Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		shakesbeardz
		
	commited on
		
		
					Commit 
							
							·
						
						42a56da
	
1
								Parent(s):
							
							309c17a
								
added app.py
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -1,5 +1,5 @@ 
     | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
            -
            title:  
     | 
| 3 | 
         
             
            emoji: 🐘
         
     | 
| 4 | 
         
             
            colorFrom: indigo
         
     | 
| 5 | 
         
             
            colorTo: purple
         
     | 
| 
         | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
            +
            title: ReefNet Demo
         
     | 
| 3 | 
         
             
            emoji: 🐘
         
     | 
| 4 | 
         
             
            colorFrom: indigo
         
     | 
| 5 | 
         
             
            colorTo: purple
         
     | 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,337 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import collections
         
     | 
| 2 | 
         
            +
            import heapq
         
     | 
| 3 | 
         
            +
            import json
         
     | 
| 4 | 
         
            +
            import os
         
     | 
| 5 | 
         
            +
            import logging
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            import gradio as gr
         
     | 
| 8 | 
         
            +
            import numpy as np
         
     | 
| 9 | 
         
            +
            import polars as pl
         
     | 
| 10 | 
         
            +
            import torch
         
     | 
| 11 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 12 | 
         
            +
            from open_clip import create_model, get_tokenizer
         
     | 
| 13 | 
         
            +
            from torchvision import transforms
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            from templates import openai_imagenet_template
         
     | 
| 16 | 
         
            +
            from components.query import  get_sample
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
         
     | 
| 19 | 
         
            +
            logging.basicConfig(level=logging.INFO, format=log_format)
         
     | 
| 20 | 
         
            +
            logger = logging.getLogger()
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            hf_token = os.getenv("HF_TOKEN")
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            # For sample images
         
     | 
| 25 | 
         
            +
            METADATA_PATH = "components/metadata.csv"
         
     | 
| 26 | 
         
            +
            # Read page ID as int and filter out smaller ablation duplicated training split
         
     | 
| 27 | 
         
            +
            metadata_df = pl.read_csv(METADATA_PATH, low_memory = False)
         
     | 
| 28 | 
         
            +
            metadata_df = metadata_df.with_columns(pl.col("eol_page_id").cast(pl.Int64))
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            model_str = "hf-hub:imageomics/bioclip"
         
     | 
| 31 | 
         
            +
            tokenizer_str = "ViT-B-16"
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            txt_emb_npy = "txt_emb_species.npy"
         
     | 
| 34 | 
         
            +
            txt_names_json = "txt_emb_species.json"
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            min_prob = 1e-9
         
     | 
| 37 | 
         
            +
            k = 5
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            preprocess_img = transforms.Compose(
         
     | 
| 42 | 
         
            +
                [
         
     | 
| 43 | 
         
            +
                    transforms.ToTensor(),
         
     | 
| 44 | 
         
            +
                    transforms.Resize((224, 224), antialias=True),
         
     | 
| 45 | 
         
            +
                    transforms.Normalize(
         
     | 
| 46 | 
         
            +
                        mean=(0.48145466, 0.4578275, 0.40821073),
         
     | 
| 47 | 
         
            +
                        std=(0.26862954, 0.26130258, 0.27577711),
         
     | 
| 48 | 
         
            +
                    ),
         
     | 
| 49 | 
         
            +
                ]
         
     | 
| 50 | 
         
            +
            )
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            open_domain_examples = [
         
     | 
| 55 | 
         
            +
                ["examples/Ursus-arctos.jpeg", "Species"],
         
     | 
| 56 | 
         
            +
                ["examples/Phoca-vitulina.png", "Species"],
         
     | 
| 57 | 
         
            +
                ["examples/Felis-catus.jpeg", "Genus"],
         
     | 
| 58 | 
         
            +
                ["examples/Sarcoscypha-coccinea.jpeg", "Order"],
         
     | 
| 59 | 
         
            +
            ]
         
     | 
| 60 | 
         
            +
            zero_shot_examples = [
         
     | 
| 61 | 
         
            +
                [
         
     | 
| 62 | 
         
            +
                    "examples/Ursus-arctos.jpeg",
         
     | 
| 63 | 
         
            +
                    "brown bear\nblack bear\npolar bear\nkoala bear\ngrizzly bear",
         
     | 
| 64 | 
         
            +
                ],
         
     | 
| 65 | 
         
            +
                ["examples/milk-snake.png", "coral snake\nmilk snake"],
         
     | 
| 66 | 
         
            +
                ["examples/coral-snake.jpeg", "coral snake\nmilk snake"],
         
     | 
| 67 | 
         
            +
                [
         
     | 
| 68 | 
         
            +
                    "examples/Carnegiea-gigantea.png",
         
     | 
| 69 | 
         
            +
                    "Carnegiea gigantea\nSchlumbergera opuntioides\nMammillaria albicoma",
         
     | 
| 70 | 
         
            +
                ],
         
     | 
| 71 | 
         
            +
                [
         
     | 
| 72 | 
         
            +
                    "examples/Amanita-muscaria.jpeg",
         
     | 
| 73 | 
         
            +
                    "Amanita fulva\nAmanita vaginata (grisette)\nAmanita calyptrata (coccoli)\nAmanita crocea\nAmanita rubescens (blusher)\nAmanita caesarea (Caesar's mushroom)\nAmanita jacksonii (American Caesar's mushroom)\nAmanita muscaria (fly agaric)\nAmanita pantherina (panther cap)",
         
     | 
| 74 | 
         
            +
                ],
         
     | 
| 75 | 
         
            +
                [
         
     | 
| 76 | 
         
            +
                    "examples/Actinostola-abyssorum.png",
         
     | 
| 77 | 
         
            +
                    "Animalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola abyssorum\nAnimalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola bulbosa\nAnimalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola callosa\nAnimalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola capensis\nAnimalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola carlgreni",
         
     | 
| 78 | 
         
            +
                ],
         
     | 
| 79 | 
         
            +
                [
         
     | 
| 80 | 
         
            +
                    "examples/Sarcoscypha-coccinea.jpeg",
         
     | 
| 81 | 
         
            +
                    "scarlet elf cup (coccinea)\nscharlachroter kelchbecherling (austriaca)\ncrimson cup (dudleyi)\nstalked scarlet cup (occidentalis)",
         
     | 
| 82 | 
         
            +
                ],
         
     | 
| 83 | 
         
            +
                [
         
     | 
| 84 | 
         
            +
                    "examples/Onoclea-hintonii.jpg",
         
     | 
| 85 | 
         
            +
                    "Onoclea attenuata\nOnoclea boryana\nOnoclea hintonii\nOnoclea intermedia\nOnoclea sensibilis",
         
     | 
| 86 | 
         
            +
                ],
         
     | 
| 87 | 
         
            +
                [
         
     | 
| 88 | 
         
            +
                    "examples/Onoclea-sensibilis.jpg",
         
     | 
| 89 | 
         
            +
                    "Onoclea attenuata\nOnoclea boryana\nOnoclea hintonii\nOnoclea intermedia\nOnoclea sensibilis",
         
     | 
| 90 | 
         
            +
                ],
         
     | 
| 91 | 
         
            +
            ]
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            def indexed(lst, indices):
         
     | 
| 95 | 
         
            +
                return [lst[i] for i in indices]
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            @torch.no_grad()
         
     | 
| 99 | 
         
            +
            def get_txt_features(classnames, templates):
         
     | 
| 100 | 
         
            +
                all_features = []
         
     | 
| 101 | 
         
            +
                for classname in classnames:
         
     | 
| 102 | 
         
            +
                    txts = [template(classname) for template in templates]
         
     | 
| 103 | 
         
            +
                    txts = tokenizer(txts).to(device)
         
     | 
| 104 | 
         
            +
                    txt_features = model.encode_text(txts)
         
     | 
| 105 | 
         
            +
                    txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
         
     | 
| 106 | 
         
            +
                    txt_features /= txt_features.norm()
         
     | 
| 107 | 
         
            +
                    all_features.append(txt_features)
         
     | 
| 108 | 
         
            +
                all_features = torch.stack(all_features, dim=1)
         
     | 
| 109 | 
         
            +
                return all_features
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
            @torch.no_grad()
         
     | 
| 113 | 
         
            +
            def zero_shot_classification(img, cls_str: str) -> dict[str, float]:
         
     | 
| 114 | 
         
            +
                classes = [cls.strip() for cls in cls_str.split("\n") if cls.strip()]
         
     | 
| 115 | 
         
            +
                txt_features = get_txt_features(classes, openai_imagenet_template)
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                img = preprocess_img(img).to(device)
         
     | 
| 118 | 
         
            +
                img_features = model.encode_image(img.unsqueeze(0))
         
     | 
| 119 | 
         
            +
                img_features = F.normalize(img_features, dim=-1)
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                logits = (model.logit_scale.exp() * img_features @ txt_features).squeeze()
         
     | 
| 122 | 
         
            +
                probs = F.softmax(logits, dim=0).to("cpu").tolist()
         
     | 
| 123 | 
         
            +
                return {cls: prob for cls, prob in zip(classes, probs)}
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            def format_name(taxon, common):
         
     | 
| 127 | 
         
            +
                taxon = " ".join(taxon)
         
     | 
| 128 | 
         
            +
                if not common:
         
     | 
| 129 | 
         
            +
                    return taxon
         
     | 
| 130 | 
         
            +
                return f"{taxon} ({common})"
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
            @torch.no_grad()
         
     | 
| 134 | 
         
            +
            def open_domain_classification(img, rank: int, return_all=False):
         
     | 
| 135 | 
         
            +
                """
         
     | 
| 136 | 
         
            +
                Predicts from the entire tree of life.
         
     | 
| 137 | 
         
            +
                If targeting a higher rank than species, then this function predicts among all
         
     | 
| 138 | 
         
            +
                species, then sums up species-level probabilities for the given rank.
         
     | 
| 139 | 
         
            +
                """
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                logger.info(f"Starting open domain classification for rank: {rank}")
         
     | 
| 142 | 
         
            +
                img = preprocess_img(img).to(device)
         
     | 
| 143 | 
         
            +
                img_features = model.encode_image(img.unsqueeze(0))
         
     | 
| 144 | 
         
            +
                img_features = F.normalize(img_features, dim=-1)
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                logits = (model.logit_scale.exp() * img_features @ txt_emb).squeeze()
         
     | 
| 147 | 
         
            +
                probs = F.softmax(logits, dim=0)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                if rank + 1 == len(ranks):
         
     | 
| 150 | 
         
            +
                    topk = probs.topk(k)
         
     | 
| 151 | 
         
            +
                    prediction_dict = {
         
     | 
| 152 | 
         
            +
                        format_name(*txt_names[i]): prob for i, prob in zip(topk.indices, topk.values)
         
     | 
| 153 | 
         
            +
                    }
         
     | 
| 154 | 
         
            +
                    logger.info(f"Top K predictions: {prediction_dict}")
         
     | 
| 155 | 
         
            +
                    top_prediction_name = format_name(*txt_names[topk.indices[0]]).split("(")[0]
         
     | 
| 156 | 
         
            +
                    logger.info(f"Top prediction name: {top_prediction_name}")
         
     | 
| 157 | 
         
            +
                    sample_img, taxon_url = get_sample(metadata_df, top_prediction_name, rank)
         
     | 
| 158 | 
         
            +
                    if return_all:
         
     | 
| 159 | 
         
            +
                        return prediction_dict, sample_img, taxon_url
         
     | 
| 160 | 
         
            +
                    return prediction_dict
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                output = collections.defaultdict(float)
         
     | 
| 163 | 
         
            +
                for i in torch.nonzero(probs > min_prob).squeeze():
         
     | 
| 164 | 
         
            +
                    output[" ".join(txt_names[i][0][: rank + 1])] += probs[i]
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                topk_names = heapq.nlargest(k, output, key=output.get)
         
     | 
| 167 | 
         
            +
                prediction_dict = {name: output[name] for name in topk_names}
         
     | 
| 168 | 
         
            +
                logger.info(f"Top K names for output: {topk_names}")
         
     | 
| 169 | 
         
            +
                logger.info(f"Prediction dictionary: {prediction_dict}")
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                top_prediction_name = topk_names[0]
         
     | 
| 172 | 
         
            +
                logger.info(f"Top prediction name: {top_prediction_name}")
         
     | 
| 173 | 
         
            +
                sample_img, taxon_url = get_sample(metadata_df, top_prediction_name, rank)
         
     | 
| 174 | 
         
            +
                logger.info(f"Sample image and taxon URL: {sample_img}, {taxon_url}")
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                if return_all:
         
     | 
| 177 | 
         
            +
                    return prediction_dict, sample_img, taxon_url
         
     | 
| 178 | 
         
            +
                return prediction_dict
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
            def change_output(choice):
         
     | 
| 182 | 
         
            +
                return gr.Label(num_top_classes=k, label=ranks[choice], show_label=True, value=None)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 186 | 
         
            +
                logger.info("Starting.")
         
     | 
| 187 | 
         
            +
                model = create_model(model_str, output_dict=True, require_pretrained=True)
         
     | 
| 188 | 
         
            +
                model = model.to(device)
         
     | 
| 189 | 
         
            +
                logger.info("Created model.")
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                model = torch.compile(model)
         
     | 
| 192 | 
         
            +
                logger.info("Compiled model.")
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                tokenizer = get_tokenizer(tokenizer_str)
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                txt_emb = torch.from_numpy(np.load(txt_emb_npy, mmap_mode="r")).to(device)
         
     | 
| 197 | 
         
            +
                with open(txt_names_json) as fd:
         
     | 
| 198 | 
         
            +
                    txt_names = json.load(fd)
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                done = txt_emb.any(axis=0).sum().item()
         
     | 
| 201 | 
         
            +
                total = txt_emb.shape[1]
         
     | 
| 202 | 
         
            +
                status_msg = ""
         
     | 
| 203 | 
         
            +
                if done != total:
         
     | 
| 204 | 
         
            +
                    status_msg = f"{done}/{total} ({done / total * 100:.1f}%) indexed"
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                with gr.Blocks() as app:
         
     | 
| 207 | 
         
            +
                    
         
     | 
| 208 | 
         
            +
                    with gr.Tab("Open-Ended"):
         
     | 
| 209 | 
         
            +
                        with gr.Row(variant = "panel", elem_id = "images_panel"):
         
     | 
| 210 | 
         
            +
                            with gr.Column():
         
     | 
| 211 | 
         
            +
                                img_input = gr.Image(height = 400, sources=["upload"])
         
     | 
| 212 | 
         
            +
                        
         
     | 
| 213 | 
         
            +
                            with gr.Column():
         
     | 
| 214 | 
         
            +
                                # display sample image of top predicted taxon
         
     | 
| 215 | 
         
            +
                                sample_img = gr.Image(label = "Sample Image of Predicted Taxon", 
         
     | 
| 216 | 
         
            +
                                                    height = 400, 
         
     | 
| 217 | 
         
            +
                                                    show_download_button = False)
         
     | 
| 218 | 
         
            +
                            
         
     | 
| 219 | 
         
            +
                                taxon_url = gr.HTML(label = "More Information", 
         
     | 
| 220 | 
         
            +
                                                elem_id = "url"
         
     | 
| 221 | 
         
            +
                                                )
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                        with gr.Row():
         
     | 
| 224 | 
         
            +
                            with gr.Column():
         
     | 
| 225 | 
         
            +
                                rank_dropdown = gr.Dropdown(
         
     | 
| 226 | 
         
            +
                                    label="Taxonomic Rank",
         
     | 
| 227 | 
         
            +
                                    info="Which taxonomic rank to predict. Fine-grained ranks (genus, species) are more challenging.",
         
     | 
| 228 | 
         
            +
                                    choices=ranks,
         
     | 
| 229 | 
         
            +
                                    value="Species",
         
     | 
| 230 | 
         
            +
                                    type="index",
         
     | 
| 231 | 
         
            +
                                )
         
     | 
| 232 | 
         
            +
                                open_domain_btn = gr.Button("Submit", variant="primary")
         
     | 
| 233 | 
         
            +
                            with gr.Column():
         
     | 
| 234 | 
         
            +
                                open_domain_output = gr.Label(
         
     | 
| 235 | 
         
            +
                                    num_top_classes=k,
         
     | 
| 236 | 
         
            +
                                    label="Prediction",
         
     | 
| 237 | 
         
            +
                                    show_label=True,
         
     | 
| 238 | 
         
            +
                                    value=None,
         
     | 
| 239 | 
         
            +
                                )
         
     | 
| 240 | 
         
            +
                              #  open_domain_flag_btn = gr.Button("Flag Mistake", variant="primary")
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                        with gr.Row():
         
     | 
| 243 | 
         
            +
                            gr.Examples(
         
     | 
| 244 | 
         
            +
                                examples=open_domain_examples,
         
     | 
| 245 | 
         
            +
                                inputs=[img_input, rank_dropdown],
         
     | 
| 246 | 
         
            +
                                cache_examples=True,
         
     | 
| 247 | 
         
            +
                                fn=lambda img, rank: open_domain_classification(img, rank, return_all=False),
         
     | 
| 248 | 
         
            +
                                outputs=[open_domain_output],
         
     | 
| 249 | 
         
            +
                            )
         
     | 
| 250 | 
         
            +
                        '''
         
     | 
| 251 | 
         
            +
                        # Flagging Code
         
     | 
| 252 | 
         
            +
                        open_domain_callback = gr.HuggingFaceDatasetSaver(
         
     | 
| 253 | 
         
            +
                            hf_token, "bioclip-demo-open-domain-mistakes", private=True
         
     | 
| 254 | 
         
            +
                        )
         
     | 
| 255 | 
         
            +
                        open_domain_callback.setup(
         
     | 
| 256 | 
         
            +
                            [img_input, rank_dropdown, open_domain_output],
         
     | 
| 257 | 
         
            +
                            flagging_dir="bioclip-demo-open-domain-mistakes/logs/flagged",
         
     | 
| 258 | 
         
            +
                        )
         
     | 
| 259 | 
         
            +
                        open_domain_flag_btn.click(
         
     | 
| 260 | 
         
            +
                            lambda *args: open_domain_callback.flag(args),
         
     | 
| 261 | 
         
            +
                            [img_input, rank_dropdown, open_domain_output],
         
     | 
| 262 | 
         
            +
                            None,
         
     | 
| 263 | 
         
            +
                            preprocess=False,
         
     | 
| 264 | 
         
            +
                        )
         
     | 
| 265 | 
         
            +
                        '''
         
     | 
| 266 | 
         
            +
                    with gr.Tab("Zero-Shot"):
         
     | 
| 267 | 
         
            +
                        with gr.Row():
         
     | 
| 268 | 
         
            +
                            img_input_zs = gr.Image(height = 400, sources=["upload"])
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                        with gr.Row():
         
     | 
| 271 | 
         
            +
                            with gr.Column():
         
     | 
| 272 | 
         
            +
                                classes_txt = gr.Textbox(
         
     | 
| 273 | 
         
            +
                                    placeholder="Canis familiaris (dog)\nFelis catus (cat)\n...",
         
     | 
| 274 | 
         
            +
                                    lines=3,
         
     | 
| 275 | 
         
            +
                                    label="Classes",
         
     | 
| 276 | 
         
            +
                                    show_label=True,
         
     | 
| 277 | 
         
            +
                                    info="Use taxonomic names where possible; include common names if possible.",
         
     | 
| 278 | 
         
            +
                                )
         
     | 
| 279 | 
         
            +
                                zero_shot_btn = gr.Button("Submit", variant="primary")
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                            with gr.Column():
         
     | 
| 282 | 
         
            +
                                zero_shot_output = gr.Label(
         
     | 
| 283 | 
         
            +
                                    num_top_classes=k, label="Prediction", show_label=True
         
     | 
| 284 | 
         
            +
                                )
         
     | 
| 285 | 
         
            +
                         #       zero_shot_flag_btn = gr.Button("Flag Mistake", variant="primary")
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                        with gr.Row():
         
     | 
| 288 | 
         
            +
                            gr.Examples(
         
     | 
| 289 | 
         
            +
                                examples=zero_shot_examples,
         
     | 
| 290 | 
         
            +
                                inputs=[img_input_zs, classes_txt],
         
     | 
| 291 | 
         
            +
                                cache_examples=True,
         
     | 
| 292 | 
         
            +
                                fn=zero_shot_classification,
         
     | 
| 293 | 
         
            +
                                outputs=[zero_shot_output],
         
     | 
| 294 | 
         
            +
                            )
         
     | 
| 295 | 
         
            +
                    '''
         
     | 
| 296 | 
         
            +
                    # Flagging Code
         
     | 
| 297 | 
         
            +
                    zero_shot_callback = gr.HuggingFaceDatasetSaver(
         
     | 
| 298 | 
         
            +
                        hf_token, "bioclip-demo-zero-shot-mistakes", private=True
         
     | 
| 299 | 
         
            +
                    )
         
     | 
| 300 | 
         
            +
                    zero_shot_callback.setup(
         
     | 
| 301 | 
         
            +
                        [img_input, zero_shot_output], flagging_dir="bioclip-demo-zero-shot-mistakes/logs/flagged"
         
     | 
| 302 | 
         
            +
                    )
         
     | 
| 303 | 
         
            +
                    zero_shot_flag_btn.click(
         
     | 
| 304 | 
         
            +
                        lambda *args: zero_shot_callback.flag(args),
         
     | 
| 305 | 
         
            +
                        [img_input, zero_shot_output],
         
     | 
| 306 | 
         
            +
                        None,
         
     | 
| 307 | 
         
            +
                        preprocess=False,
         
     | 
| 308 | 
         
            +
                    )
         
     | 
| 309 | 
         
            +
                    '''
         
     | 
| 310 | 
         
            +
                    rank_dropdown.change(
         
     | 
| 311 | 
         
            +
                        fn=change_output, inputs=rank_dropdown, outputs=[open_domain_output]
         
     | 
| 312 | 
         
            +
                    )
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                    open_domain_btn.click(
         
     | 
| 315 | 
         
            +
                        fn=lambda img, rank: open_domain_classification(img, rank, return_all=True),
         
     | 
| 316 | 
         
            +
                        inputs=[img_input, rank_dropdown],
         
     | 
| 317 | 
         
            +
                        outputs=[open_domain_output, sample_img, taxon_url],
         
     | 
| 318 | 
         
            +
                    )
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                    zero_shot_btn.click(
         
     | 
| 321 | 
         
            +
                        fn=zero_shot_classification,
         
     | 
| 322 | 
         
            +
                        inputs=[img_input_zs, classes_txt],
         
     | 
| 323 | 
         
            +
                        outputs=zero_shot_output,
         
     | 
| 324 | 
         
            +
                    )
         
     | 
| 325 | 
         
            +
                    
         
     | 
| 326 | 
         
            +
                    # Footer to point out to model and data from app page.
         
     | 
| 327 | 
         
            +
                    gr.Markdown(
         
     | 
| 328 | 
         
            +
                        """
         
     | 
| 329 | 
         
            +
                        For more information on the [BioCLIP Model](https://huggingface.co/imageomics/bioclip) creation, see our [BioCLIP Project GitHub](https://github.com/Imageomics/bioclip), and
         
     | 
| 330 | 
         
            +
                        for easier integration of BioCLIP, checkout [pybioclip](https://github.com/Imageomics/pybioclip).
         
     | 
| 331 | 
         
            +
                        
         
     | 
| 332 | 
         
            +
                        To learn more about the data, check out our [TreeOfLife-10M Dataset](https://huggingface.co/datasets/imageomics/TreeOfLife-10M).
         
     | 
| 333 | 
         
            +
                        """
         
     | 
| 334 | 
         
            +
                    )
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                app.queue(max_size=20)
         
     | 
| 337 | 
         
            +
                app.launch(share=True)
         
     |