File size: 28,550 Bytes
d2ab310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import re\n",
    "import string\n",
    "import nltk\n",
    "from nltk.corpus import stopwords\n",
    "from sklearn.decomposition import LatentDirichletAllocation\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sklearn.cluster import KMeans\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "import joblib\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[nltk_data] Downloading package stopwords to C:\\Users\\Regino Balogo\n",
      "[nltk_data]     Jr\\AppData\\Roaming\\nltk_data...\n",
      "[nltk_data]   Unzipping corpora\\stopwords.zip.\n"
     ]
    }
   ],
   "source": [
    "# Download NLTK stopwords\n",
    "nltk.download('stopwords')\n",
    "stop_words = set(stopwords.words('english'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load dataset\n",
    "fake_df = pd.read_csv(\"Fake.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Initial Data:\n",
      "                                               title  \\\n",
      "0   Donald Trump Sends Out Embarrassing New Year’...   \n",
      "1   Drunk Bragging Trump Staffer Started Russian ...   \n",
      "2   Sheriff David Clarke Becomes An Internet Joke...   \n",
      "3   Trump Is So Obsessed He Even Has Obama’s Name...   \n",
      "4   Pope Francis Just Called Out Donald Trump Dur...   \n",
      "\n",
      "                                                text  \n",
      "0  Donald Trump just couldn t wish all Americans ...  \n",
      "1  House Intelligence Committee Chairman Devin Nu...  \n",
      "2  On Friday, it was revealed that former Milwauk...  \n",
      "3  On Christmas day, Donald Trump announced that ...  \n",
      "4  Pope Francis used his annual Christmas Day mes...  \n"
     ]
    }
   ],
   "source": [
    "print(\"Initial Data:\")\n",
    "print(fake_df.head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data after dropping missing values:\n",
      "                                               title  \\\n",
      "0   Donald Trump Sends Out Embarrassing New Year’...   \n",
      "1   Drunk Bragging Trump Staffer Started Russian ...   \n",
      "2   Sheriff David Clarke Becomes An Internet Joke...   \n",
      "3   Trump Is So Obsessed He Even Has Obama’s Name...   \n",
      "4   Pope Francis Just Called Out Donald Trump Dur...   \n",
      "\n",
      "                                                text  \n",
      "0  Donald Trump just couldn t wish all Americans ...  \n",
      "1  House Intelligence Committee Chairman Devin Nu...  \n",
      "2  On Friday, it was revealed that former Milwauk...  \n",
      "3  On Christmas day, Donald Trump announced that ...  \n",
      "4  Pope Francis used his annual Christmas Day mes...  \n"
     ]
    }
   ],
   "source": [
    "# Keep only relevant columns\n",
    "fake_df = fake_df[['title', 'text']].dropna()\n",
    "print(\"Data after dropping missing values:\")\n",
    "print(fake_df.head())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Combine title and text\n",
    "fake_df['content'] = fake_df['title'] + \" \" + fake_df['text']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to clean text\n",
    "def clean_text(text):\n",
    "    text = text.lower()\n",
    "    text = re.sub(f\"[{string.punctuation}]\", \"\", text)\n",
    "    text = re.sub(r\"\\d+\", \"\", text)\n",
    "    text = \" \".join([word for word in text.split() if word not in stop_words])\n",
    "    return text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data after text cleaning:\n",
      "                                             content  \\\n",
      "0   Donald Trump Sends Out Embarrassing New Year’...   \n",
      "1   Drunk Bragging Trump Staffer Started Russian ...   \n",
      "2   Sheriff David Clarke Becomes An Internet Joke...   \n",
      "3   Trump Is So Obsessed He Even Has Obama’s Name...   \n",
      "4   Pope Francis Just Called Out Donald Trump Dur...   \n",
      "\n",
      "                                          clean_text  \n",
      "0  donald trump sends embarrassing new year’s eve...  \n",
      "1  drunk bragging trump staffer started russian c...  \n",
      "2  sheriff david clarke becomes internet joke thr...  \n",
      "3  trump obsessed even obama’s name coded website...  \n",
      "4  pope francis called donald trump christmas spe...  \n"
     ]
    }
   ],
   "source": [
    "# Apply text cleaning\n",
    "fake_df['clean_text'] = fake_df['content'].apply(clean_text)\n",
    "print(\"Data after text cleaning:\")\n",
    "print(fake_df[['content', 'clean_text']].head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Convert text to TF-IDF vectors\n",
    "vectorizer = TfidfVectorizer(max_features=5000)\n",
    "X = vectorizer.fit_transform(fake_df['clean_text'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Cluster assignments:\n",
      "                                               title  cluster\n",
      "0   Donald Trump Sends Out Embarrassing New Year’...        2\n",
      "1   Drunk Bragging Trump Staffer Started Russian ...        2\n",
      "2   Sheriff David Clarke Becomes An Internet Joke...        1\n",
      "3   Trump Is So Obsessed He Even Has Obama’s Name...        2\n",
      "4   Pope Francis Just Called Out Donald Trump Dur...        1\n"
     ]
    }
   ],
   "source": [
    "# Apply K-Means clustering\n",
    "num_clusters = 3  # Try clustering articles into 3 groups\n",
    "kmeans = KMeans(n_clusters=num_clusters, random_state=42)\n",
    "fake_df['cluster'] = kmeans.fit_predict(X)\n",
    "print(\"Cluster assignments:\")\n",
    "print(fake_df[['title', 'cluster']].head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANllJREFUeJzt3Qt8znX/x/HPZrY5tM1oG4XcKadETaFQsj/irpQODmV3iQ4oh5wK0WnhlkNEKqei5K6pkGiUYk5DzkulKNkqTE4zXP/H5/u4f9fjurbhyz2ua9dez8fj17Xf7/e9ftf32q6H69339AtyuVwuAQAAwBkFn/k0AAAAFKEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJgJdp06ZJUFCQrF271tdVCTi33nqr2Qqjr776ynwu9BEoqghNQICFnfy2AQMGiD/517/+Zep17bXXSn53ctJz3bt3l8IiIyNDnnnmGalevbqULFlSSpUqJfHx8fLSSy/JgQMHLlo9XnnlFZk7d+5Fez2gqAnxdQUAFKwXXnhBqlSp4nXsmmuuEX+0adMm+fjjj6Vt27ZSWK1Zs0ZatWolhw4dkgcffNCEJaUtda+++qosW7ZMFi1adNFC07333itt2rQp8Gs3adJEjh49KqGhoQV+baCwIDQBAeb222+XevXqib8rUaKEVKxY0YS8e+65x7QuFTbainT33XdLsWLFZP369aalydPLL78sb731lhRmx44dM0EpODhYwsPDfV0dwKfongOKiF9++UWefPJJqVatmgksZcuWlfvuu09+/vnnsz53//79cuONN8rll18u6enp5lh2drY8//zzUrVqVQkLCzMBqF+/fua4Df0SHjRokGzcuFGSk5PPWt7m9TR8XX/99V7Pu+OOO0wg+/TTT93HVq1aZY59/vnnZj8nJ0eGDRsmV111lQkG+rtp1KiRLF68+Ix1evPNN+W3336T1157LU9gUrGxseY9nq1LNfffIL/xQzt27DAtcnFxcaaO+rdo166dZGVlmfNa/vDhwzJ9+nR3t6x2gzq0no888oipk/7+atWqJVOmTMn3dT/44ANT78suu8x0Nx48eDDfOun4LG3F3Lp1qzRt2tSU1eeMGDEi38/fnXfeabouY2JipFevXvLFF18wTgqFCi1NQIDRL9E///zT61i5cuVMN9KKFSvMF61+4eoX9cSJE80Xn37p6RdefvRa//d//yf79u2Tr7/+Wq688ko5deqU+QL89ttvpWvXrlKjRg3T1TZ69Gj5/vvvrcfVdOjQQV588UXT2qQtNqdrbbJ9vcaNG8snn3xivuQjIiLMeKnly5ebgPbNN9+Yayj9WY/dfPPNZn/o0KGSlJQkjz76qAmH+nztXlu3bp1576ejQUwDqHaJXUjHjx+XFi1amIDYo0cPE5w0BM2bN8+0dkVGRsq7777rrr/+jpT+rZwxVw0aNHCPFbv00ktNYOzcubN5rz179vR6Pf2baOuSjtPS1zxTl5wG6pYtW5rAev/998t//vMf6d+/v9SuXdu0eioNc7fddpv8/vvv8vTTT5v6z5o1S5YuXXpBf29AgXMBCAhTp07VEdX5burIkSN5npOammrOz5gxI8911qxZ4/r9999dtWrVcv3jH/9w/fzzz+4y7777ris4ONj1zTffeF1v0qRJ5rnLly8/Y10TExNdpUqVMj9Pnz7dPOfjjz92n9f9bt26nfPraZ11f8GCBWZ/48aNZv++++5z1a9f3/28O++803Xddde59+vUqeNq3bq161yVKVPGPNfWLbfcYrbcv+udO3d6lVu6dKk5ro9q/fr1Zn/OnDlnvL7+TvV3m1vnzp1d5cuXd/35559ex9u1a+eKjIx0fzac19W/d+7PS+46Oe8n9+cnOzvbFRcX52rbtq372KhRo0y5uXPnuo8dPXrUVb169TzXBPwZ3XNAgJkwYYLpVvLclLaIOLQ76q+//jJdXVFRUaZFJbdff/1VbrnlFlNWBzNXrlzZfW7OnDmmtUe7pLQlytm0NUGdSwtCx44dTbeYtjblN5PuXF7vuuuuk9KlS5v6Oi1K2qrWqVMn8x6PHDliXkNbrLRVyqG/gy1btpgusHOhrTSXXHKJXGjakqS0O0vfw7nQ9/vRRx+Zbkr92fP3p61X2jKZ+++fmJjo9Xk5E/196wB4h7ZKaWvXTz/95D62cOFC023ntPQp7WLs0qXLOb0XwNfongMCjH5h5TcQXGc+aRfU1KlTTdeOZ0BxxsV4euihhyQkJES2bdtmulM8abjQ49rNk5/MzEzr+uogah0/o1/U2s2m3XS52b6eXqthw4YmLCl91HCk45NOnjwpK1euNGN6tKvRMzRpYLvrrrvk6quvNmN0tLtJ378uiXAm2gX4999/y4WmsyF79+5txk7NnDnT1F0DiIYVJ1Cdzh9//GG68CZPnmw2m79X7tmXZ6KhNHe3apkyZcxYNc/xTNpVmLuchnagMCE0AUWEjoXRwKTjVzRY6JetfonpGCcdM5SbjlGZMWOGjB071oQtT1pex6zol3h+dJD2udDWJmdsU37T5c/l9TQg6aw1nfWloem5554zLUkahnRfQ5PyDE06nf7HH38046F0eYC3337bjJeaNGmSGSd0OtrytWHDBjPm6Hym4p9uDJcGvNxGjRplBnY7dXzqqafM30WDoAaX03H+thqwNJjmJ3c4tG1lcoJqfk7XaggUZoQmoIjQAbr6palfvg4NFqdbfFFDlrYEDBkyxAQszwUytdXgu+++k2bNmhXIUgFOa5MTCnI7l9fTMKQh5v333zctak440mDkhCZtUXLCkyM6Oloefvhhs+maS1peB4ifKTRpl1dqaqrp/mrfvv05v29tkVG5/wbaMpMfDY666e9KB/XrQHYNdrqIpsrvd6Otc9qFqEEsISFBfEG7dnWygQYpzzr+8MMPPqkPcL4Y0wQUERpMcv/f/+uvv55vq4Zj8ODBZgbVwIEDzUw7h86S0kCS3xpE2g2os6XOlbaEaEjTqf+5ncvr1a9fX4oXLy7Dhw83QUin1isNT9oqozMAPVuZlI7vyj1OR+tytuUTHn/8cSlfvrz06dPHzOLLr9vLCTT5cWa3OWOwlP49cnej6dipEydOeB3T8KQzAD3rqNP5cwcw/bvrUgUa7DZv3pxv992FpmOn9O/nueyDBvbCvoYVih5amoAi4p///KeZlq6tRjVr1jQtJF9++aVZk+hMRo4cacY8devWzbRYaLjR8T4ffvihCQ06CFtbPPTLfvv27ea4Dlg+1wU29ctdu9K0pSe3c3k9XTpBV+XWgOSs0aS05UjDlW65Q5P+PnTpBX2eBi1dbkBb5s52KxdtKdI1pnRF8Lp163qtCK6Dq7W1S7tCT0cDnS4FoKFUx1npa+saSbkD0pIlS0xddF0tbSXT8/q3dAKRQ19b/6bajVmhQgUzNklDpK5Mrr83/VkHX+v71dfTOmp5/flCeuyxx2T8+PGmNU6XHNCgqWOznMUyC+PCpiiifD19D0DB8FwqID/79+93Pfzww65y5cq5Spcu7WrRooVr+/btrsqVK3tNU8/vOidPnnS1b9/eFRIS4p42fvz4cdfw4cPNkgRhYWFm+n18fLxr2LBhrqysLOslBzzl5OS4rrzyyjxLDpzr6/Xt29dcQ8t7qlq1qjn+448/eh1/6aWXXDfeeKMrKirKVaJECTMV/uWXXzavaWPPnj2uXr16ua6++mpXeHi4q2TJkqZueg3PuuVeckBpXRISEsx7io2NdT377LOuxYsXe03F/+mnn1yPPPKI+d3o9aOjo11NmzZ1ffnll17X0r9nkyZNzHvQ53v+XTMyMszvtGLFiq7ixYubZQGaNWvmmjx5cp5lBfJb2uB0Sw7o3yM3fV39XHnS96DLOmjdLr30UlefPn1cH330kbnmypUrrX7PgK8F6X98HdwAAEXPmDFjzMrguryFLkkA+DtCEwDggtOxZ56z8nRMk66rpd2s+Y0HA/wRY5oAABecLmFRqVIlM/ZLx8i99957Zkyajm0CCgtCEwDggtMZdLr+lYYkbV3Sweg66P2BBx7wddUAa3TPAQAAWGCdJgAAAAuEJgAAAAuMaSogen+nPXv2mMX/WKgNAIDCQUcp6Y23dUFYXWX/TAhNBUQD07nepBQAAPiH3bt3n/Hm14rQVEC0hcn5pUdERPi6OgAAwILe21EbPZzv8TMhNBUQp0tOAxOhCQCAwsVmaA0DwQEAACz4NDQtW7bM3IVcB19pwps7d+5py+rdzbWM3qvIk96du2PHjqZ1JyoqSjp37iyHDh3yKrNx40ZzV3O9o7Y2wY0YMSLP9efMmSPVq1c3ZWrXri0LFiwowHcKAAAKO5+GpsOHD0udOnVkwoQJZyyXnJwsK1euNOEqNw1MW7ZskcWLF8u8efNMEOvatatXX2Xz5s2lcuXKkpaWJiNHjpShQ4fK5MmT3WVWrFgh7du3N4Fr/fr10qZNG7Nt3ry5gN8xAAAotFx+QquSnJyc5/ivv/7quuyyy1ybN292Va5c2TV69Gj3ua1bt5rnrVmzxn3s888/dwUFBbl+++03s//GG2+4ypQp48rOznaX6d+/v6tatWru/fvvv9/VunVrr9etX7++67HHHrOuf1ZWlqmLPgIAgMLhXL6/g/197aOHHnpI+vbtK7Vq1cpzPjU11XTJ1atXz30sISHBrLOwatUqd5kmTZpIaGio1z2Q0tPTZf/+/e4y+jxPWkaPn052drZpxfLcAABA4PLr0DR8+HAJCQmRp556Kt/ze/fulZiYGK9jWj46Otqcc8rExsZ6lXH2z1bGOZ+fpKQkiYyMdG+s0QQAQGDz29Ck44/Gjh0r06ZN88sVtgcOHChZWVnuTddnAgAAgctvQ9M333wjmZmZUqlSJdN6pNsvv/wiffr0kSuuuMKUiYuLM2U8nThxwsyo03NOmYyMDK8yzv7Zyjjn8xMWFuZek4m1mQAACHx+G5p0LJMuFbBhwwb3prPndHzTF198Yco0bNhQDhw4YFqlHEuWLDFjoerXr+8uozPqcnJy3GV0pl21atWkTJky7jIpKSler69l9DgAAIDPVwTX9ZR++OEH9/7OnTtNONIxSdrCVLZsWa/yxYsXN60/GnhUjRo1pGXLltKlSxeZNGmSCUbdu3eXdu3auZcn6NChgwwbNswsJ9C/f3+zjIB2+40ePdp93aefflpuueUWGTVqlLRu3Vo++OADWbt2rdeyBAAAoIhz+dDSpUvNNL/cW2JiYr7lcy85oP766y9X+/btXaVLl3ZFRES4Hn74Ydfff//tVea7775zNWrUyBUWFmaWL3j11VfzXPvDDz90XX311a7Q0FBXrVq1XPPnzz+n98KSAwAAFD7n8v0dpP/xdXALBLrkgM6i00HhjG8CACDwvr/9dkwTAACAPyE0AQAAWCA0AQAA+PvsOQD+L77vDF9XAX4kbWQnX1cB8BlamgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAAPw9NC1btkzuuOMOqVChggQFBcncuXPd53JycqR///5Su3ZtKVWqlCnTqVMn2bNnj9c19u3bJx07dpSIiAiJioqSzp07y6FDh7zKbNy4URo3bizh4eFSsWJFGTFiRJ66zJkzR6pXr27K6GsuWLDgAr5zAABQ2Pg0NB0+fFjq1KkjEyZMyHPuyJEjsm7dOhk8eLB5/PjjjyU9PV3uvPNOr3IamLZs2SKLFy+WefPmmSDWtWtX9/mDBw9K8+bNpXLlypKWliYjR46UoUOHyuTJk91lVqxYIe3btzeBa/369dKmTRuzbd68+QL/BgAAQGER5HK5XOIHtKUpOTnZhJXTWbNmjdx4443yyy+/SKVKlWTbtm1Ss2ZNc7xevXqmzMKFC6VVq1by66+/mtapiRMnynPPPSd79+6V0NBQU2bAgAGmVWv79u1m/4EHHjABTkOXo0GDBlK3bl2ZNGmSVf01nEVGRkpWVpZp9QICRXzfGb6uAvxI2shOvq4CUKDO5fu7UI1p0jek4Uq74VRqaqr52QlMKiEhQYKDg2XVqlXuMk2aNHEHJtWiRQvTarV//353GX2eJy2jx08nOzvb/KI9NwAAELgKTWg6duyYGeOk3WhOEtTWo5iYGK9yISEhEh0dbc45ZWJjY73KOPtnK+Ocz09SUpJJps6mY6UAAEDgKhShSQeF33///aI9idrd5g8GDhxoWr6cbffu3b6uEgAAuIBCpJAEJh3HtGTJEq/+xri4OMnMzPQqf+LECTOjTs85ZTIyMrzKOPtnK+Ocz09YWJjZAABA0RBcGALTjh075Msvv5SyZct6nW/YsKEcOHDAzIpzaLA6deqU1K9f311GZ9TptRw6065atWpSpkwZd5mUlBSva2sZPQ4AAODz0KTrKW3YsMFsaufOnebnXbt2mZBz7733ytq1a2XmzJly8uRJM8ZIt+PHj5vyNWrUkJYtW0qXLl1k9erVsnz5cunevbu0a9fOzJxTHTp0MIPAdTkBXZpg9uzZMnbsWOndu7e7Hk8//bSZdTdq1Cgzo06XJNDX1WsBAAD4fMmBr776Spo2bZrneGJiogkuVapUyfd5S5culVtvvdX8rF1xGm4+++wzM2uubdu2Mm7cOCldurTX4pbdunUzSxOUK1dOevToYQaV517cctCgQfLzzz/LVVddZRbA1KULbLHkAAIVSw7AE0sOINCcy/e336zTVNgRmhCoCE3wRGhCoAnYdZoAAAB8hdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAADg76Fp2bJlcscdd0iFChUkKChI5s6d63Xe5XLJkCFDpHz58lKiRAlJSEiQHTt2eJXZt2+fdOzYUSIiIiQqKko6d+4shw4d8iqzceNGady4sYSHh0vFihVlxIgReeoyZ84cqV69uilTu3ZtWbBgwQV61wAAoDDyaWg6fPiw1KlTRyZMmJDveQ0348aNk0mTJsmqVaukVKlS0qJFCzl27Ji7jAamLVu2yOLFi2XevHkmiHXt2tV9/uDBg9K8eXOpXLmypKWlyciRI2Xo0KEyefJkd5kVK1ZI+/btTeBav369tGnTxmybN2++wL8BAABQWAS5tDnHD2hLU3JysgkrSqulLVB9+vSRZ555xhzLysqS2NhYmTZtmrRr1062bdsmNWvWlDVr1ki9evVMmYULF0qrVq3k119/Nc+fOHGiPPfcc7J3714JDQ01ZQYMGGBatbZv3272H3jgARPgNHQ5GjRoIHXr1jWBzYaGs8jISFNHbfUCAkV83xm+rgL8SNrITr6uAlCgzuX722/HNO3cudMEHe2Sc+ibql+/vqSmppp9fdQuOScwKS0fHBxsWqacMk2aNHEHJqWtVenp6bJ//353Gc/Xcco4rwMAABAifkoDk9KWJU+675zTx5iYGK/zISEhEh0d7VWmSpUqea7hnCtTpox5PNPr5Cc7O9tsnkkVAAAELr9tafJ3SUlJpuXL2XSAOQAACFx+G5ri4uLMY0ZGhtdx3XfO6WNmZqbX+RMnTpgZdZ5l8ruG52ucroxzPj8DBw40/Z/Otnv37v/h3QIAAH/nt6FJu9Q0tKSkpHh1gelYpYYNG5p9fTxw4ICZFedYsmSJnDp1yox9csrojLqcnBx3GZ1pV61aNdM155TxfB2njPM6+QkLCzMDxjw3AAAQuHwamnQ9pQ0bNpjNGfytP+/atcvMpuvZs6e89NJL8umnn8qmTZukU6dOZkacM8OuRo0a0rJlS+nSpYusXr1ali9fLt27dzcz67Sc6tChgxkErssJ6NIEs2fPlrFjx0rv3r3d9Xj66afNrLtRo0aZGXW6JMHatWvNtQAAAHw+EFyDSdOmTd37TpBJTEw0ywr069fPLAWg6y5pi1KjRo1MuNEFKB0zZ8404aZZs2Zm1lzbtm3N2k4OHW+0aNEi6datm8THx0u5cuXMgpmeaznddNNNMmvWLBk0aJA8++yzctVVV5klCa655pqL9rsAAAD+zW/WaSrsWKcJgYp1muCJdZoQaAJinSYAAAB/QmgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAAAo7KHp5MmTMnjwYKlSpYqUKFFCrrzySnnxxRfF5XK5y+jPQ4YMkfLly5syCQkJsmPHDq/r7Nu3Tzp27CgRERESFRUlnTt3lkOHDnmV2bhxozRu3FjCw8OlYsWKMmLEiIv2PgEAgP/z69A0fPhwmThxoowfP162bdtm9jXMvP766+4yuj9u3DiZNGmSrFq1SkqVKiUtWrSQY8eOuctoYNqyZYssXrxY5s2bJ8uWLZOuXbu6zx88eFCaN28ulStXlrS0NBk5cqQMHTpUJk+efNHfMwAA8E8h4sdWrFghd911l7Ru3drsX3HFFfL+++/L6tWr3a1MY8aMkUGDBplyasaMGRIbGytz586Vdu3ambC1cOFCWbNmjdSrV8+U0dDVqlUr+fe//y0VKlSQmTNnyvHjx2XKlCkSGhoqtWrVkg0bNshrr73mFa4AAEDR5dctTTfddJOkpKTI999/b/a/++47+fbbb+X22283+zt37pS9e/eaLjlHZGSk1K9fX1JTU82+PmqXnBOYlJYPDg42LVNOmSZNmpjA5NDWqvT0dNm/f3++dcvOzjYtVJ4bAAAIXH7d0jRgwAATRqpXry7FihUzY5xefvll092mNDApbVnypPvOOX2MiYnxOh8SEiLR0dFeZXTcVO5rOOfKlCmTp25JSUkybNiwAn2/AADAf/l1S9OHH35ous5mzZol69atk+nTp5suNX30tYEDB0pWVpZ72717t6+rBAAAimpLU9++fU1rk45NUrVr15ZffvnFtPIkJiZKXFycOZ6RkWFmzzl0v27duuZnLZOZmel13RMnTpgZdc7z9VGf48nZd8rkFhYWZjYAAFA0+HVL05EjR8zYI0/aTXfq1Cnzs3apaajRcU8O7c7TsUoNGzY0+/p44MABMyvOsWTJEnMNHfvklNEZdTk5Oe4yOtOuWrVq+XbNAQCAosevQ9Mdd9xhxjDNnz9ffv75Z0lOTjYz2u6++25zPigoSHr27CkvvfSSfPrpp7Jp0ybp1KmTmRHXpk0bU6ZGjRrSsmVL6dKli5l1t3z5cunevbtpvdJyqkOHDmYQuK7fpEsTzJ49W8aOHSu9e/f26fsHAACFPDTddtttpvUmN23l0XMFRZcGuPfee+XJJ5804eeZZ56Rxx57zCxw6ejXr5/06NHDLA1www03mEUrdYkBXaTSoeOidDB5s2bNzFIDjRo18lqDSWfcLVq0yMzGi4+Plz59+pgFM1luAAAAOIJcnstrW9Ius/xmpenYocsuu8yrm6uo0MCo4UsHhevK40CgiO87w9dVgB9JG9nJ11UAfPb9fU4DwfVWI46tW7e6p+wrXQ5AW3g0NAEAAASacwpNOiNNxxHpll83nN77zfMWJwAAAEUyNOmYH+3N+8c//mEGVV966aXuczqQWrvrdHYbAABAkQ5NekNb5Uz5BwAAKCrOe3HLHTt2yNKlS83g79whSmeeAQAASFEPTW+99ZY88cQTUq5cObO4pI5xcujPhCYAABBozis06WKSuuhk//79C75GAAAAgbK45f79++W+++4r+NoAAAAEUmjSwKQraAMAABQV59U9V7VqVRk8eLCsXLlSateuLcWLF/c6/9RTTxVU/QAAAApvaNL7tpUuXVq+/vprs3nSgeCEJgAAEGjOKzTpIpcAAABFyXmv0wQAgC9wE2n46kbS5xWaHnnkkTOenzJlyvnWBwAAwC+FnO+SA55ycnJk8+bNcuDAgXxv5AsAAFAkQ1NycnKeY3orFV0l/MorryyIegEAABT+dZryvVBwsPTu3VtGjx5dUJcEAAAIvNCkfvzxRzlx4kRBXhIAAKDwds9pi5Inl8slv//+u8yfP18SExMLqm4AAACFOzStX78+T9fcpZdeKqNGjTrrzDoAAIAiE5qWLl1a8DUBAAAI1MUt//jjD0lPTzc/V6tWzbQ2AQAABKLzGgh++PBh0w1Xvnx5adKkidkqVKggnTt3liNHjhR8LQEAAApjaNKB4Hqj3s8++8wsaKnbJ598Yo716dOn4GsJAABQGLvnPvroI/nPf/4jt956q/tYq1atpESJEnL//ffLxIkTC7KOAAAAhbOlSbvgYmNj8xyPiYmhew4AAASk8wpNDRs2lOeff16OHTvmPnb06FEZNmyYOQcAABBozqt7bsyYMdKyZUu5/PLLpU6dOubYd999J2FhYbJo0aKCriMAAEDhDE21a9eWHTt2yMyZM2X79u3mWPv27aVjx45mXBMAAECgOa/QlJSUZMY0denSxev4lClTzNpN/fv3L6j6AQAAFN4xTW+++aZUr149z/FatWrJpEmTCqJeAAAAhT807d271yxsmZuuCK437gUAAAg05xWaKlasKMuXL89zXI/pyuAAAACB5rzGNOlYpp49e0pOTo7cdttt5lhKSor069ePFcEBAEBAOq/Q1LdvX/nrr7/kySeflOPHj5tj4eHhZgD4wIEDC7qOAAAAhTM0BQUFyfDhw2Xw4MGybds2s8zAVVddZdZpAgAACETnFZocpUuXlhtuuKHgagMAABBIA8EBAACKGkITAACABUITAACABUITAABAIISm3377TR588EEpW7asmaWnNwteu3at+7zL5ZIhQ4aYFcr1fEJCgrmZsKd9+/aZmwlHRERIVFSUdO7cWQ4dOuRVZuPGjdK4cWOzdIIu3jlixIiL9h4BAID/8+vQtH//frn55pulePHi8vnnn8vWrVtl1KhRUqZMGXcZDTfjxo0z97xbtWqVlCpVSlq0aCHHjh1zl9HAtGXLFlm8eLHMmzdPli1bJl27dnWfP3jwoDRv3lwqV64saWlpMnLkSBk6dKhMnjz5or9nAAAQgEsOXGi6FpS2+kydOtV9rEqVKl6tTGPGjJFBgwbJXXfdZY7NmDFDYmNjZe7cudKuXTuzjtTChQtlzZo1Uq9ePVPm9ddfl1atWsm///1vc9uXmTNnmkU6p0yZIqGhoebGwxs2bJDXXnvNK1wBAICiy69bmj799FMTdO677z6JiYmR6667Tt566y33+Z07d5qbB2uXnCMyMlLq168vqampZl8ftUvOCUxKywcHB5uWKadMkyZNTGByaGtVenq6ae3KT3Z2tmmh8twAAEDg8uvQ9NNPP8nEiRPNauNffPGFPPHEE/LUU0/J9OnTzXkNTEpbljzpvnNOHzVweQoJCZHo6GivMvldw/M1cktKSjIBzdm0RQwAAAQuvw5Np06dkuuvv15eeeUV08qkXWV6s2Adv+Rreo+9rKws97Z7925fVwkAABTV0KQz4mrWrOl1rEaNGrJr1y7zc1xcnHnMyMjwKqP7zjl9zMzM9Dp/4sQJM6POs0x+1/B8jdz0Pns6G89zAwAAgcuvQ5POnNNxRZ6+//57M8vNGRSuoSYlJcV9XscW6Vilhg0bmn19PHDggJkV51iyZIlpxdKxT04ZnVGXk5PjLqMz7apVq+Y1Uw8AABRdfh2aevXqJStXrjTdcz/88IPMmjXLLAPQrVs3cz4oKEh69uwpL730khk0vmnTJunUqZOZEdemTRt3y1TLli1Nt97q1atl+fLl0r17dzOzTsupDh06mEHgun6TLk0we/ZsGTt2rPTu3dun7x8AAPgPv15y4IYbbpDk5GQzfuiFF14wLUu6xICuu+To16+fHD582Ix30halRo0amSUGdJFKhy4poEGpWbNmZtZc27ZtzdpODh3IvWjRIhPG4uPjpVy5cmbBTJYbAAAAjiCXLnaE/5l2C2r40kHhjG9CIInvO8PXVYAfSRvZyddV4DOJAv1cnsv3t193zwEAAPgLQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAECghaZXX31VgoKCpGfPnu5jx44dk27duknZsmWldOnS0rZtW8nIyPB63q5du6R169ZSsmRJiYmJkb59+8qJEye8ynz11Vdy/fXXS1hYmFStWlWmTZt20d4XAADwf4UmNK1Zs0befPNNufbaa72O9+rVSz777DOZM2eOfP3117Jnzx6555573OdPnjxpAtPx48dlxYoVMn36dBOIhgwZ4i6zc+dOU6Zp06ayYcMGE8oeffRR+eKLLy7qewQAAP6rUISmQ4cOSceOHeWtt96SMmXKuI9nZWXJO++8I6+99prcdtttEh8fL1OnTjXhaOXKlabMokWLZOvWrfLee+9J3bp15fbbb5cXX3xRJkyYYIKUmjRpklSpUkVGjRolNWrUkO7du8u9994ro0eP9tl7BgAA/qVQhCbtftOWoISEBK/jaWlpkpOT43W8evXqUqlSJUlNTTX7+li7dm2JjY11l2nRooUcPHhQtmzZ4i6T+9paxrlGfrKzs801PDcAABC4QsTPffDBB7Ju3TrTPZfb3r17JTQ0VKKioryOa0DSc04Zz8DknHfOnamMBqGjR49KiRIl8rx2UlKSDBs2rADeIQAAKAz8uqVp9+7d8vTTT8vMmTMlPDxc/MnAgQNN96CzaV0BAEDg8uvQpN1vmZmZZlZbSEiI2XSw97hx48zP2hqk45IOHDjg9TydPRcXF2d+1sfcs+mc/bOViYiIyLeVSeksOz3vuQEAgMDl16GpWbNmsmnTJjOjzdnq1atnBoU7PxcvXlxSUlLcz0lPTzdLDDRs2NDs66NeQ8OXY/HixSbk1KxZ013G8xpOGecaAAAAfj2m6ZJLLpFrrrnG61ipUqXMmkzO8c6dO0vv3r0lOjraBKEePXqYsNOgQQNzvnnz5iYcPfTQQzJixAgzfmnQoEFmcLm2FqnHH39cxo8fL/369ZNHHnlElixZIh9++KHMnz/fB+8aAAD4I78OTTZ0WYDg4GCzqKXOaNNZb2+88Yb7fLFixWTevHnyxBNPmDCloSsxMVFeeOEFdxldbkADkq75NHbsWLn88svl7bffNtcCAABQQS6Xy8Wv4n+nM+0iIyPNoHDGNyGQxPed4esqwI+kjezk6yrwmUSBfi7P5fvbr8c0AQAA+AtCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgIUQm0K4eOL7zvB1FeBH0kZ28nUVAAD/RUsTAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAABAYQ9NSUlJcsMNN8gll1wiMTEx0qZNG0lPT/cqc+zYMenWrZuULVtWSpcuLW3btpWMjAyvMrt27ZLWrVtLyZIlzXX69u0rJ06c8Crz1VdfyfXXXy9hYWFStWpVmTZt2kV5jwAAoHDw69D09ddfm0C0cuVKWbx4seTk5Ejz5s3l8OHD7jK9evWSzz77TObMmWPK79mzR+655x73+ZMnT5rAdPz4cVmxYoVMnz7dBKIhQ4a4y+zcudOUadq0qWzYsEF69uwpjz76qHzxxRcX/T0DAAD/5Nc37F24cKHXvoYdbSlKS0uTJk2aSFZWlrzzzjsya9Ysue2220yZqVOnSo0aNUzQatCggSxatEi2bt0qX375pcTGxkrdunXlxRdflP79+8vQoUMlNDRUJk2aJFWqVJFRo0aZa+jzv/32Wxk9erS0aNHCJ+8dAAD4F79uacpNQ5KKjo42jxqetPUpISHBXaZ69epSqVIlSU1NNfv6WLt2bROYHBqEDh48KFu2bHGX8byGU8a5Rn6ys7PNNTw3AAAQuApNaDp16pTpNrv55pvlmmuuMcf27t1rWoqioqK8ympA0nNOGc/A5Jx3zp2pjAaho0ePnna8VWRkpHurWLFiAb5bAADgbwpNaNKxTZs3b5YPPvhA/MHAgQNNy5ez7d6929dVAgAARXVMk6N79+4yb948WbZsmVx++eXu43FxcWaA94EDB7xam3T2nJ5zyqxevdrres7sOs8yuWfc6X5ERISUKFEi3zrpLDvdAABA0eDXLU0ul8sEpuTkZFmyZIkZrO0pPj5eihcvLikpKe5juiSBLjHQsGFDs6+PmzZtkszMTHcZnYmngahmzZruMp7XcMo41wAAAAjx9y45nRn3ySefmLWanDFIOoZIW4D0sXPnztK7d28zOFyDUI8ePUzY0ZlzSpco0HD00EMPyYgRI8w1Bg0aZK7ttBQ9/vjjMn78eOnXr5888sgjJqB9+OGHMn/+fJ++fwAA4D/8uqVp4sSJZrzQrbfeKuXLl3dvs2fPdpfRZQH++c9/mkUtdRkC7Wr7+OOP3eeLFStmuvb0UcPUgw8+KJ06dZIXXnjBXUZbsDQgaetSnTp1zNIDb7/9NssNAACAwtHSpN1zZxMeHi4TJkww2+lUrlxZFixYcMbraDBbv379edUTAAAEPr9uaQIAAPAXhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhKZcJkyYIFdccYWEh4dL/fr1ZfXq1b6uEgAA8AOEJg+zZ8+W3r17y/PPPy/r1q2TOnXqSIsWLSQzM9PXVQMAAD5GaPLw2muvSZcuXeThhx+WmjVryqRJk6RkyZIyZcoUX1cNAAD4GKHpv44fPy5paWmSkJDgPhYcHGz2U1NTfVo3AADgeyG+roC/+PPPP+XkyZMSGxvrdVz3t2/fnqd8dna22RxZWVnm8eDBg/9TPU5mH/2fno/A8r9+ngoCn0l44jOJQPtcOs91uVxnLUtoOk9JSUkybNiwPMcrVqzok/ogMEW+/rivqwB44TOJQP1c/v333xIZGXnGMoSm/ypXrpwUK1ZMMjIyvI7rflxcXJ7yAwcONIPGHadOnZJ9+/ZJ2bJlJSgo6KLUOVBp6tfwuXv3bomIiPB1dQA+k/A7fCYLjrYwaWCqUKHCWcsSmv4rNDRU4uPjJSUlRdq0aeMOQrrfvXv3POXDwsLM5ikqKuqi1bco0H8I+McA/oTPJPwNn8mCcbYWJgehyYO2HCUmJkq9evXkxhtvlDFjxsjhw4fNbDoAAFC0EZo8PPDAA/LHH3/IkCFDZO/evVK3bl1ZuHBhnsHhAACg6CE05aJdcfl1x+Hi0W5PXWA0d/cn4Ct8JuFv+Ez6RpDLZo4dAABAEcfilgAAABYITQAAABYITQAAABYITQAAABYITfArEyZMkCuuuELCw8Olfv36snr1al9XCUXYsmXL5I477jArBetK/3PnzvV1lVDE6S28brjhBrnkkkskJibGLMacnp7u62oVGYQm+I3Zs2ebBUZ1Gu26deukTp060qJFC8nMzPR11VBE6eK2+jnUMA/4g6+//lq6desmK1eulMWLF0tOTo40b97cfFZx4bHkAPyGtizp/0GNHz/efRsbvbdSjx49ZMCAAb6uHoo4bWlKTk5232YJ8Ae6ILO2OGmYatKkia+rE/BoaYJfOH78uKSlpUlCQoL7WHBwsNlPTU31ad0AwF9lZWWZx+joaF9XpUggNMEv/Pnnn3Ly5Mk8t6zRfb2lDQDAm7bG9+zZU26++Wa55pprfF2dIoHbqAAAUAjp2KbNmzfLt99+6+uqFBmEJviFcuXKSbFixSQjI8PruO7HxcX5rF4A4I/0Hqnz5s0zMzwvv/xyX1enyKB7Dn4hNDRU4uPjJSUlxavpWfcbNmzo07oBgL/QuVsamHRSwpIlS6RKlSq+rlKRQksT/IYuN5CYmCj16tWTG2+8UcaMGWOm0T788MO+rhqKqEOHDskPP/zg3t+5c6ds2LDBDLqtVKmST+uGotslN2vWLPnkk0/MWk3OmM/IyEgpUaKEr6sX8FhyAH5FlxsYOXKk+Yegbt26Mm7cOLMUAeALX331lTRt2jTPcQ3306ZN80mdULTp0hf5mTp1qvzrX/+66PUpaghNAAAAFhjTBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBKBI+Pnnn83CgLqiNwCcD0ITAJwHXRE8KirK19UAcBERmgDAh06ePGluTg3A/xGaAAQUDSAjRoyQqlWrSlhYmLmx7ssvv2zVUjR37lyve3t999135t5zemPUiIgIiY+Pl7Vr15p70umNpLOyskx53YYOHWqek52dLc8884xcdtllUqpUKXPvRC2f+3U//fRTqVmzpqnjrl27LujvBEDBCCmg6wCAXxg4cKC89dZbMnr0aGnUqJH8/vvvsn379vO6VseOHeW6666TiRMnSrFixcx4qOLFi8tNN90kY8aMkSFDhkh6eropW7p0afPYvXt32bp1q3zwwQdSoUIFSU5OlpYtW8qmTZvkqquuMmWOHDkiw4cPl7ffflvKli0rMTExBfgbAHChEJoABIy///5bxo4dK+PHj5fExERz7MorrzThSQeCnyttAerbt69Ur17d7DuhR0VGRpoWpri4OK/yerd5fdTApLTVaeHCheb4K6+8Yo7l5OTIG2+8IXXq1Pmf3zOAi4fQBCBgbNu2zXSPNWvWrECu17t3b3n00Ufl3XfflYSEBLnvvvtMCDsdbU3SMUpXX32113Gtk7YoOUJDQ+Xaa68tkDoCuHgITQACRokSJazLBgcHi8vl8jqmLUCedJxShw4dZP78+fL555/L888/b7rd7r777nyveejQIdONl5aWZh49Od13Tj09x04BKBwYCA4gYGj3mQaSlJSUs5a99NJLTXfe4cOH3cfyW8NJW4169eolixYtknvuucd0szmtRdqq5EnHP+mxzMxMMxDdc/PsxgNQOBGaAASM8PBw6d+/v/Tr109mzJghP/74o6xcuVLeeeedPGV1VlvJkiXl2WefNeVmzZplZrY5jh49agZ168y3X375RZYvXy5r1qyRGjVqmPNXXHGFaVnSgPbnn3+awd0asHTweKdOneTjjz+WnTt3yurVqyUpKcm0VgEo3AhNAALK4MGDpU+fPmZmmwacBx54wLT85BYdHS3vvfeeLFiwQGrXri3vv/++e9kApd1rf/31lwlAGobuv/9+uf3222XYsGHmvM6ge/zxx831tdVKlzlQ2hKlz9E6VKtWTdq0aWPCli59AKBwC3Ll7tQHAABAHrQ0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAyNn9PwIZ7a4pM7oeAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Visualizing the clusters\n",
    "sns.countplot(x=fake_df['cluster'])\n",
    "plt.title(\"Fake News Clustering\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Apply LDA for topic modeling\n",
    "num_topics = 5\n",
    "lda = LatentDirichletAllocation(n_components=num_topics, random_state=42)\n",
    "topic_matrix = lda.fit_transform(X)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Topic 0: republican said vote state president people republicans would obama trump\n",
      "Topic 1: students us school gun people video muslim said black police\n",
      "Topic 2: one said like people clinton president video donald hillary trump\n",
      "Topic 3: judge maxine jeanine nancy bundy flint waters video moore pelosi\n",
      "Topic 4: investigation intelligence comey us hillary russian fbi russia clinton trump\n"
     ]
    }
   ],
   "source": [
    "# Show top words for each topic\n",
    "words = np.array(vectorizer.get_feature_names_out())\n",
    "top_words = []\n",
    "for topic_idx, topic in enumerate(lda.components_):\n",
    "    top_words.append(\" \".join(words[np.argsort(topic)][-10:]))\n",
    "    print(f\"Topic {topic_idx}: {top_words[-1]}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['tfidf_vectorizer.pkl']"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Save model and vectorizer\n",
    "joblib.dump(kmeans, \"kmeans_fake_news.pkl\")\n",
    "joblib.dump(lda, \"lda_fake_news.pkl\")\n",
    "joblib.dump(vectorizer, \"tfidf_vectorizer.pkl\")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}