Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI | |
| import os | |
| import fitz # PyMuPDF | |
| from pptx import Presentation | |
| from sentence_transformers import SentenceTransformer | |
| import torch | |
| from transformers import CLIPProcessor, CLIPModel | |
| from PIL import Image | |
| import chromadb | |
| import numpy as np | |
| app = FastAPI() | |
| # Initialize ChromaDB with 512 dimensions | |
| client = chromadb.PersistentClient(path="/data/chroma_db") | |
| collection = client.get_or_create_collection(name="knowledge_base", metadata={"hnsw:space": "cosine"}, embedding_function=None) | |
| # File Paths | |
| pdf_file = "Sutures and Suturing techniques.pdf" | |
| pptx_file = "impalnt 1.pptx" | |
| # Initialize Embedding Models | |
| text_model = SentenceTransformer('paraphrase-MiniLM-L12-v2') # 512D text embeddings | |
| clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
| clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| # Image Storage Folder | |
| IMAGE_FOLDER = "/data/extracted_images" | |
| os.makedirs(IMAGE_FOLDER, exist_ok=True) | |
| # Extract Text from PDF | |
| def extract_text_from_pdf(pdf_path): | |
| try: | |
| doc = fitz.open(pdf_path) | |
| text = " ".join(page.get_text() for page in doc) | |
| return text.strip() if text else None | |
| except Exception as e: | |
| print(f"Error extracting text from PDF: {e}") | |
| return None | |
| # Extract Text from PPTX | |
| def extract_text_from_pptx(pptx_path): | |
| try: | |
| prs = Presentation(pptx_path) | |
| text = " ".join( | |
| shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text") | |
| ) | |
| return text.strip() if text else None | |
| except Exception as e: | |
| print(f"Error extracting text from PPTX: {e}") | |
| return None | |
| # Extract Images from PDF | |
| def extract_images_from_pdf(pdf_path): | |
| try: | |
| doc = fitz.open(pdf_path) | |
| images = [] | |
| for i, page in enumerate(doc): | |
| for img_index, img in enumerate(page.get_images(full=True)): | |
| xref = img[0] | |
| image = doc.extract_image(xref) | |
| img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}" | |
| with open(img_path, "wb") as f: | |
| f.write(image["image"]) | |
| images.append(img_path) | |
| return images | |
| except Exception as e: | |
| print(f"Error extracting images from PDF: {e}") | |
| return [] | |
| # Extract Images from PPTX | |
| def extract_images_from_pptx(pptx_path): | |
| try: | |
| images = [] | |
| prs = Presentation(pptx_path) | |
| for i, slide in enumerate(prs.slides): | |
| for shape in slide.shapes: | |
| if shape.shape_type == 13: | |
| img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}" | |
| with open(img_path, "wb") as f: | |
| f.write(shape.image.blob) | |
| images.append(img_path) | |
| return images | |
| except Exception as e: | |
| print(f"Error extracting images from PPTX: {e}") | |
| return [] | |
| # Convert Text to Embeddings (512D) | |
| def get_text_embedding(text): | |
| return text_model.encode(text).tolist() | |
| # Extract Image Embeddings (512D) | |
| def get_image_embedding(image_path): | |
| try: | |
| image = Image.open(image_path) | |
| inputs = clip_processor(images=image, return_tensors="pt") | |
| with torch.no_grad(): | |
| image_embedding = clip_model.get_image_features(**inputs).squeeze().numpy() | |
| return image_embedding.tolist() | |
| except Exception as e: | |
| print(f"Error generating image embedding: {e}") | |
| return None | |
| # Store Data in ChromaDB | |
| def store_data(texts, image_paths): | |
| for i, text in enumerate(texts): | |
| if text: | |
| text_embedding = get_text_embedding(text) | |
| collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text]) | |
| for j, img_path in enumerate(image_paths): | |
| img_embedding = get_image_embedding(img_path) | |
| if img_embedding: | |
| collection.add(ids=[f"image_{j}"], embeddings=[img_embedding], documents=[img_path]) | |
| print("Data stored successfully!") | |
| # Process and Store from Files | |
| def process_and_store(pdf_path=None, pptx_path=None): | |
| texts, images = [], [] | |
| if pdf_path: | |
| pdf_text = extract_text_from_pdf(pdf_path) | |
| if pdf_text: | |
| texts.append(pdf_text) | |
| images.extend(extract_images_from_pdf(pdf_path)) | |
| if pptx_path: | |
| pptx_text = extract_text_from_pptx(pptx_path) | |
| if pptx_text: | |
| texts.append(pptx_text) | |
| images.extend(extract_images_from_pptx(pptx_path)) | |
| store_data(texts, images) | |
| # FastAPI Endpoints | |
| def greet_json(): | |
| # Run Data Processing | |
| process_and_store(pdf_path=pdf_file, pptx_path=pptx_file) | |
| return {"Document store": "created!"} | |
| def retrieval(query: str): | |
| try: | |
| query_embedding = get_text_embedding(query) | |
| results = collection.query(query_embeddings=[query_embedding], n_results=5) | |
| return {"results": results.get("documents", [])} | |
| except Exception as e: | |
| return {"error": str(e)} | |