Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,9 +9,26 @@ from PIL import Image
|
|
| 9 |
import base64
|
| 10 |
from io import BytesIO
|
| 11 |
import os
|
|
|
|
|
|
|
|
|
|
| 12 |
import requests
|
| 13 |
import gradio as gr
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from langchain_core.prompts import ChatPromptTemplate
|
| 16 |
from langchain_core.output_parsers import StrOutputParser
|
| 17 |
from langchain_core.runnables import RunnableSequence, RunnableLambda
|
|
@@ -27,21 +44,30 @@ from PyPDF2 import PdfReader
|
|
| 27 |
from nltk.tokenize import sent_tokenize
|
| 28 |
from sqlalchemy import create_engine
|
| 29 |
from sqlalchemy.sql import text
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
nltk.download('punkt')
|
| 33 |
|
| 34 |
open_api_key_token = os.environ['OPEN_AI_API']
|
| 35 |
|
| 36 |
os.environ['OPENAI_API_KEY'] = open_api_key_token
|
|
|
|
|
|
|
| 37 |
db_uri = 'postgresql+psycopg2://postgres:[email protected]:5432/warehouseAi'
|
| 38 |
# Database setup
|
| 39 |
|
| 40 |
db = SQLDatabase.from_uri(db_uri)
|
| 41 |
|
| 42 |
# LLM setup
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
def get_schema(_):
|
| 47 |
schema_info = db.get_table_info() # This should be a string of your SQL schema
|
|
@@ -69,7 +95,7 @@ def generate_sql_query(question):
|
|
| 69 |
def run_query(query):
|
| 70 |
# Clean the query by removing markdown symbols and trimming whitespace
|
| 71 |
clean_query = query.replace("```sql", "").replace("```", "").strip()
|
| 72 |
-
|
| 73 |
try:
|
| 74 |
result = db.run(clean_query)
|
| 75 |
return result
|
|
@@ -83,7 +109,7 @@ def run_query(query):
|
|
| 83 |
def database_tool(question):
|
| 84 |
# print(question)
|
| 85 |
sql_query = generate_sql_query(question)
|
| 86 |
-
|
| 87 |
return run_query(sql_query)
|
| 88 |
|
| 89 |
def get_ASN_data(question):
|
|
@@ -149,7 +175,7 @@ def create_vector_store(texts):
|
|
| 149 |
|
| 150 |
def query_vector_store(vector_store, query):
|
| 151 |
docs = vector_store.similarity_search(query, k=5)
|
| 152 |
-
|
| 153 |
return docs
|
| 154 |
|
| 155 |
def summarize_document(docs):
|
|
@@ -167,13 +193,12 @@ def summarize_document(docs):
|
|
| 167 |
summarized_content = doc_content
|
| 168 |
summarized_docs.append(summarized_content)
|
| 169 |
return '\n\n'.join(summarized_docs)
|
| 170 |
-
|
| 171 |
-
#pdf_path = r"D:\rajesh\python\chat_agent\Inbound.pdf"
|
| 172 |
texts = load_and_split_pdf(pdf_path)
|
| 173 |
vector_store = create_vector_store(texts)
|
| 174 |
|
| 175 |
def document_data_tool(question):
|
| 176 |
-
|
| 177 |
# query_string = question['tags'][0] if 'tags' in question and question['tags'] else ""
|
| 178 |
query_response = query_vector_store(vector_store, question)
|
| 179 |
print("query****")
|
|
@@ -182,6 +207,45 @@ def document_data_tool(question):
|
|
| 182 |
#print("summary***")
|
| 183 |
#print(summarized_response)
|
| 184 |
return query_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
def make_api_request(url, params):
|
| 187 |
import requests
|
|
@@ -203,26 +267,23 @@ apis = [
|
|
| 203 |
"url": "http://193.203.162.39:9090/nxt-wms/userWarehouse/fetchWarehouseForUserId?",
|
| 204 |
"params": {"query": name, "userId": "164"}
|
| 205 |
},
|
| 206 |
-
|
| 207 |
-
{
|
| 208 |
-
"url": "http://193.203.162.39:9090/nxt-wms/userCustomer/fetchCustomerForUserId?",
|
| 209 |
-
"params": {"query": "TESTING 123", "userId": "164", "status": "Active"}
|
| 210 |
-
},
|
| 211 |
#Stock summary based on warehouse id
|
| 212 |
{
|
| 213 |
"url": "http://193.203.162.39:9090/nxt-wms/transactionHistory/stockSummary?",
|
| 214 |
-
"params": {"branchId": "343", "onDate": "2024-08-
|
| 215 |
}
|
| 216 |
]
|
| 217 |
|
| 218 |
def inventory_report(question):
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
name = question.split(":")[0]
|
| 222 |
-
#print(question)
|
| 223 |
-
question = question.split(":")[1]
|
| 224 |
-
#print(name)
|
| 225 |
-
import requests
|
| 226 |
|
| 227 |
data = make_api_request(apis[0]["url"], apis[0]["params"])
|
| 228 |
if data:
|
|
@@ -236,11 +297,8 @@ def inventory_report(question):
|
|
| 236 |
if "warehouseId" in api["params"]:
|
| 237 |
api["params"]["warehouseId"] = warehouse_id
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
data1 = make_api_request(apis[2]["url"], apis[2]["params"])
|
| 242 |
-
#if data1:
|
| 243 |
-
#print(data1)
|
| 244 |
|
| 245 |
from tabulate import tabulate
|
| 246 |
|
|
@@ -268,22 +326,25 @@ def inventory_report(question):
|
|
| 268 |
table_data.append(row)
|
| 269 |
|
| 270 |
|
| 271 |
-
|
| 272 |
-
#print(tabulate(table_data, headers=headers, tablefmt="grid"))
|
| 273 |
-
|
| 274 |
-
# Convert to pandas DataFrame
|
| 275 |
-
import pandas as pd
|
| 276 |
df = pd.DataFrame(table_data, columns=headers)
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
#open api key
|
| 281 |
-
import openai
|
| 282 |
-
|
| 283 |
-
llm = OpenAI()
|
| 284 |
-
sdf = SmartDataframe(df, config={"llm": llm})
|
| 285 |
#chart = sdf.chat("Can you draw a bar chart with all avaialble item name and quantity.")
|
| 286 |
chart = sdf.chat(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
return chart
|
| 288 |
#inventory_report("WH:can you give me a bar chart with item name and quantity for the warehouse WH")
|
| 289 |
|
|
@@ -325,7 +386,19 @@ tools = [
|
|
| 325 |
name="dataVisualization",
|
| 326 |
args_schema=QueryInput,
|
| 327 |
output_schema=QueryOutput,
|
| 328 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
)
|
| 330 |
]
|
| 331 |
|
|
@@ -342,25 +415,71 @@ llm = llm.bind()
|
|
| 342 |
agent = create_tool_calling_agent(llm, tools, ChatPromptTemplate.from_template(prompt_template))
|
| 343 |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
| 344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
# Define the interface function
|
| 346 |
max_iterations = 5
|
| 347 |
iterations = 0
|
| 348 |
|
| 349 |
-
def answer_question(user_question,chatbot):
|
| 350 |
global iterations
|
| 351 |
iterations = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
while iterations < max_iterations:
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
if iterations == max_iterations:
|
| 366 |
return "The agent could not generate a valid response within the iteration limit."
|
|
@@ -378,7 +497,18 @@ def answer_question(user_question,chatbot):
|
|
| 378 |
#image = gr.Image(value=img_str)
|
| 379 |
chatbot.append((user_question,img))
|
| 380 |
#print(chatbot)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
return gr.update(value=chatbot)
|
|
|
|
| 382 |
|
| 383 |
#return [(user_question,gr.Image("/home/user/app/exports/charts/temp_chart.png"))]
|
| 384 |
# return "/home/user/app/exports/charts/temp_chart.png"
|
|
@@ -432,6 +562,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 432 |
with gr.Row():
|
| 433 |
with gr.Column(scale=1):
|
| 434 |
message = gr.Textbox(show_label=False)
|
|
|
|
| 435 |
with gr.Column(scale=1):
|
| 436 |
with gr.Row():
|
| 437 |
button = gr.Button("Submit", elem_classes="gr-button")
|
|
@@ -458,3 +589,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 458 |
|
| 459 |
|
| 460 |
demo.launch()
|
|
|
|
|
|
| 9 |
import base64
|
| 10 |
from io import BytesIO
|
| 11 |
import os
|
| 12 |
+
import re
|
| 13 |
+
import tempfile
|
| 14 |
+
import wave
|
| 15 |
import requests
|
| 16 |
import gradio as gr
|
| 17 |
+
import time
|
| 18 |
+
import shutil
|
| 19 |
+
import json
|
| 20 |
+
import nltk
|
| 21 |
+
#audio package
|
| 22 |
+
import speech_recognition as sr
|
| 23 |
+
from pydub import AudioSegment
|
| 24 |
+
from pydub.playback import play
|
| 25 |
+
#email library
|
| 26 |
+
import smtplib
|
| 27 |
+
from email.mime.multipart import MIMEMultipart
|
| 28 |
+
from email.mime.text import MIMEText
|
| 29 |
+
from email.mime.base import MIMEBase
|
| 30 |
+
from email import encoders
|
| 31 |
+
#langchain
|
| 32 |
from langchain_core.prompts import ChatPromptTemplate
|
| 33 |
from langchain_core.output_parsers import StrOutputParser
|
| 34 |
from langchain_core.runnables import RunnableSequence, RunnableLambda
|
|
|
|
| 44 |
from nltk.tokenize import sent_tokenize
|
| 45 |
from sqlalchemy import create_engine
|
| 46 |
from sqlalchemy.sql import text
|
| 47 |
+
|
| 48 |
+
#pandas
|
| 49 |
+
import pandas as pd
|
| 50 |
+
from pandasai.llm.openai import OpenAI
|
| 51 |
+
from pandasai import SmartDataframe
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
nltk.download('punkt')
|
| 57 |
|
| 58 |
open_api_key_token = os.environ['OPEN_AI_API']
|
| 59 |
|
| 60 |
os.environ['OPENAI_API_KEY'] = open_api_key_token
|
| 61 |
+
pdf_path="Inbound.pdf"
|
| 62 |
+
|
| 63 |
db_uri = 'postgresql+psycopg2://postgres:[email protected]:5432/warehouseAi'
|
| 64 |
# Database setup
|
| 65 |
|
| 66 |
db = SQLDatabase.from_uri(db_uri)
|
| 67 |
|
| 68 |
# LLM setup
|
| 69 |
+
llm = ChatOpenAI(model="gpt-4o-mini",max_tokens=300,temperature=0.1)
|
| 70 |
+
llm_chart = OpenAI()
|
| 71 |
|
| 72 |
def get_schema(_):
|
| 73 |
schema_info = db.get_table_info() # This should be a string of your SQL schema
|
|
|
|
| 95 |
def run_query(query):
|
| 96 |
# Clean the query by removing markdown symbols and trimming whitespace
|
| 97 |
clean_query = query.replace("```sql", "").replace("```", "").strip()
|
| 98 |
+
print(f"Executing SQL Query: {clean_query}")
|
| 99 |
try:
|
| 100 |
result = db.run(clean_query)
|
| 101 |
return result
|
|
|
|
| 109 |
def database_tool(question):
|
| 110 |
# print(question)
|
| 111 |
sql_query = generate_sql_query(question)
|
| 112 |
+
print(sql_query)
|
| 113 |
return run_query(sql_query)
|
| 114 |
|
| 115 |
def get_ASN_data(question):
|
|
|
|
| 175 |
|
| 176 |
def query_vector_store(vector_store, query):
|
| 177 |
docs = vector_store.similarity_search(query, k=5)
|
| 178 |
+
print(f"Vector store return: {docs}")
|
| 179 |
return docs
|
| 180 |
|
| 181 |
def summarize_document(docs):
|
|
|
|
| 193 |
summarized_content = doc_content
|
| 194 |
summarized_docs.append(summarized_content)
|
| 195 |
return '\n\n'.join(summarized_docs)
|
| 196 |
+
|
|
|
|
| 197 |
texts = load_and_split_pdf(pdf_path)
|
| 198 |
vector_store = create_vector_store(texts)
|
| 199 |
|
| 200 |
def document_data_tool(question):
|
| 201 |
+
print(f"Document data tool enter: {question}")
|
| 202 |
# query_string = question['tags'][0] if 'tags' in question and question['tags'] else ""
|
| 203 |
query_response = query_vector_store(vector_store, question)
|
| 204 |
print("query****")
|
|
|
|
| 207 |
#print("summary***")
|
| 208 |
#print(summarized_response)
|
| 209 |
return query_response
|
| 210 |
+
|
| 211 |
+
def send_email_with_attachment(recipient_email, subject, body, attachment_path):
|
| 212 |
+
sender_email = "[email protected]"
|
| 213 |
+
sender_password = "jymz apyc raih eubg"
|
| 214 |
+
|
| 215 |
+
# Create a multipart message
|
| 216 |
+
msg = MIMEMultipart()
|
| 217 |
+
msg['From'] = sender_email
|
| 218 |
+
msg['To'] = recipient_email
|
| 219 |
+
msg['Subject'] = subject
|
| 220 |
+
|
| 221 |
+
# Attach the body with the msg instance
|
| 222 |
+
msg.attach(MIMEText(body, 'plain'))
|
| 223 |
+
|
| 224 |
+
# Open the file to be sent
|
| 225 |
+
attachment = open(attachment_path, "rb")
|
| 226 |
+
|
| 227 |
+
# Instance of MIMEBase and named as p
|
| 228 |
+
part = MIMEBase('application', 'octet-stream')
|
| 229 |
+
|
| 230 |
+
# To change the payload into encoded form
|
| 231 |
+
part.set_payload((attachment).read())
|
| 232 |
+
|
| 233 |
+
# Encode into base64
|
| 234 |
+
encoders.encode_base64(part)
|
| 235 |
+
|
| 236 |
+
part.add_header('Content-Disposition', f"attachment; filename= {attachment_path}")
|
| 237 |
+
|
| 238 |
+
# Attach the instance 'part' to instance 'msg'
|
| 239 |
+
msg.attach(part)
|
| 240 |
+
|
| 241 |
+
# Create SMTP session for sending the mail
|
| 242 |
+
server = smtplib.SMTP('smtp.gmail.com', 587)
|
| 243 |
+
server.starttls()
|
| 244 |
+
server.login(sender_email, sender_password)
|
| 245 |
+
text = msg.as_string()
|
| 246 |
+
server.sendmail(sender_email, recipient_email, text)
|
| 247 |
+
server.quit()
|
| 248 |
+
#return 1
|
| 249 |
|
| 250 |
def make_api_request(url, params):
|
| 251 |
import requests
|
|
|
|
| 267 |
"url": "http://193.203.162.39:9090/nxt-wms/userWarehouse/fetchWarehouseForUserId?",
|
| 268 |
"params": {"query": name, "userId": "164"}
|
| 269 |
},
|
| 270 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
#Stock summary based on warehouse id
|
| 272 |
{
|
| 273 |
"url": "http://193.203.162.39:9090/nxt-wms/transactionHistory/stockSummary?",
|
| 274 |
+
"params": {"branchId": "343", "onDate": "2024-08-09", "warehouseId" : warehouse_id }
|
| 275 |
}
|
| 276 |
]
|
| 277 |
|
| 278 |
def inventory_report(question):
|
| 279 |
|
| 280 |
+
# Split the question to extract warehouse name, user question, and optional email
|
| 281 |
+
parts = question.split(":", 2)
|
| 282 |
+
name = parts[0].strip()
|
| 283 |
+
user_question = parts[1].strip()
|
| 284 |
+
user_email = parts[2].strip() if len(parts) > 2 else None
|
| 285 |
+
print(f"Warehouse: {name}, Email: {user_email}, Question: {user_question}")
|
| 286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
data = make_api_request(apis[0]["url"], apis[0]["params"])
|
| 289 |
if data:
|
|
|
|
| 297 |
if "warehouseId" in api["params"]:
|
| 298 |
api["params"]["warehouseId"] = warehouse_id
|
| 299 |
|
| 300 |
+
|
| 301 |
+
data1 = make_api_request(apis[1]["url"], apis[1]["params"])
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
from tabulate import tabulate
|
| 304 |
|
|
|
|
| 326 |
table_data.append(row)
|
| 327 |
|
| 328 |
|
| 329 |
+
# Convert to pandas DataFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
df = pd.DataFrame(table_data, columns=headers)
|
| 331 |
+
|
| 332 |
+
sdf = SmartDataframe(df, config={"llm": llm_chart})
|
| 333 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
#chart = sdf.chat("Can you draw a bar chart with all avaialble item name and quantity.")
|
| 335 |
chart = sdf.chat(question)
|
| 336 |
+
|
| 337 |
+
#email send
|
| 338 |
+
if user_email:
|
| 339 |
+
# Send email with the chart image attached
|
| 340 |
+
send_email_with_attachment(
|
| 341 |
+
recipient_email=user_email,
|
| 342 |
+
subject="Warehouse Inventory Report",
|
| 343 |
+
body="Please find the attached bar chart report for the warehouse inventory analysis.",
|
| 344 |
+
#attachment_path=chart_path
|
| 345 |
+
attachment_path="/home/user/app/exports/charts/temp_chart.png"
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
return chart
|
| 349 |
#inventory_report("WH:can you give me a bar chart with item name and quantity for the warehouse WH")
|
| 350 |
|
|
|
|
| 386 |
name="dataVisualization",
|
| 387 |
args_schema=QueryInput,
|
| 388 |
output_schema=QueryOutput,
|
| 389 |
+
description = """
|
| 390 |
+
Tool to generate a visual output (such as a bar chart) for a particular warehouse based on the provided question.
|
| 391 |
+
This tool processes the user question to identify the warehouse name and the specific request. If the user specifies
|
| 392 |
+
an email, include the email in the input. The input format should be: 'warehouse name: user question: email (if any)'.
|
| 393 |
+
The tool generates the requested chart and sends it to the provided email if specified.
|
| 394 |
+
|
| 395 |
+
Examples:
|
| 396 |
+
1. Question without email: "Analyze item name and quantity in a bar chart in warehouse Allcargo Logistics"
|
| 397 |
+
Input to tool: "Allcargo Logistics: I want to analyze item name and quantity in a bar chart"
|
| 398 |
+
|
| 399 |
+
2. Question with email: "Analyze item name and quantity in a bar chart in warehouse Allcargo Logistics report to send email to [email protected]"
|
| 400 |
+
Input to tool: "Allcargo Logistics: I want to analyze item name and quantity in a bar chart: [email protected]"
|
| 401 |
+
"""
|
| 402 |
)
|
| 403 |
]
|
| 404 |
|
|
|
|
| 415 |
agent = create_tool_calling_agent(llm, tools, ChatPromptTemplate.from_template(prompt_template))
|
| 416 |
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
| 417 |
|
| 418 |
+
def ensure_temp_chart_dir():
|
| 419 |
+
temp_chart_dir = "/home/user/app/exports/charts/"
|
| 420 |
+
if not os.path.exists(temp_chart_dir):
|
| 421 |
+
os.makedirs(temp_chart_dir)
|
| 422 |
+
|
| 423 |
+
def clean_gradio_tmp_dir():
|
| 424 |
+
tmp_dir = "/tmp/gradio/"
|
| 425 |
+
if os.path.exists(tmp_dir):
|
| 426 |
+
try:
|
| 427 |
+
shutil.rmtree(tmp_dir)
|
| 428 |
+
except Exception as e:
|
| 429 |
+
print(f"Error cleaning up /tmp/gradio/ directory: {e}")
|
| 430 |
+
|
| 431 |
# Define the interface function
|
| 432 |
max_iterations = 5
|
| 433 |
iterations = 0
|
| 434 |
|
| 435 |
+
def answer_question(user_question, chatbot, audio=None):
|
| 436 |
global iterations
|
| 437 |
iterations = 0
|
| 438 |
+
# Ensure the temporary chart directory exists
|
| 439 |
+
#ensure_temp_chart_dir()
|
| 440 |
+
# Clean the /tmp/gradio/ directory
|
| 441 |
+
#clean_gradio_tmp_dir()
|
| 442 |
+
# Handle audio input if provided
|
| 443 |
+
if audio is not None:
|
| 444 |
+
sample_rate, audio_data = audio
|
| 445 |
+
audio_segment = AudioSegment(
|
| 446 |
+
audio_data.tobytes(),
|
| 447 |
+
frame_rate=sample_rate,
|
| 448 |
+
sample_width=audio_data.dtype.itemsize,
|
| 449 |
+
channels=1
|
| 450 |
+
)
|
| 451 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
| 452 |
+
audio_segment.export(temp_audio_file.name, format="wav")
|
| 453 |
+
temp_audio_file_path = temp_audio_file.name
|
| 454 |
+
|
| 455 |
+
recognizer = sr.Recognizer()
|
| 456 |
+
with sr.AudioFile(temp_audio_file_path) as source:
|
| 457 |
+
audio_content = recognizer.record(source)
|
| 458 |
+
try:
|
| 459 |
+
user_question = recognizer.recognize_google(audio_content)
|
| 460 |
+
except sr.UnknownValueError:
|
| 461 |
+
user_question = "Sorry, I could not understand the audio."
|
| 462 |
+
except sr.RequestError:
|
| 463 |
+
user_question = "Could not request results from Google Speech Recognition service."
|
| 464 |
|
| 465 |
while iterations < max_iterations:
|
| 466 |
+
print(user_question)
|
| 467 |
+
if "send email to" in user_question:
|
| 468 |
+
email_match = re.search(r"send email to ([\w\.-]+@[\w\.-]+)", user_question)
|
| 469 |
+
if email_match:
|
| 470 |
+
user_email = email_match.group(1).strip()
|
| 471 |
+
user_question = user_question.replace(f"send email to {user_email}", "").strip()
|
| 472 |
+
user_question = f"{user_question}:{user_email}"
|
| 473 |
+
|
| 474 |
+
response = agent_executor.invoke({"input": user_question})
|
| 475 |
+
|
| 476 |
+
if isinstance(response, dict):
|
| 477 |
+
response_text = response.get("output", "")
|
| 478 |
+
else:
|
| 479 |
+
response_text = response
|
| 480 |
+
if "invalid" not in response_text.lower():
|
| 481 |
+
break
|
| 482 |
+
iterations += 1
|
| 483 |
|
| 484 |
if iterations == max_iterations:
|
| 485 |
return "The agent could not generate a valid response within the iteration limit."
|
|
|
|
| 497 |
#image = gr.Image(value=img_str)
|
| 498 |
chatbot.append((user_question,img))
|
| 499 |
#print(chatbot)
|
| 500 |
+
if "send email to" in user_question:
|
| 501 |
+
try:
|
| 502 |
+
os.remove(image_path) # Clean up the temporary image file
|
| 503 |
+
except Exception as e:
|
| 504 |
+
print(f"Error cleaning up image file: {e}")
|
| 505 |
+
except Exception as e:
|
| 506 |
+
print(f"Error loading image file: {e}")
|
| 507 |
+
chatbot.append((user_question, "Chart generation failed. Please try again."))
|
| 508 |
+
else:
|
| 509 |
+
chatbot.append((user_question, "Chart generation failed. Please try again."))
|
| 510 |
return gr.update(value=chatbot)
|
| 511 |
+
|
| 512 |
|
| 513 |
#return [(user_question,gr.Image("/home/user/app/exports/charts/temp_chart.png"))]
|
| 514 |
# return "/home/user/app/exports/charts/temp_chart.png"
|
|
|
|
| 562 |
with gr.Row():
|
| 563 |
with gr.Column(scale=1):
|
| 564 |
message = gr.Textbox(show_label=False)
|
| 565 |
+
audio_input = gr.Audio(label="Record your question")
|
| 566 |
with gr.Column(scale=1):
|
| 567 |
with gr.Row():
|
| 568 |
button = gr.Button("Submit", elem_classes="gr-button")
|
|
|
|
| 589 |
|
| 590 |
|
| 591 |
demo.launch()
|
| 592 |
+
|