File size: 7,158 Bytes
500c313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# app.py

import streamlit as st
import cv2
import numpy as np
import tensorflow as tf
import time
import os

# --- Streamlit Page Configuration (MUST BE THE FIRST STREAMLIT COMMAND) ---
st.set_page_config(page_title="Real-time Emotion Recognition", layout="wide")

# --- 1. Load Model and Face Detector (Cached for Performance) ---

@st.cache_resource
def load_emotion_model():
    model_path = 'models/emotion_model_best.h5' # Path to your trained model
    if not os.path.exists(model_path):
        st.error(f"Error: Model file not found at {model_path}. Please ensure training was successful and the file exists.")
        st.stop()
    try:
        model = tf.keras.models.load_model(model_path)
        return model
    except Exception as e:
        st.error(f"Error loading model from {model_path}: {e}")
        st.stop()

@st.cache_resource
def load_face_detector():
    cascade_path = 'haarcascade_frontalface_default.xml' # Path to your Haar Cascade file
    if not os.path.exists(cascade_path):
        st.error(f"Error: Haar Cascade file not found at {cascade_path}.")
        st.markdown("Please download `haarcascade_frontalface_default.xml` from:")
        st.markdown("[https://github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_frontalface_default.xml)")
        st.markdown("And place it in a `cascades` folder next to `app.py`.")
        st.stop()
    face_cascade = cv2.CascadeClassifier(cascade_path)
    if face_cascade.empty():
        st.error(f"Error: Could not load Haar Cascade classifier from {cascade_path}. Check file integrity.")
        st.stop()
    return face_cascade

# Load the model and face detector when the app starts
model = load_emotion_model()
face_detector = load_face_detector()

# --- 2. Define Constants and Labels ---
IMG_HEIGHT = 48
IMG_WIDTH = 48
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']

label_colors = {
    'angry': (0, 0, 255),    # BGR Red
    'disgust': (0, 165, 255), # BGR Orange
    'fear': (0, 255, 255),   # BGR Yellow
    'happy': (0, 255, 0),    # BGR Green
    'neutral': (255, 255, 0), # BGR Cyan
    'sad': (255, 0, 0),      # BGR Blue
    'surprise': (255, 0, 255) # BGR Magenta
}

# --- 3. Streamlit App Layout ---
st.title("Live Facial Emotion Recognition")

st.markdown("""
This application uses a deep learning model (trained on FER-2013) to detect emotions from faces in real-time.
It requires access to your computer's webcam.
""")

stframe = st.empty()
st_status = st.empty()

col1, col2 = st.columns([1,1])
with col1:
    start_button = st.button("Start Camera", key="start_camera")
with col2:
    stop_button = st.button("Stop Camera", key="stop_camera")

# Initialize session state for camera control and performance tracking
if "camera_started" not in st.session_state:
    st.session_state.camera_started = False
if "cap" not in st.session_state:
    st.session_state.cap = None
if "last_process_time" not in st.session_state:
    st.session_state.last_process_time = 0.0

# --- Performance Configuration ---
DESIRED_FPS = 15 # Aim for 15 frames per second for processing
FRAME_INTERVAL_SECONDS = 1.0 / DESIRED_FPS
FACE_DETECTION_DOWNSCALE = 0.5 # Scale factor for face detection (e.g., 0.5 means half size)

# --- 4. Main Camera Loop Logic ---

if start_button:
    st.session_state.camera_started = True

if stop_button:
    st.session_state.camera_started = False
    st_status.info("Camera stopped.")
    if st.session_state.cap is not None and st.session_state.cap.isOpened():
        st.session_state.cap.release()
        st.session_session.cap = None
    stframe.empty()
    # Updated: use_container_width instead of use_column_width
    stframe.image(np.zeros((480, 640, 3), dtype=np.uint8), channels="RGB", use_container_width=True)

if st.session_state.camera_started:
    st_status.info("Starting camera... Please allow camera access if prompted.")

    if st.session_state.cap is None or not st.session_state.cap.isOpened():
        st.session_state.cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
        if not st.session_state.cap.isOpened():
            st_status.error("Failed to open camera. Please check if it's connected and not in use.")
            st.session_state.camera_started = False
            st.stop()

    while st.session_state.camera_started:
        ret, frame = st.session_state.cap.read()
        if not ret:
            st_status.error("Failed to read frame from camera. It might be disconnected or an error occurred.")
            st.session_state.camera_started = False
            break

        current_time = time.time()
        if current_time - st.session_state.last_process_time >= FRAME_INTERVAL_SECONDS:
            st.session_state.last_process_time = current_time

            gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

            small_frame = cv2.resize(gray_frame, (0, 0), fx=FACE_DETECTION_DOWNSCALE, fy=FACE_DETECTION_DOWNSCALE)
            
            faces = face_detector.detectMultiScale(small_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

            original_faces = []
            for (x, y, w, h) in faces:
                x_orig = int(x / FACE_DETECTION_DOWNSCALE)
                y_orig = int(y / FACE_DETECTION_DOWNSCALE)
                w_orig = int(w / FACE_DETECTION_DOWNSCALE)
                h_orig = int(h / FACE_DETECTION_DOWNSCALE)
                original_faces.append((x_orig, y_orig, w_orig, h_orig))

            for (x, y, w, h) in original_faces:
                cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)

                face_roi = gray_frame[max(0, y):min(gray_frame.shape[0], y+h), max(0, x):min(gray_frame.shape[1], x+w)]

                if face_roi.size == 0:
                    continue

                face_roi = cv2.resize(face_roi, (IMG_WIDTH, IMG_HEIGHT))
                face_roi = np.expand_dims(face_roi, axis=0)
                face_roi = np.expand_dims(face_roi, axis=-1)
                face_roi = face_roi / 255.0

                predictions = model.predict(face_roi, verbose=0)[0]
                emotion_index = np.argmax(predictions)
                predicted_emotion = emotion_labels[emotion_index]
                confidence = predictions[emotion_index] * 100

                text_color = label_colors.get(predicted_emotion, (255, 255, 255))
                text = f"{predicted_emotion} ({confidence:.2f}%)"
                text_y = y - 10 if y - 10 > 10 else y + h + 20
                cv2.putText(frame, text, (x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.9, text_color, 2, cv2.LINE_AA)

            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            # Updated: use_container_width instead of use_column_width
            stframe.image(frame_rgb, channels="RGB", use_container_width=True)

        time.sleep(0.001) # Small sleep to yield control, can be adjusted or removed

    if st.session_state.cap is not None and st.session_state.cap.isOpened():
        st.session_state.cap.release()
        st.session_state.cap = None
        st_status.info("Camera released.")