Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,21 +18,6 @@ pptx_file="impalnt 1.pptx"
|
|
| 18 |
|
| 19 |
|
| 20 |
collection = client.get_collection(name="knowledge_base")
|
| 21 |
-
### Step 8: Process and Store from Files ###
|
| 22 |
-
def process_and_store(pdf_path=None, pptx_path=None):
|
| 23 |
-
texts, images = [], []
|
| 24 |
-
|
| 25 |
-
if pdf_path:
|
| 26 |
-
print(f"Processing PDF: {pdf_path}")
|
| 27 |
-
texts.append(extract_text_from_pdf(pdf_path))
|
| 28 |
-
images.extend(extract_images_from_pdf(pdf_path))
|
| 29 |
-
|
| 30 |
-
if pptx_path:
|
| 31 |
-
print(f"Processing PPTX: {pptx_path}")
|
| 32 |
-
texts.append(extract_text_from_pptx(pptx_path))
|
| 33 |
-
images.extend(extract_images_from_pptx(pptx_path))
|
| 34 |
-
|
| 35 |
-
store_data(texts, images)
|
| 36 |
|
| 37 |
# Initialize models
|
| 38 |
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
@@ -42,28 +27,6 @@ clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
| 42 |
# Folder for extracted images
|
| 43 |
IMAGE_FOLDER = "/data/extracted_images"
|
| 44 |
os.makedirs(IMAGE_FOLDER, exist_ok=True)
|
| 45 |
-
|
| 46 |
-
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
| 47 |
-
@app.get("/")
|
| 48 |
-
def greet_json():
|
| 49 |
-
|
| 50 |
-
return {"Hello": "World!"}
|
| 51 |
-
|
| 52 |
-
@app.get("/test")
|
| 53 |
-
def greet_json():
|
| 54 |
-
return {"Hello": "Redmind!"}
|
| 55 |
-
|
| 56 |
-
@app.get("/search/")
|
| 57 |
-
def search(query: str):
|
| 58 |
-
query_embedding = get_text_embedding(query)
|
| 59 |
-
results = collection.query(
|
| 60 |
-
query_embeddings=[query_embedding],
|
| 61 |
-
n_results=5
|
| 62 |
-
)
|
| 63 |
-
return {"results": results["documents"]}
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
### Step 1: Extract Text from PDF ###
|
| 68 |
def extract_text_from_pdf(pdf_path):
|
| 69 |
text = ""
|
|
@@ -146,4 +109,42 @@ def store_data(texts, image_paths):
|
|
| 146 |
|
| 147 |
print("Data stored successfully!")
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
collection = client.get_collection(name="knowledge_base")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Initialize models
|
| 23 |
text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
| 27 |
# Folder for extracted images
|
| 28 |
IMAGE_FOLDER = "/data/extracted_images"
|
| 29 |
os.makedirs(IMAGE_FOLDER, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
### Step 1: Extract Text from PDF ###
|
| 31 |
def extract_text_from_pdf(pdf_path):
|
| 32 |
text = ""
|
|
|
|
| 109 |
|
| 110 |
print("Data stored successfully!")
|
| 111 |
|
| 112 |
+
### Step 8: Process and Store from Files ###
|
| 113 |
+
def process_and_store(pdf_path=None, pptx_path=None):
|
| 114 |
+
texts, images = [], []
|
| 115 |
+
|
| 116 |
+
if pdf_path:
|
| 117 |
+
print(f"Processing PDF: {pdf_path}")
|
| 118 |
+
texts.append(extract_text_from_pdf(pdf_path))
|
| 119 |
+
images.extend(extract_images_from_pdf(pdf_path))
|
| 120 |
+
|
| 121 |
+
if pptx_path:
|
| 122 |
+
print(f"Processing PPTX: {pptx_path}")
|
| 123 |
+
texts.append(extract_text_from_pptx(pptx_path))
|
| 124 |
+
images.extend(extract_images_from_pptx(pptx_path))
|
| 125 |
+
|
| 126 |
+
store_data(texts, images)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
|
| 131 |
+
@app.get("/")
|
| 132 |
+
def greet_json():
|
| 133 |
+
|
| 134 |
+
return {"Hello": "World!"}
|
| 135 |
+
|
| 136 |
+
@app.get("/test")
|
| 137 |
+
def greet_json():
|
| 138 |
+
return {"Hello": "Redmind!"}
|
| 139 |
+
|
| 140 |
+
@app.get("/search/")
|
| 141 |
+
def search(query: str):
|
| 142 |
+
query_embedding = get_text_embedding(query)
|
| 143 |
+
results = collection.query(
|
| 144 |
+
query_embeddings=[query_embedding],
|
| 145 |
+
n_results=5
|
| 146 |
+
)
|
| 147 |
+
return {"results": results["documents"]}
|
| 148 |
+
|
| 149 |
+
|
| 150 |
|