Spaces:
Sleeping
Sleeping
File size: 28,550 Bytes
d2ab310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import re\n",
"import string\n",
"import nltk\n",
"from nltk.corpus import stopwords\n",
"from sklearn.decomposition import LatentDirichletAllocation\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.cluster import KMeans\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import joblib\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package stopwords to C:\\Users\\Regino Balogo\n",
"[nltk_data] Jr\\AppData\\Roaming\\nltk_data...\n",
"[nltk_data] Unzipping corpora\\stopwords.zip.\n"
]
}
],
"source": [
"# Download NLTK stopwords\n",
"nltk.download('stopwords')\n",
"stop_words = set(stopwords.words('english'))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Load dataset\n",
"fake_df = pd.read_csv(\"Fake.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Initial Data:\n",
" title \\\n",
"0 Donald Trump Sends Out Embarrassing New Year’... \n",
"1 Drunk Bragging Trump Staffer Started Russian ... \n",
"2 Sheriff David Clarke Becomes An Internet Joke... \n",
"3 Trump Is So Obsessed He Even Has Obama’s Name... \n",
"4 Pope Francis Just Called Out Donald Trump Dur... \n",
"\n",
" text \n",
"0 Donald Trump just couldn t wish all Americans ... \n",
"1 House Intelligence Committee Chairman Devin Nu... \n",
"2 On Friday, it was revealed that former Milwauk... \n",
"3 On Christmas day, Donald Trump announced that ... \n",
"4 Pope Francis used his annual Christmas Day mes... \n"
]
}
],
"source": [
"print(\"Initial Data:\")\n",
"print(fake_df.head())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data after dropping missing values:\n",
" title \\\n",
"0 Donald Trump Sends Out Embarrassing New Year’... \n",
"1 Drunk Bragging Trump Staffer Started Russian ... \n",
"2 Sheriff David Clarke Becomes An Internet Joke... \n",
"3 Trump Is So Obsessed He Even Has Obama’s Name... \n",
"4 Pope Francis Just Called Out Donald Trump Dur... \n",
"\n",
" text \n",
"0 Donald Trump just couldn t wish all Americans ... \n",
"1 House Intelligence Committee Chairman Devin Nu... \n",
"2 On Friday, it was revealed that former Milwauk... \n",
"3 On Christmas day, Donald Trump announced that ... \n",
"4 Pope Francis used his annual Christmas Day mes... \n"
]
}
],
"source": [
"# Keep only relevant columns\n",
"fake_df = fake_df[['title', 'text']].dropna()\n",
"print(\"Data after dropping missing values:\")\n",
"print(fake_df.head())\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# Combine title and text\n",
"fake_df['content'] = fake_df['title'] + \" \" + fake_df['text']"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Function to clean text\n",
"def clean_text(text):\n",
" text = text.lower()\n",
" text = re.sub(f\"[{string.punctuation}]\", \"\", text)\n",
" text = re.sub(r\"\\d+\", \"\", text)\n",
" text = \" \".join([word for word in text.split() if word not in stop_words])\n",
" return text"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data after text cleaning:\n",
" content \\\n",
"0 Donald Trump Sends Out Embarrassing New Year’... \n",
"1 Drunk Bragging Trump Staffer Started Russian ... \n",
"2 Sheriff David Clarke Becomes An Internet Joke... \n",
"3 Trump Is So Obsessed He Even Has Obama’s Name... \n",
"4 Pope Francis Just Called Out Donald Trump Dur... \n",
"\n",
" clean_text \n",
"0 donald trump sends embarrassing new year’s eve... \n",
"1 drunk bragging trump staffer started russian c... \n",
"2 sheriff david clarke becomes internet joke thr... \n",
"3 trump obsessed even obama’s name coded website... \n",
"4 pope francis called donald trump christmas spe... \n"
]
}
],
"source": [
"# Apply text cleaning\n",
"fake_df['clean_text'] = fake_df['content'].apply(clean_text)\n",
"print(\"Data after text cleaning:\")\n",
"print(fake_df[['content', 'clean_text']].head())"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Convert text to TF-IDF vectors\n",
"vectorizer = TfidfVectorizer(max_features=5000)\n",
"X = vectorizer.fit_transform(fake_df['clean_text'])"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cluster assignments:\n",
" title cluster\n",
"0 Donald Trump Sends Out Embarrassing New Year’... 2\n",
"1 Drunk Bragging Trump Staffer Started Russian ... 2\n",
"2 Sheriff David Clarke Becomes An Internet Joke... 1\n",
"3 Trump Is So Obsessed He Even Has Obama’s Name... 2\n",
"4 Pope Francis Just Called Out Donald Trump Dur... 1\n"
]
}
],
"source": [
"# Apply K-Means clustering\n",
"num_clusters = 3 # Try clustering articles into 3 groups\n",
"kmeans = KMeans(n_clusters=num_clusters, random_state=42)\n",
"fake_df['cluster'] = kmeans.fit_predict(X)\n",
"print(\"Cluster assignments:\")\n",
"print(fake_df[['title', 'cluster']].head())"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANllJREFUeJzt3Qt8znX/x/HPZrY5tM1oG4XcKadETaFQsj/irpQODmV3iQ4oh5wK0WnhlkNEKqei5K6pkGiUYk5DzkulKNkqTE4zXP/H5/u4f9fjurbhyz2ua9dez8fj17Xf7/e9ftf32q6H69339AtyuVwuAQAAwBkFn/k0AAAAFKEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJAADAAqEJgJdp06ZJUFCQrF271tdVCTi33nqr2Qqjr776ynwu9BEoqghNQICFnfy2AQMGiD/517/+Zep17bXXSn53ctJz3bt3l8IiIyNDnnnmGalevbqULFlSSpUqJfHx8fLSSy/JgQMHLlo9XnnlFZk7d+5Fez2gqAnxdQUAFKwXXnhBqlSp4nXsmmuuEX+0adMm+fjjj6Vt27ZSWK1Zs0ZatWolhw4dkgcffNCEJaUtda+++qosW7ZMFi1adNFC07333itt2rQp8Gs3adJEjh49KqGhoQV+baCwIDQBAeb222+XevXqib8rUaKEVKxY0YS8e+65x7QuFTbainT33XdLsWLFZP369aalydPLL78sb731lhRmx44dM0EpODhYwsPDfV0dwKfongOKiF9++UWefPJJqVatmgksZcuWlfvuu09+/vnnsz53//79cuONN8rll18u6enp5lh2drY8//zzUrVqVQkLCzMBqF+/fua4Df0SHjRokGzcuFGSk5PPWt7m9TR8XX/99V7Pu+OOO0wg+/TTT93HVq1aZY59/vnnZj8nJ0eGDRsmV111lQkG+rtp1KiRLF68+Ix1evPNN+W3336T1157LU9gUrGxseY9nq1LNfffIL/xQzt27DAtcnFxcaaO+rdo166dZGVlmfNa/vDhwzJ9+nR3t6x2gzq0no888oipk/7+atWqJVOmTMn3dT/44ANT78suu8x0Nx48eDDfOun4LG3F3Lp1qzRt2tSU1eeMGDEi38/fnXfeabouY2JipFevXvLFF18wTgqFCi1NQIDRL9E///zT61i5cuVMN9KKFSvMF61+4eoX9cSJE80Xn37p6RdefvRa//d//yf79u2Tr7/+Wq688ko5deqU+QL89ttvpWvXrlKjRg3T1TZ69Gj5/vvvrcfVdOjQQV588UXT2qQtNqdrbbJ9vcaNG8snn3xivuQjIiLMeKnly5ebgPbNN9+Yayj9WY/dfPPNZn/o0KGSlJQkjz76qAmH+nztXlu3bp1576ejQUwDqHaJXUjHjx+XFi1amIDYo0cPE5w0BM2bN8+0dkVGRsq7777rrr/+jpT+rZwxVw0aNHCPFbv00ktNYOzcubN5rz179vR6Pf2baOuSjtPS1zxTl5wG6pYtW5rAev/998t//vMf6d+/v9SuXdu0eioNc7fddpv8/vvv8vTTT5v6z5o1S5YuXXpBf29AgXMBCAhTp07VEdX5burIkSN5npOammrOz5gxI8911qxZ4/r9999dtWrVcv3jH/9w/fzzz+4y7777ris4ONj1zTffeF1v0qRJ5rnLly8/Y10TExNdpUqVMj9Pnz7dPOfjjz92n9f9bt26nfPraZ11f8GCBWZ/48aNZv++++5z1a9f3/28O++803Xddde59+vUqeNq3bq161yVKVPGPNfWLbfcYrbcv+udO3d6lVu6dKk5ro9q/fr1Zn/OnDlnvL7+TvV3m1vnzp1d5cuXd/35559ex9u1a+eKjIx0fzac19W/d+7PS+46Oe8n9+cnOzvbFRcX52rbtq372KhRo0y5uXPnuo8dPXrUVb169TzXBPwZ3XNAgJkwYYLpVvLclLaIOLQ76q+//jJdXVFRUaZFJbdff/1VbrnlFlNWBzNXrlzZfW7OnDmmtUe7pLQlytm0NUGdSwtCx44dTbeYtjblN5PuXF7vuuuuk9KlS5v6Oi1K2qrWqVMn8x6PHDliXkNbrLRVyqG/gy1btpgusHOhrTSXXHKJXGjakqS0O0vfw7nQ9/vRRx+Zbkr92fP3p61X2jKZ+++fmJjo9Xk5E/196wB4h7ZKaWvXTz/95D62cOFC023ntPQp7WLs0qXLOb0XwNfongMCjH5h5TcQXGc+aRfU1KlTTdeOZ0BxxsV4euihhyQkJES2bdtmulM8abjQ49rNk5/MzEzr+uogah0/o1/U2s2m3XS52b6eXqthw4YmLCl91HCk45NOnjwpK1euNGN6tKvRMzRpYLvrrrvk6quvNmN0tLtJ378uiXAm2gX4999/y4WmsyF79+5txk7NnDnT1F0DiIYVJ1Cdzh9//GG68CZPnmw2m79X7tmXZ6KhNHe3apkyZcxYNc/xTNpVmLuchnagMCE0AUWEjoXRwKTjVzRY6JetfonpGCcdM5SbjlGZMWOGjB071oQtT1pex6zol3h+dJD2udDWJmdsU37T5c/l9TQg6aw1nfWloem5554zLUkahnRfQ5PyDE06nf7HH38046F0eYC3337bjJeaNGmSGSd0OtrytWHDBjPm6Hym4p9uDJcGvNxGjRplBnY7dXzqqafM30WDoAaX03H+thqwNJjmJ3c4tG1lcoJqfk7XaggUZoQmoIjQAbr6palfvg4NFqdbfFFDlrYEDBkyxAQszwUytdXgu+++k2bNmhXIUgFOa5MTCnI7l9fTMKQh5v333zctak440mDkhCZtUXLCkyM6Oloefvhhs+maS1peB4ifKTRpl1dqaqrp/mrfvv05v29tkVG5/wbaMpMfDY666e9KB/XrQHYNdrqIpsrvd6Otc9qFqEEsISFBfEG7dnWygQYpzzr+8MMPPqkPcL4Y0wQUERpMcv/f/+uvv55vq4Zj8ODBZgbVwIEDzUw7h86S0kCS3xpE2g2os6XOlbaEaEjTqf+5ncvr1a9fX4oXLy7Dhw83QUin1isNT9oqozMAPVuZlI7vyj1OR+tytuUTHn/8cSlfvrz06dPHzOLLr9vLCTT5cWa3OWOwlP49cnej6dipEydOeB3T8KQzAD3rqNP5cwcw/bvrUgUa7DZv3pxv992FpmOn9O/nueyDBvbCvoYVih5amoAi4p///KeZlq6tRjVr1jQtJF9++aVZk+hMRo4cacY8devWzbRYaLjR8T4ffvihCQ06CFtbPPTLfvv27ea4Dlg+1wU29ctdu9K0pSe3c3k9XTpBV+XWgOSs0aS05UjDlW65Q5P+PnTpBX2eBi1dbkBb5s52KxdtKdI1pnRF8Lp163qtCK6Dq7W1S7tCT0cDnS4FoKFUx1npa+saSbkD0pIlS0xddF0tbSXT8/q3dAKRQ19b/6bajVmhQgUzNklDpK5Mrr83/VkHX+v71dfTOmp5/flCeuyxx2T8+PGmNU6XHNCgqWOznMUyC+PCpiiifD19D0DB8FwqID/79+93Pfzww65y5cq5Spcu7WrRooVr+/btrsqVK3tNU8/vOidPnnS1b9/eFRIS4p42fvz4cdfw4cPNkgRhYWFm+n18fLxr2LBhrqysLOslBzzl5OS4rrzyyjxLDpzr6/Xt29dcQ8t7qlq1qjn+448/eh1/6aWXXDfeeKMrKirKVaJECTMV/uWXXzavaWPPnj2uXr16ua6++mpXeHi4q2TJkqZueg3PuuVeckBpXRISEsx7io2NdT377LOuxYsXe03F/+mnn1yPPPKI+d3o9aOjo11NmzZ1ffnll17X0r9nkyZNzHvQ53v+XTMyMszvtGLFiq7ixYubZQGaNWvmmjx5cp5lBfJb2uB0Sw7o3yM3fV39XHnS96DLOmjdLr30UlefPn1cH330kbnmypUrrX7PgK8F6X98HdwAAEXPmDFjzMrguryFLkkA+DtCEwDggtOxZ56z8nRMk66rpd2s+Y0HA/wRY5oAABecLmFRqVIlM/ZLx8i99957Zkyajm0CCgtCEwDggtMZdLr+lYYkbV3Sweg66P2BBx7wddUAa3TPAQAAWGCdJgAAAAuEJgAAAAuMaSogen+nPXv2mMX/WKgNAIDCQUcp6Y23dUFYXWX/TAhNBUQD07nepBQAAPiH3bt3n/Hm14rQVEC0hcn5pUdERPi6OgAAwILe21EbPZzv8TMhNBUQp0tOAxOhCQCAwsVmaA0DwQEAACz4NDQtW7bM3IVcB19pwps7d+5py+rdzbWM3qvIk96du2PHjqZ1JyoqSjp37iyHDh3yKrNx40ZzV3O9o7Y2wY0YMSLP9efMmSPVq1c3ZWrXri0LFiwowHcKAAAKO5+GpsOHD0udOnVkwoQJZyyXnJwsK1euNOEqNw1MW7ZskcWLF8u8efNMEOvatatXX2Xz5s2lcuXKkpaWJiNHjpShQ4fK5MmT3WVWrFgh7du3N4Fr/fr10qZNG7Nt3ry5gN8xAAAotFx+QquSnJyc5/ivv/7quuyyy1ybN292Va5c2TV69Gj3ua1bt5rnrVmzxn3s888/dwUFBbl+++03s//GG2+4ypQp48rOznaX6d+/v6tatWru/fvvv9/VunVrr9etX7++67HHHrOuf1ZWlqmLPgIAgMLhXL6/g/197aOHHnpI+vbtK7Vq1cpzPjU11XTJ1atXz30sISHBrLOwatUqd5kmTZpIaGio1z2Q0tPTZf/+/e4y+jxPWkaPn052drZpxfLcAABA4PLr0DR8+HAJCQmRp556Kt/ze/fulZiYGK9jWj46Otqcc8rExsZ6lXH2z1bGOZ+fpKQkiYyMdG+s0QQAQGDz29Ck44/Gjh0r06ZN88sVtgcOHChZWVnuTddnAgAAgctvQ9M333wjmZmZUqlSJdN6pNsvv/wiffr0kSuuuMKUiYuLM2U8nThxwsyo03NOmYyMDK8yzv7Zyjjn8xMWFuZek4m1mQAACHx+G5p0LJMuFbBhwwb3prPndHzTF198Yco0bNhQDhw4YFqlHEuWLDFjoerXr+8uozPqcnJy3GV0pl21atWkTJky7jIpKSler69l9DgAAIDPVwTX9ZR++OEH9/7OnTtNONIxSdrCVLZsWa/yxYsXN60/GnhUjRo1pGXLltKlSxeZNGmSCUbdu3eXdu3auZcn6NChgwwbNswsJ9C/f3+zjIB2+40ePdp93aefflpuueUWGTVqlLRu3Vo++OADWbt2rdeyBAAAoIhz+dDSpUvNNL/cW2JiYr7lcy85oP766y9X+/btXaVLl3ZFRES4Hn74Ydfff//tVea7775zNWrUyBUWFmaWL3j11VfzXPvDDz90XX311a7Q0FBXrVq1XPPnzz+n98KSAwAAFD7n8v0dpP/xdXALBLrkgM6i00HhjG8CACDwvr/9dkwTAACAPyE0AQAAWCA0AQAA+PvsOQD+L77vDF9XAX4kbWQnX1cB8BlamgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAACwQmgAAAPw9NC1btkzuuOMOqVChggQFBcncuXPd53JycqR///5Su3ZtKVWqlCnTqVMn2bNnj9c19u3bJx07dpSIiAiJioqSzp07y6FDh7zKbNy4URo3bizh4eFSsWJFGTFiRJ66zJkzR6pXr27K6GsuWLDgAr5zAABQ2Pg0NB0+fFjq1KkjEyZMyHPuyJEjsm7dOhk8eLB5/PjjjyU9PV3uvPNOr3IamLZs2SKLFy+WefPmmSDWtWtX9/mDBw9K8+bNpXLlypKWliYjR46UoUOHyuTJk91lVqxYIe3btzeBa/369dKmTRuzbd68+QL/BgAAQGER5HK5XOIHtKUpOTnZhJXTWbNmjdx4443yyy+/SKVKlWTbtm1Ss2ZNc7xevXqmzMKFC6VVq1by66+/mtapiRMnynPPPSd79+6V0NBQU2bAgAGmVWv79u1m/4EHHjABTkOXo0GDBlK3bl2ZNGmSVf01nEVGRkpWVpZp9QICRXzfGb6uAvxI2shOvq4CUKDO5fu7UI1p0jek4Uq74VRqaqr52QlMKiEhQYKDg2XVqlXuMk2aNHEHJtWiRQvTarV//353GX2eJy2jx08nOzvb/KI9NwAAELgKTWg6duyYGeOk3WhOEtTWo5iYGK9yISEhEh0dbc45ZWJjY73KOPtnK+Ocz09SUpJJps6mY6UAAEDgKhShSQeF33///aI9idrd5g8GDhxoWr6cbffu3b6uEgAAuIBCpJAEJh3HtGTJEq/+xri4OMnMzPQqf+LECTOjTs85ZTIyMrzKOPtnK+Ocz09YWJjZAABA0RBcGALTjh075Msvv5SyZct6nW/YsKEcOHDAzIpzaLA6deqU1K9f311GZ9TptRw6065atWpSpkwZd5mUlBSva2sZPQ4AAODz0KTrKW3YsMFsaufOnebnXbt2mZBz7733ytq1a2XmzJly8uRJM8ZIt+PHj5vyNWrUkJYtW0qXLl1k9erVsnz5cunevbu0a9fOzJxTHTp0MIPAdTkBXZpg9uzZMnbsWOndu7e7Hk8//bSZdTdq1Cgzo06XJNDX1WsBAAD4fMmBr776Spo2bZrneGJiogkuVapUyfd5S5culVtvvdX8rF1xGm4+++wzM2uubdu2Mm7cOCldurTX4pbdunUzSxOUK1dOevToYQaV517cctCgQfLzzz/LVVddZRbA1KULbLHkAAIVSw7AE0sOINCcy/e336zTVNgRmhCoCE3wRGhCoAnYdZoAAAB8hdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAABggdAEAADg76Fp2bJlcscdd0iFChUkKChI5s6d63Xe5XLJkCFDpHz58lKiRAlJSEiQHTt2eJXZt2+fdOzYUSIiIiQqKko6d+4shw4d8iqzceNGady4sYSHh0vFihVlxIgReeoyZ84cqV69uilTu3ZtWbBgwQV61wAAoDDyaWg6fPiw1KlTRyZMmJDveQ0348aNk0mTJsmqVaukVKlS0qJFCzl27Ji7jAamLVu2yOLFi2XevHkmiHXt2tV9/uDBg9K8eXOpXLmypKWlyciRI2Xo0KEyefJkd5kVK1ZI+/btTeBav369tGnTxmybN2++wL8BAABQWAS5tDnHD2hLU3JysgkrSqulLVB9+vSRZ555xhzLysqS2NhYmTZtmrRr1062bdsmNWvWlDVr1ki9evVMmYULF0qrVq3k119/Nc+fOHGiPPfcc7J3714JDQ01ZQYMGGBatbZv3272H3jgARPgNHQ5GjRoIHXr1jWBzYaGs8jISFNHbfUCAkV83xm+rgL8SNrITr6uAlCgzuX722/HNO3cudMEHe2Sc+ibql+/vqSmppp9fdQuOScwKS0fHBxsWqacMk2aNHEHJqWtVenp6bJ//353Gc/Xcco4rwMAABAifkoDk9KWJU+675zTx5iYGK/zISEhEh0d7VWmSpUqea7hnCtTpox5PNPr5Cc7O9tsnkkVAAAELr9tafJ3SUlJpuXL2XSAOQAACFx+G5ri4uLMY0ZGhtdx3XfO6WNmZqbX+RMnTpgZdZ5l8ruG52ucroxzPj8DBw40/Z/Otnv37v/h3QIAAH/nt6FJu9Q0tKSkpHh1gelYpYYNG5p9fTxw4ICZFedYsmSJnDp1yox9csrojLqcnBx3GZ1pV61aNdM155TxfB2njPM6+QkLCzMDxjw3AAAQuHwamnQ9pQ0bNpjNGfytP+/atcvMpuvZs6e89NJL8umnn8qmTZukU6dOZkacM8OuRo0a0rJlS+nSpYusXr1ali9fLt27dzcz67Sc6tChgxkErssJ6NIEs2fPlrFjx0rv3r3d9Xj66afNrLtRo0aZGXW6JMHatWvNtQAAAHw+EFyDSdOmTd37TpBJTEw0ywr069fPLAWg6y5pi1KjRo1MuNEFKB0zZ8404aZZs2Zm1lzbtm3N2k4OHW+0aNEi6datm8THx0u5cuXMgpmeaznddNNNMmvWLBk0aJA8++yzctVVV5klCa655pqL9rsAAAD+zW/WaSrsWKcJgYp1muCJdZoQaAJinSYAAAB/QmgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAACwQGgCAAAo7KHp5MmTMnjwYKlSpYqUKFFCrrzySnnxxRfF5XK5y+jPQ4YMkfLly5syCQkJsmPHDq/r7Nu3Tzp27CgRERESFRUlnTt3lkOHDnmV2bhxozRu3FjCw8OlYsWKMmLEiIv2PgEAgP/z69A0fPhwmThxoowfP162bdtm9jXMvP766+4yuj9u3DiZNGmSrFq1SkqVKiUtWrSQY8eOuctoYNqyZYssXrxY5s2bJ8uWLZOuXbu6zx88eFCaN28ulStXlrS0NBk5cqQMHTpUJk+efNHfMwAA8E8h4sdWrFghd911l7Ru3drsX3HFFfL+++/L6tWr3a1MY8aMkUGDBplyasaMGRIbGytz586Vdu3ambC1cOFCWbNmjdSrV8+U0dDVqlUr+fe//y0VKlSQmTNnyvHjx2XKlCkSGhoqtWrVkg0bNshrr73mFa4AAEDR5dctTTfddJOkpKTI999/b/a/++47+fbbb+X22283+zt37pS9e/eaLjlHZGSk1K9fX1JTU82+PmqXnBOYlJYPDg42LVNOmSZNmpjA5NDWqvT0dNm/f3++dcvOzjYtVJ4bAAAIXH7d0jRgwAATRqpXry7FihUzY5xefvll092mNDApbVnypPvOOX2MiYnxOh8SEiLR0dFeZXTcVO5rOOfKlCmTp25JSUkybNiwAn2/AADAf/l1S9OHH35ous5mzZol69atk+nTp5suNX30tYEDB0pWVpZ72717t6+rBAAAimpLU9++fU1rk45NUrVr15ZffvnFtPIkJiZKXFycOZ6RkWFmzzl0v27duuZnLZOZmel13RMnTpgZdc7z9VGf48nZd8rkFhYWZjYAAFA0+HVL05EjR8zYI0/aTXfq1Cnzs3apaajRcU8O7c7TsUoNGzY0+/p44MABMyvOsWTJEnMNHfvklNEZdTk5Oe4yOtOuWrVq+XbNAQCAosevQ9Mdd9xhxjDNnz9ffv75Z0lOTjYz2u6++25zPigoSHr27CkvvfSSfPrpp7Jp0ybp1KmTmRHXpk0bU6ZGjRrSsmVL6dKli5l1t3z5cunevbtpvdJyqkOHDmYQuK7fpEsTzJ49W8aOHSu9e/f26fsHAACFPDTddtttpvUmN23l0XMFRZcGuPfee+XJJ5804eeZZ56Rxx57zCxw6ejXr5/06NHDLA1www03mEUrdYkBXaTSoeOidDB5s2bNzFIDjRo18lqDSWfcLVq0yMzGi4+Plz59+pgFM1luAAAAOIJcnstrW9Ius/xmpenYocsuu8yrm6uo0MCo4UsHhevK40CgiO87w9dVgB9JG9nJ11UAfPb9fU4DwfVWI46tW7e6p+wrXQ5AW3g0NAEAAASacwpNOiNNxxHpll83nN77zfMWJwAAAEUyNOmYH+3N+8c//mEGVV966aXuczqQWrvrdHYbAABAkQ5NekNb5Uz5BwAAKCrOe3HLHTt2yNKlS83g79whSmeeAQAASFEPTW+99ZY88cQTUq5cObO4pI5xcujPhCYAABBozis06WKSuuhk//79C75GAAAAgbK45f79++W+++4r+NoAAAAEUmjSwKQraAMAABQV59U9V7VqVRk8eLCsXLlSateuLcWLF/c6/9RTTxVU/QAAAApvaNL7tpUuXVq+/vprs3nSgeCEJgAAEGjOKzTpIpcAAABFyXmv0wQAgC9wE2n46kbS5xWaHnnkkTOenzJlyvnWBwAAwC+FnO+SA55ycnJk8+bNcuDAgXxv5AsAAFAkQ1NycnKeY3orFV0l/MorryyIegEAABT+dZryvVBwsPTu3VtGjx5dUJcEAAAIvNCkfvzxRzlx4kRBXhIAAKDwds9pi5Inl8slv//+u8yfP18SExMLqm4AAACFOzStX78+T9fcpZdeKqNGjTrrzDoAAIAiE5qWLl1a8DUBAAAI1MUt//jjD0lPTzc/V6tWzbQ2AQAABKLzGgh++PBh0w1Xvnx5adKkidkqVKggnTt3liNHjhR8LQEAAApjaNKB4Hqj3s8++8wsaKnbJ598Yo716dOn4GsJAABQGLvnPvroI/nPf/4jt956q/tYq1atpESJEnL//ffLxIkTC7KOAAAAhbOlSbvgYmNj8xyPiYmhew4AAASk8wpNDRs2lOeff16OHTvmPnb06FEZNmyYOQcAABBozqt7bsyYMdKyZUu5/PLLpU6dOubYd999J2FhYbJo0aKCriMAAEDhDE21a9eWHTt2yMyZM2X79u3mWPv27aVjx45mXBMAAECgOa/QlJSUZMY0denSxev4lClTzNpN/fv3L6j6AQAAFN4xTW+++aZUr149z/FatWrJpEmTCqJeAAAAhT807d271yxsmZuuCK437gUAAAg05xWaKlasKMuXL89zXI/pyuAAAACB5rzGNOlYpp49e0pOTo7cdttt5lhKSor069ePFcEBAEBAOq/Q1LdvX/nrr7/kySeflOPHj5tj4eHhZgD4wIEDC7qOAAAAhTM0BQUFyfDhw2Xw4MGybds2s8zAVVddZdZpAgAACETnFZocpUuXlhtuuKHgagMAABBIA8EBAACKGkITAACABUITAACABUITAABAIISm3377TR588EEpW7asmaWnNwteu3at+7zL5ZIhQ4aYFcr1fEJCgrmZsKd9+/aZmwlHRERIVFSUdO7cWQ4dOuRVZuPGjdK4cWOzdIIu3jlixIiL9h4BAID/8+vQtH//frn55pulePHi8vnnn8vWrVtl1KhRUqZMGXcZDTfjxo0z97xbtWqVlCpVSlq0aCHHjh1zl9HAtGXLFlm8eLHMmzdPli1bJl27dnWfP3jwoDRv3lwqV64saWlpMnLkSBk6dKhMnjz5or9nAAAQgEsOXGi6FpS2+kydOtV9rEqVKl6tTGPGjJFBgwbJXXfdZY7NmDFDYmNjZe7cudKuXTuzjtTChQtlzZo1Uq9ePVPm9ddfl1atWsm///1vc9uXmTNnmkU6p0yZIqGhoebGwxs2bJDXXnvNK1wBAICiy69bmj799FMTdO677z6JiYmR6667Tt566y33+Z07d5qbB2uXnCMyMlLq168vqampZl8ftUvOCUxKywcHB5uWKadMkyZNTGByaGtVenq6ae3KT3Z2tmmh8twAAEDg8uvQ9NNPP8nEiRPNauNffPGFPPHEE/LUU0/J9OnTzXkNTEpbljzpvnNOHzVweQoJCZHo6GivMvldw/M1cktKSjIBzdm0RQwAAAQuvw5Np06dkuuvv15eeeUV08qkXWV6s2Adv+Rreo+9rKws97Z7925fVwkAABTV0KQz4mrWrOl1rEaNGrJr1y7zc1xcnHnMyMjwKqP7zjl9zMzM9Dp/4sQJM6POs0x+1/B8jdz0Pns6G89zAwAAgcuvQ5POnNNxRZ6+//57M8vNGRSuoSYlJcV9XscW6Vilhg0bmn19PHDggJkV51iyZIlpxdKxT04ZnVGXk5PjLqMz7apVq+Y1Uw8AABRdfh2aevXqJStXrjTdcz/88IPMmjXLLAPQrVs3cz4oKEh69uwpL730khk0vmnTJunUqZOZEdemTRt3y1TLli1Nt97q1atl+fLl0r17dzOzTsupDh06mEHgun6TLk0we/ZsGTt2rPTu3dun7x8AAPgPv15y4IYbbpDk5GQzfuiFF14wLUu6xICuu+To16+fHD582Ix30halRo0amSUGdJFKhy4poEGpWbNmZtZc27ZtzdpODh3IvWjRIhPG4uPjpVy5cmbBTJYbAAAAjiCXLnaE/5l2C2r40kHhjG9CIInvO8PXVYAfSRvZyddV4DOJAv1cnsv3t193zwEAAPgLQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAIAFQhMAAECghaZXX31VgoKCpGfPnu5jx44dk27duknZsmWldOnS0rZtW8nIyPB63q5du6R169ZSsmRJiYmJkb59+8qJEye8ynz11Vdy/fXXS1hYmFStWlWmTZt20d4XAADwf4UmNK1Zs0befPNNufbaa72O9+rVSz777DOZM2eOfP3117Jnzx6555573OdPnjxpAtPx48dlxYoVMn36dBOIhgwZ4i6zc+dOU6Zp06ayYcMGE8oeffRR+eKLLy7qewQAAP6rUISmQ4cOSceOHeWtt96SMmXKuI9nZWXJO++8I6+99prcdtttEh8fL1OnTjXhaOXKlabMokWLZOvWrfLee+9J3bp15fbbb5cXX3xRJkyYYIKUmjRpklSpUkVGjRolNWrUkO7du8u9994ro0eP9tl7BgAA/qVQhCbtftOWoISEBK/jaWlpkpOT43W8evXqUqlSJUlNTTX7+li7dm2JjY11l2nRooUcPHhQtmzZ4i6T+9paxrlGfrKzs801PDcAABC4QsTPffDBB7Ju3TrTPZfb3r17JTQ0VKKioryOa0DSc04Zz8DknHfOnamMBqGjR49KiRIl8rx2UlKSDBs2rADeIQAAKAz8uqVp9+7d8vTTT8vMmTMlPDxc/MnAgQNN96CzaV0BAEDg8uvQpN1vmZmZZlZbSEiI2XSw97hx48zP2hqk45IOHDjg9TydPRcXF2d+1sfcs+mc/bOViYiIyLeVSeksOz3vuQEAgMDl16GpWbNmsmnTJjOjzdnq1atnBoU7PxcvXlxSUlLcz0lPTzdLDDRs2NDs66NeQ8OXY/HixSbk1KxZ013G8xpOGecaAAAAfj2m6ZJLLpFrrrnG61ipUqXMmkzO8c6dO0vv3r0lOjraBKEePXqYsNOgQQNzvnnz5iYcPfTQQzJixAgzfmnQoEFmcLm2FqnHH39cxo8fL/369ZNHHnlElixZIh9++KHMnz/fB+8aAAD4I78OTTZ0WYDg4GCzqKXOaNNZb2+88Yb7fLFixWTevHnyxBNPmDCloSsxMVFeeOEFdxldbkADkq75NHbsWLn88svl7bffNtcCAABQQS6Xy8Wv4n+nM+0iIyPNoHDGNyGQxPed4esqwI+kjezk6yrwmUSBfi7P5fvbr8c0AQAA+AtCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgAVCEwAAgIUQm0K4eOL7zvB1FeBH0kZ28nUVAAD/RUsTAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAACABUITAABAYQ9NSUlJcsMNN8gll1wiMTEx0qZNG0lPT/cqc+zYMenWrZuULVtWSpcuLW3btpWMjAyvMrt27ZLWrVtLyZIlzXX69u0rJ06c8Crz1VdfyfXXXy9hYWFStWpVmTZt2kV5jwAAoHDw69D09ddfm0C0cuVKWbx4seTk5Ejz5s3l8OHD7jK9evWSzz77TObMmWPK79mzR+655x73+ZMnT5rAdPz4cVmxYoVMnz7dBKIhQ4a4y+zcudOUadq0qWzYsEF69uwpjz76qHzxxRcX/T0DAAD/5Nc37F24cKHXvoYdbSlKS0uTJk2aSFZWlrzzzjsya9Ysue2220yZqVOnSo0aNUzQatCggSxatEi2bt0qX375pcTGxkrdunXlxRdflP79+8vQoUMlNDRUJk2aJFWqVJFRo0aZa+jzv/32Wxk9erS0aNHCJ+8dAAD4F79uacpNQ5KKjo42jxqetPUpISHBXaZ69epSqVIlSU1NNfv6WLt2bROYHBqEDh48KFu2bHGX8byGU8a5Rn6ys7PNNTw3AAAQuApNaDp16pTpNrv55pvlmmuuMcf27t1rWoqioqK8ympA0nNOGc/A5Jx3zp2pjAaho0ePnna8VWRkpHurWLFiAb5bAADgbwpNaNKxTZs3b5YPPvhA/MHAgQNNy5ez7d6929dVAgAARXVMk6N79+4yb948WbZsmVx++eXu43FxcWaA94EDB7xam3T2nJ5zyqxevdrres7sOs8yuWfc6X5ERISUKFEi3zrpLDvdAABA0eDXLU0ul8sEpuTkZFmyZIkZrO0pPj5eihcvLikpKe5juiSBLjHQsGFDs6+PmzZtkszMTHcZnYmngahmzZruMp7XcMo41wAAAAjx9y45nRn3ySefmLWanDFIOoZIW4D0sXPnztK7d28zOFyDUI8ePUzY0ZlzSpco0HD00EMPyYgRI8w1Bg0aZK7ttBQ9/vjjMn78eOnXr5888sgjJqB9+OGHMn/+fJ++fwAA4D/8uqVp4sSJZrzQrbfeKuXLl3dvs2fPdpfRZQH++c9/mkUtdRkC7Wr7+OOP3eeLFStmuvb0UcPUgw8+KJ06dZIXXnjBXUZbsDQgaetSnTp1zNIDb7/9NssNAACAwtHSpN1zZxMeHi4TJkww2+lUrlxZFixYcMbraDBbv379edUTAAAEPr9uaQIAAPAXhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhCYAAAALhKZcJkyYIFdccYWEh4dL/fr1ZfXq1b6uEgAA8AOEJg+zZ8+W3r17y/PPPy/r1q2TOnXqSIsWLSQzM9PXVQMAAD5GaPLw2muvSZcuXeThhx+WmjVryqRJk6RkyZIyZcoUX1cNAAD4GKHpv44fPy5paWmSkJDgPhYcHGz2U1NTfVo3AADgeyG+roC/+PPPP+XkyZMSGxvrdVz3t2/fnqd8dna22RxZWVnm8eDBg/9TPU5mH/2fno/A8r9+ngoCn0l44jOJQPtcOs91uVxnLUtoOk9JSUkybNiwPMcrVqzok/ogMEW+/rivqwB44TOJQP1c/v333xIZGXnGMoSm/ypXrpwUK1ZMMjIyvI7rflxcXJ7yAwcONIPGHadOnZJ9+/ZJ2bJlJSgo6KLUOVBp6tfwuXv3bomIiPB1dQA+k/A7fCYLjrYwaWCqUKHCWcsSmv4rNDRU4uPjJSUlRdq0aeMOQrrfvXv3POXDwsLM5ikqKuqi1bco0H8I+McA/oTPJPwNn8mCcbYWJgehyYO2HCUmJkq9evXkxhtvlDFjxsjhw4fNbDoAAFC0EZo8PPDAA/LHH3/IkCFDZO/evVK3bl1ZuHBhnsHhAACg6CE05aJdcfl1x+Hi0W5PXWA0d/cn4Ct8JuFv+Ez6RpDLZo4dAABAEcfilgAAABYITQAAABYITQAAABYITQAAABYITfArEyZMkCuuuELCw8Olfv36snr1al9XCUXYsmXL5I477jArBetK/3PnzvV1lVDE6S28brjhBrnkkkskJibGLMacnp7u62oVGYQm+I3Zs2ebBUZ1Gu26deukTp060qJFC8nMzPR11VBE6eK2+jnUMA/4g6+//lq6desmK1eulMWLF0tOTo40b97cfFZx4bHkAPyGtizp/0GNHz/efRsbvbdSjx49ZMCAAb6uHoo4bWlKTk5232YJ8Ae6ILO2OGmYatKkia+rE/BoaYJfOH78uKSlpUlCQoL7WHBwsNlPTU31ad0AwF9lZWWZx+joaF9XpUggNMEv/Pnnn3Ly5Mk8t6zRfb2lDQDAm7bG9+zZU26++Wa55pprfF2dIoHbqAAAUAjp2KbNmzfLt99+6+uqFBmEJviFcuXKSbFixSQjI8PruO7HxcX5rF4A4I/0Hqnz5s0zMzwvv/xyX1enyKB7Dn4hNDRU4uPjJSUlxavpWfcbNmzo07oBgL/QuVsamHRSwpIlS6RKlSq+rlKRQksT/IYuN5CYmCj16tWTG2+8UcaMGWOm0T788MO+rhqKqEOHDskPP/zg3t+5c6ds2LDBDLqtVKmST+uGotslN2vWLPnkk0/MWk3OmM/IyEgpUaKEr6sX8FhyAH5FlxsYOXKk+Yegbt26Mm7cOLMUAeALX331lTRt2jTPcQ3306ZN80mdULTp0hf5mTp1qvzrX/+66PUpaghNAAAAFhjTBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBAAAYIHQBKBI+Pnnn83CgLqiNwCcD0ITAJwHXRE8KirK19UAcBERmgDAh06ePGluTg3A/xGaAAQUDSAjRoyQqlWrSlhYmLmx7ssvv2zVUjR37lyve3t999135t5zemPUiIgIiY+Pl7Vr15p70umNpLOyskx53YYOHWqek52dLc8884xcdtllUqpUKXPvRC2f+3U//fRTqVmzpqnjrl27LujvBEDBCCmg6wCAXxg4cKC89dZbMnr0aGnUqJH8/vvvsn379vO6VseOHeW6666TiRMnSrFixcx4qOLFi8tNN90kY8aMkSFDhkh6eropW7p0afPYvXt32bp1q3zwwQdSoUIFSU5OlpYtW8qmTZvkqquuMmWOHDkiw4cPl7ffflvKli0rMTExBfgbAHChEJoABIy///5bxo4dK+PHj5fExERz7MorrzThSQeCnyttAerbt69Ur17d7DuhR0VGRpoWpri4OK/yerd5fdTApLTVaeHCheb4K6+8Yo7l5OTIG2+8IXXq1Pmf3zOAi4fQBCBgbNu2zXSPNWvWrECu17t3b3n00Ufl3XfflYSEBLnvvvtMCDsdbU3SMUpXX32113Gtk7YoOUJDQ+Xaa68tkDoCuHgITQACRokSJazLBgcHi8vl8jqmLUCedJxShw4dZP78+fL555/L888/b7rd7r777nyveejQIdONl5aWZh49Od13Tj09x04BKBwYCA4gYGj3mQaSlJSUs5a99NJLTXfe4cOH3cfyW8NJW4169eolixYtknvuucd0szmtRdqq5EnHP+mxzMxMMxDdc/PsxgNQOBGaAASM8PBw6d+/v/Tr109mzJghP/74o6xcuVLeeeedPGV1VlvJkiXl2WefNeVmzZplZrY5jh49agZ168y3X375RZYvXy5r1qyRGjVqmPNXXHGFaVnSgPbnn3+awd0asHTweKdOneTjjz+WnTt3yurVqyUpKcm0VgEo3AhNAALK4MGDpU+fPmZmmwacBx54wLT85BYdHS3vvfeeLFiwQGrXri3vv/++e9kApd1rf/31lwlAGobuv/9+uf3222XYsGHmvM6ge/zxx831tdVKlzlQ2hKlz9E6VKtWTdq0aWPCli59AKBwC3Ll7tQHAABAHrQ0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAWCA0AQAAyNn9PwIZ7a4pM7oeAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Visualizing the clusters\n",
"sns.countplot(x=fake_df['cluster'])\n",
"plt.title(\"Fake News Clustering\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# Apply LDA for topic modeling\n",
"num_topics = 5\n",
"lda = LatentDirichletAllocation(n_components=num_topics, random_state=42)\n",
"topic_matrix = lda.fit_transform(X)\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Topic 0: republican said vote state president people republicans would obama trump\n",
"Topic 1: students us school gun people video muslim said black police\n",
"Topic 2: one said like people clinton president video donald hillary trump\n",
"Topic 3: judge maxine jeanine nancy bundy flint waters video moore pelosi\n",
"Topic 4: investigation intelligence comey us hillary russian fbi russia clinton trump\n"
]
}
],
"source": [
"# Show top words for each topic\n",
"words = np.array(vectorizer.get_feature_names_out())\n",
"top_words = []\n",
"for topic_idx, topic in enumerate(lda.components_):\n",
" top_words.append(\" \".join(words[np.argsort(topic)][-10:]))\n",
" print(f\"Topic {topic_idx}: {top_words[-1]}\")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['tfidf_vectorizer.pkl']"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Save model and vectorizer\n",
"joblib.dump(kmeans, \"kmeans_fake_news.pkl\")\n",
"joblib.dump(lda, \"lda_fake_news.pkl\")\n",
"joblib.dump(vectorizer, \"tfidf_vectorizer.pkl\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|