""" Text interaction and submission checking tools for TutorX. """ import re from difflib import SequenceMatcher from typing import Dict, Any, List, Optional from mcp_server.mcp_instance import mcp from mcp_server.model.gemini_flash import GeminiFlash import json MODEL = GeminiFlash() def calculate_similarity(text1: str, text2: str) -> float: """Calculate the similarity ratio between two texts.""" return 0.0 # No longer used, LLM-driven def clean_json_trailing_commas(json_text: str) -> str: return re.sub(r',([ \t\r\n]*[}}\]])', r'\1', json_text) def extract_json_from_text(text: str): if not text or not isinstance(text, str): return None # Remove code fences text = re.sub(r'^\s*```(?:json)?\s*', '', text, flags=re.IGNORECASE) text = re.sub(r'\s*```\s*$', '', text, flags=re.IGNORECASE) text = text.strip() # Remove trailing commas cleaned = clean_json_trailing_commas(text) return json.loads(cleaned) @mcp.tool() async def text_interaction(query: str, student_id: str) -> dict: """ Process a text query from a student and provide an educational response, fully LLM-driven. Use Gemini to generate a JSON object with a response and suggested actions/resources. """ prompt = ( f"A student (ID: {student_id}) asked: '{query}'. " f"Return a JSON object with fields: response (string), suggested_actions (list of strings), and suggested_resources (list of strings)." ) llm_response = await MODEL.generate_text(prompt) try: data = extract_json_from_text(llm_response) except Exception: data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"} return data @mcp.tool() async def check_submission_originality(submission: str, reference_sources: list) -> dict: """ Check a student's submission for potential plagiarism, fully LLM-driven. Use Gemini to generate a JSON object with originality_score (0-1), is_original (bool), and recommendations (list of strings). """ prompt = ( f"Given the following student submission: '{submission}' and reference sources: {reference_sources}, " f"return a JSON object with fields: originality_score (float 0-1), is_original (bool), and recommendations (list of strings)." ) llm_response = await MODEL.generate_text(prompt) try: data = extract_json_from_text(llm_response) except Exception: data = {"llm_raw": llm_response, "error": "Failed to parse LLM output as JSON"} return data