""" Concept-related MCP tools for TutorX. """ import random from typing import Dict, Any, Optional from datetime import datetime, timezone import sys import os from pathlib import Path import json import re # Add the parent directory to the Python path current_dir = Path(__file__).parent parent_dir = current_dir.parent.parent sys.path.insert(0, str(parent_dir)) # Import from local resources try: from resources.concept_graph import get_concept, get_all_concepts except ImportError: # Fallback for when running from different contexts def get_concept(concept_id): return {"id": concept_id, "name": concept_id.replace("_", " ").title(), "description": f"Description for {concept_id}"} def get_all_concepts(): return { "algebra_basics": {"id": "algebra_basics", "name": "Algebra Basics", "description": "Basic algebraic concepts"}, "linear_equations": {"id": "linear_equations", "name": "Linear Equations", "description": "Solving linear equations"} } # Import MCP from mcp_server.mcp_instance import mcp from mcp_server.model.gemini_flash import GeminiFlash MODEL = GeminiFlash() def clean_json_trailing_commas(json_text: str) -> str: return re.sub(r',([ \t\r\n]*[}}\]])', r'\1', json_text) def extract_json_from_text(text: str): if not text or not isinstance(text, str): return None # Remove code fences text = re.sub(r'^\s*```(?:json)?\s*', '', text, flags=re.IGNORECASE) text = re.sub(r'\s*```\s*$', '', text, flags=re.IGNORECASE) text = text.strip() # Remove trailing commas cleaned = clean_json_trailing_commas(text) return json.loads(cleaned) @mcp.tool() async def get_concept_tool(concept_id: str = None) -> dict: """ Get a specific concept or all concepts from the knowledge graph, fully LLM-driven. If a concept_id is provided, use Gemini to generate a JSON object with explanation, key points, and example. """ if not concept_id: return {"error": "concept_id is required for LLM-driven mode"} prompt = ( f"Explain the concept '{concept_id}' in detail. " f"Return a JSON object with fields: explanation (string), key_points (list of strings), and example (string)." ) llm_response = await MODEL.generate_text(prompt) try: data = extract_json_from_text(llm_response) except Exception: data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"} return data @mcp.tool() async def assess_skill_tool(student_id: str, concept_id: str) -> dict: """ Assess a student's understanding of a specific concept, fully LLM-driven. Use Gemini to generate a JSON object with a score (0-1), feedback, and recommendations. """ prompt = ( f"A student (ID: {student_id}) is being assessed on the concept '{concept_id}'. " f"Generate a JSON object with: score (float 0-1), feedback (string), and recommendations (list of strings)." ) llm_response = await MODEL.generate_text(prompt) try: data = extract_json_from_text(llm_response) except Exception: data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"} return data