcp-server-demo cd mcp-server-demo ``` Then add MCP to your project dependencies: ```bash uv add "mcp[cli]" ``` Alternatively, for projects using pip for dependencies: ```bash pip install "mcp[cli]" ``` ### Running the standalone MCP development tools To run the mcp command with uv: ```bash uv run mcp ``` ## Quickstart Let's create a simple MCP server that exposes a calculator tool and some data: ```python # server.py from mcp.server.fastmcp import FastMCP # Create an MCP server mcp = FastMCP("Demo") # Add an addition tool @mcp.tool() def add(a: int, b: int) -> int: """Add two numbers""" return a + b # Add a dynamic greeting resource @mcp.resource("greeting://{name}") def get_greeting(name: str) -> str: """Get a personalized greeting""" return f"Hello, {name}!" ``` You can install this server in [Claude Desktop](https://claude.ai/download) and interact with it right away by running: ```bash mcp install server.py ``` Alternatively, you can test it with the MCP Inspector: ```bash mcp dev server.py ``` ## What is MCP? The [Model Context Protocol (MCP)](https://modelcontextprotocol.io) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can: - Expose data through **Resources** (think of these sort of like GET endpoints; they are used to load information into the LLM's context) - Provide functionality through **Tools** (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect) - Define interaction patterns through **Prompts** (reusable templates for LLM interactions) - And more! ## Core Concepts ### Server The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing: ```python # Add lifespan support for startup/shutdown with strong typing from contextlib import asynccontextmanager from collections.abc import AsyncIterator from dataclasses import dataclass from fake_database import Database # Replace with your actual DB type from mcp.server.fastmcp import FastMCP # Create a named server mcp = FastMCP("My App") # Specify dependencies for deployment and development mcp = FastMCP("My App", dependencies=["pandas", "numpy"]) @dataclass class AppContext: db: Database @asynccontextmanager async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]: """Manage application lifecycle with type-safe context""" # Initialize on startup db = await Database.connect() try: yield AppContext(db=db) finally: # Cleanup on shutdown await db.disconnect() # Pass lifespan to server mcp = FastMCP("My App", lifespan=app_lifespan) # Access type-safe lifespan context in tools @mcp.tool() def query_db() -> str: """Tool that uses initialized resources""" ctx = mcp.get_context() db = ctx.request_context.lifespan_context["db"] return db.query() ``` ### Resources Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects: ```python from mcp.server.fastmcp import FastMCP mcp = FastMCP("My App") @mcp.resource("config://app") def get_config() -> str: """Static configuration data""" return "App configuration here" @mcp.resource("users://{user_id}/profile") def get_user_profile(user_id: str) -> str: """Dynamic user data""" return f"Profile data for user {user_id}" ``` ### Tools Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects: ```python import httpx from mcp.server.fastmcp import FastMCP mcp = FastMCP("My App") @mcp.tool() def calculate_bmi(weight_kg: float, height_m: float) -> float: """Calculate BMI given weight in kg and height in meters""" return weight_kg / (height_m**2) @mcp.tool() async def fetch_weather(city: str) -> str: """Fetch current weather for a city""" async with httpx.AsyncClient() as client: response = await client.get(f"https://api.weather.com/{city}") return response.text ``` ### Prompts Prompts are reusable templates that help LLMs interact with your server effectively: ```python from mcp.server.fastmcp import FastMCP from mcp.server.fastmcp.prompts import base mcp = FastMCP("My App") @mcp.prompt() def review_code(code: str) -> str: return f"Please review this code:\n\n{code}" @mcp.prompt() def debug_error(error: str) -> list[base.Message]: return [ base.UserMessage("I'm seeing this error:"), base.UserMessage(error), base.AssistantMessage("I'll help debug that. What have you tried so far?"), ] ``` ### Images FastMCP provides an `Image` class that automatically handles image data: ```python from mcp.server.fastmcp import FastMCP, Image from PIL import Image as PILImage mcp = FastMCP("My App") @mcp.tool() def create_thumbnail(image_path: str) -> Image: """Create a thumbnail from an image""" img = PILImage.open(image_path) img.thumbnail((100, 100)) return Image(data=img.tobytes(), format="png") ``` ### Context The Context object gives your tools and resources access to MCP capabilities: ```python from mcp.server.fastmcp import FastMCP, Context mcp = FastMCP("My App") @mcp.tool() async def long_task(files: list[str], ctx: Context) -> str: """Process multiple files with progress tracking""" for i, file in enumerate(files): ctx.info(f"Processing {file}") await ctx.report_progress(i, len(files)) data, mime_type = await ctx.read_resource(f"file://{file}") return "Processing complete" ``` ### Authentication Authentication can be used by servers that want to expose tools accessing protected resources. `mcp.server.auth` implements an OAuth 2.0 server interface, which servers can use by providing an implementation of the `OAuthAuthorizationServerProvider` protocol. ```python from mcp import FastMCP from mcp.server.auth.provider import OAuthAuthorizationServerProvider from mcp.server.auth.settings import ( AuthSettings, ClientRegistrationOptions, RevocationOptions, ) class MyOAuthServerProvider(OAuthAuthorizationServerProvider): # See an example on how to implement at `examples/servers/simple-auth` ... mcp = FastMCP( "My App", auth_server_provider=MyOAuthServerProvider(), auth=AuthSettings( issuer_url="https://myapp.com", revocation_options=RevocationOptions( enabled=True, ), client_registration_options=ClientRegistrationOptions( enabled=True, valid_scopes=["myscope", "myotherscope"], default_scopes=["myscope"], ), required_scopes=["myscope"], ), ) ``` See [OAuthAuthorizationServerProvider](src/mcp/server/auth/provider.py) for more details. ## Running Your Server ### Development Mode The fastest way to test and debug your server is with the MCP Inspector: ```bash mcp dev server.py # Add dependencies mcp dev server.py --with pandas --with numpy # Mount local code mcp dev server.py --with-editable . ``` ### Claude Desktop Integration Once your server is ready, install it in Claude Desktop: ```bash mcp install server.py # Custom name mcp install server.py --name "My Analytics Server" # Environment variables mcp install server.py -v API_KEY=abc123 -v DB_URL=postgres://... mcp install server.py -f .env ``` ### Direct Execution For advanced scenarios like custom deployments: ```python from mcp.server.fastmcp import FastMCP mcp = FastMCP("My App") if __name__ == "__main__": mcp.run() ``` Run it with: ```bash python server.py # or mcp run server.py ``` Note that `mcp run` or `mcp dev` only supports server using FastMCP and not the low-level server variant. ### Streamable HTTP Transport > **Note**: Streamable HTTP transport is superseding SSE transport for production deployments. ```python from mcp.server.fastmcp import FastMCP # Stateful server (maintains session state) mcp = FastMCP("StatefulServer") # Stateless server (no session persistence) mcp = FastMCP("StatelessServer", stateless_http=True) # Stateless server (no session persistence, no sse stream with supported client) mcp = FastMCP("StatelessServer", stateless_http=True, json_response=True) # Run server with streamable_http transport mcp.run(transport="streamable-http") ``` You can mount multiple FastMCP servers in a FastAPI application: ```python # echo.py from mcp.server.fastmcp import FastMCP mcp = FastMCP(name="EchoServer", stateless_http=True) @mcp.tool(description="A simple echo tool") def echo(message: str) -> str: return f"Echo: {message}" ``` ```python # math.py from mcp.server.fastmcp import FastMCP mcp = FastMCP(name="MathServer", stateless_http=True) @mcp.tool(description="A simple add tool") def add_two(n: int) -> int: return n + 2 ``` ```python # main.py import contextlib from fastapi import FastAPI from mcp.echo import echo from mcp.math import math # Create a combined lifespan to manage both session managers @contextlib.asynccontextmanager async def lifespan(app: FastAPI): async with contextlib.AsyncExitStack() as stack: await stack.enter_async_context(echo.mcp.session_manager.run()) await stack.enter_async_context(math.mcp.session_manager.run()) yield app = FastAPI(lifespan=lifespan) app.mount("/echo", echo.mcp.streamable_http_app()) app.mount("/math", math.mcp.streamable_http_app()) ``` For low level server with Streamable HTTP implementations, see: - Stateful server: [`examples/servers/simple-streamablehttp/`](examples/servers/simple-streamablehttp/) - Stateless server: [`examples/servers/simple-streamablehttp-stateless/`](examples/servers/simple-streamablehttp-stateless/) The streamable HTTP transport supports: - Stateful and stateless operation modes - Resumability with event stores - JSON or SSE response formats - Better scalability for multi-node deployments ### Mounting to an Existing ASGI Server > **Note**: SSE transport is being superseded by [Streamable HTTP transport](https://modelcontextprotocol.io/specification/2025-03-26/basic/transports#streamable-http). By default, SSE servers are mounted at `/sse` and Streamable HTTP servers are mounted at `/mcp`. You can customize these paths using the methods described below. You can mount the SSE server to an existing ASGI server using the `sse_app` method. This allows you to integrate the SSE server with other ASGI applications. ```python from starlette.applications import Starlette from starlette.routing import Mount, Host from mcp.server.fastmcp import FastMCP mcp = FastMCP("My App") # Mount the SSE server to the existing ASGI server app = Starlette( routes=[ Mount('/', app=mcp.sse_app()), ] ) # or dynamically mount as host app.router.routes.append(Host('mcp.acme.corp', app=mcp.sse_app())) ``` When mounting multiple MCP servers under different paths, you can configure the mount path in several ways: ```python from starlette.applications import Starlette from starlette.routing import Mount from mcp.server.fastmcp import FastMCP # Create multiple MCP servers github_mcp = FastMCP("GitHub API") browser_mcp = FastMCP("Browser") curl_mcp = FastMCP("Curl") search_mcp = FastMCP("Search") # Method 1: Configure mount paths via settings (recommended for persistent configuration) github_mcp.settings.mount_path = "/github" browser_mcp.settings.mount_path = "/browser" # Method 2: Pass mount path directly to sse_app (preferred for ad-hoc mounting) # This approach doesn't modify the server's settings permanently # Create Starlette app with multiple mounted servers app = Starlette( routes=[ # Using settings-based configuration Mount("/github", app=github_mcp.sse_app()), Mount("/browser", app=browser_mcp.sse_app()), # Using direct mount path parameter Mount("/curl", app=curl_mcp.sse_app("/curl")), Mount("/search", app=search_mcp.sse_app("/search")), ] ) # Method 3: For direct execution, you can also pass the mount path to run() if __name__ == "__main__": search_mcp.run(transport="sse", mount_path="/search") ``` For more information on mounting applications in Starlette, see the [Starlette documentation](https://www.starlette.io/routing/#submounting-routes). ## Examples ### Echo Server A simple server demonstrating resources, tools, and prompts: ```python from mcp.server.fastmcp import FastMCP mcp = FastMCP("Echo") @mcp.resource("echo://{message}") def echo_resource(message: str) -> str: """Echo a message as a resource""" return f"Resource echo: {message}" @mcp.tool() def echo_tool(message: str) -> str: """Echo a message as a tool""" return f"Tool echo: {message}" @mcp.prompt() def echo_prompt(message: str) -> str: """Create an echo prompt""" return f"Please process this message: {message}" ``` ### SQLite Explorer A more complex example showing database integration: ```python import sqlite3 from mcp.server.fastmcp import FastMCP mcp = FastMCP("SQLite Explorer") @mcp.resource("schema://main") def get_schema() -> str: """Provide the database schema as a resource""" conn = sqlite3.connect("database.db") schema = conn.execute("SELECT sql FROM sqlite_master WHERE type='table'").fetchall() return "\n".join(sql[0] for sql in schema if sql[0]) @mcp.tool() def query_data(sql: str) -> str: """Execute SQL queries safely""" conn = sqlite3.connect("database.db") try: result = conn.execute(sql).fetchall() return "\n".join(str(row) for row in result) except Exception as e: return f"Error: {str(e)}" ``` ## Advanced Usage ### Low-Level Server For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server, including lifecycle management through the lifespan API: ```python from contextlib import asynccontextmanager from collections.abc import AsyncIterator from fake_database import Database # Replace with your actual DB type from mcp.server import Server @asynccontextmanager async def server_lifespan(server: Server) -> AsyncIterator[dict]: """Manage server startup and shutdown lifecycle.""" # Initialize resources on startup db = await Database.connect() try: yield {"db": db} finally: # Clean up on shutdown await db.disconnect() # Pass lifespan to server server = Server("example-server", lifespan=server_lifespan) # Access lifespan context in handlers @server.call_tool() async def query_db(name: str, arguments: dict) -> list: ctx = server.request_context db = ctx.lifespan_context["db"] return await db.query(arguments["query"]) ``` The lifespan API provides: - A way to initialize resources when the server starts and clean them up when it stops - Access to initialized resources through the request context in handlers - Type-safe context passing between lifespan and request handlers ```python import mcp.server.stdio import mcp.types as types from mcp.server.lowlevel import NotificationOptions, Server from mcp.server.models import InitializationOptions # Create a server instance server = Server("example-server") @server.list_prompts() async def handle_list_prompts() -> list[types.Prompt]: return [ types.Prompt( name="example-prompt", description="An example prompt template", arguments=[ types.PromptArgument( name="arg1", description="Example argument", required=True ) ], ) ] @server.get_prompt() async def handle_get_prompt( name: str, arguments: dict[str, str] | None ) -> types.GetPromptResult: if name != "example-prompt": raise ValueError(f"Unknown prompt: {name}") return types.GetPromptResult( description="Example prompt", messages=[ types.PromptMessage( role="user", content=types.TextContent(type="text", text="Example prompt text"), ) ], ) async def run(): async with mcp.server.stdio.stdio_server() as (read_stream, write_stream): await server.run( read_stream, write_stream, InitializationOptions( server_name="example", server_version="0.1.0", capabilities=server.get_capabilities( notification_options=NotificationOptions(), experimental_capabilities={}, ), ), ) if __name__ == "__main__": import asyncio asyncio.run(run()) ``` Caution: The `mcp run` and `mcp dev` tool doesn't support low-level server. ### Writing MCP Clients The SDK provides a high-level client interface for connecting to MCP servers using various [transports](https://modelcontextprotocol.io/specification/2025-03-26/basic/transports): ```python from mcp import ClientSession, StdioServerParameters, types from mcp.client.stdio import stdio_client # Create server parameters for stdio connection server_params = StdioServerParameters( command="python", # Executable args=["example_server.py"], # Optional command line arguments env=None, # Optional environment variables ) # Optional: create a sampling callback async def handle_sampling_message( message: types.CreateMessageRequestParams, ) -> types.CreateMessageResult: return types.CreateMessageResult( role="assistant", content=types.TextContent( type="text", text="Hello, world! from model", ), model="gpt-3.5-turbo", stopReason="endTurn", ) async def run(): async with stdio_client(server_params) as (read, write): async with ClientSession( read, write, sampling_callback=handle_sampling_message ) as session: # Initialize the connection await session.initialize() # List available prompts prompts = await session.list_prompts() # Get a prompt prompt = await session.get_prompt( "example-prompt", arguments={"arg1": "value"} ) # List available resources resources = await session.list_resources() # List available tools tools = await session.list_tools() # Read a resource content, mime_type = await session.read_resource("file://some/path") # Call a tool result = await session.call_tool("tool-name", arguments={"arg1": "value"}) if __name__ == "__main__": import asyncio asyncio.run(run()) ``` Clients can also connect using [Streamable HTTP transport](https://modelcontextprotocol.io/specification/2025-03-26/basic/transports#streamable-http): ```python from mcp.client.streamable_http import streamablehttp_client from mcp import ClientSession async def main(): # Connect to a streamable HTTP server async with streamablehttp_client("example/mcp") as ( read_stream, write_stream, _, ): # Create a session using the client streams async with ClientSession(read_stream, write_stream) as session: # Initialize the connection await session.initialize() # Call a tool tool_result = await session.call_tool("echo", {"message": "hello"}) ``` ### OAuth Authentication for Clients The SDK includes [authorization support](https://modelcontextprotocol.io/specification/2025-03-26/basic/authorization) for connecting to protected MCP servers: ```python from mcp.client.auth import OAuthClientProvider, TokenStorage from mcp.client.session import ClientSession from mcp.client.streamable_http import streamablehttp_client from mcp.shared.auth import OAuthClientInformationFull, OAuthClientMetadata, OAuthToken class CustomTokenStorage(TokenStorage): """Simple in-memory token storage implementation.""" async def get_tokens(self) -> OAuthToken | None: pass async def set_tokens(self, tokens: OAuthToken) -> None: pass async def get_client_info(self) -> OAuthClientInformationFull | None: pass async def set_client_info(self, client_info: OAuthClientInformationFull) -> None: pass async def main(): # Set up OAuth authentication oauth_auth = OAuthClientProvider( server_url="https://api.example.com", client_metadata=OAuthClientMetadata( client_name="My Client", redirect_uris=["http://localhost:3000/callback"], grant_types=["authorization_code", "refresh_token"], response_types=["code"], ), storage=CustomTokenStorage(), redirect_handler=lambda url: print(f"Visit: {url}"), callback_handler=lambda: ("auth_code", None), ) # Use with streamable HTTP client async with streamablehttp_client( "https://api.example.com/mcp", auth=oauth_auth ) as (read, write, _): async with ClientSession(read, write) as session: await session.initialize() # Authenticated session ready ``` For a complete working example, see [`examples/clients/simple-auth-client/`](examples/clients/simple-auth-client/). ### MCP Primitives The MCP protocol defines three core primitives that servers can implement: | Primitive | Control | Description | Example Use | |-----------|-----------------------|-----------------------------------------------------|------------------------------| | Prompts | User-controlled | Interactive templates invoked by user choice | Slash commands, menu options | | Resources | Application-controlled| Contextual data managed by the client application | File contents, API responses | | Tools | Model-controlled | Functions exposed to the LLM to take actions | API calls, data updates | ### Server Capabilities MCP servers declare capabilities during initialization: | Capability | Feature Flag | Description | |-------------|------------------------------|------------------------------------| | `prompts` | `listChanged` | Prompt template management | | `resources` | `subscribe`
`listChanged`| Resource exposure and updates | | `tools` | `listChanged` | Tool discovery and execution | | `logging` | - | Server logging configuration | | `completion`| - | Argument completion suggestions | ## Documentation - [Model Context Protocol documentation](https://modelcontextprotocol.io) - [Model Context Protocol specification](https://spec.modelcontextprotocol.io) - [Officially supported servers](https://github.com/modelcontextprotocol/servers) ## Contributing We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the [contributing guide](CONTRIBUTING.md) to get started. ## License This project is licensed under the MIT License - see the LICENSE file for details.