FinalProject / app(for local).py
Regino
jbdfbsdf
500c313
# app.py
import streamlit as st
import cv2
import numpy as np
import tensorflow as tf
import time
import os
# --- Streamlit Page Configuration (MUST BE THE FIRST STREAMLIT COMMAND) ---
st.set_page_config(page_title="Real-time Emotion Recognition", layout="wide")
# --- 1. Load Model and Face Detector (Cached for Performance) ---
@st.cache_resource
def load_emotion_model():
model_path = 'models/emotion_model_best.h5' # Path to your trained model
if not os.path.exists(model_path):
st.error(f"Error: Model file not found at {model_path}. Please ensure training was successful and the file exists.")
st.stop()
try:
model = tf.keras.models.load_model(model_path)
return model
except Exception as e:
st.error(f"Error loading model from {model_path}: {e}")
st.stop()
@st.cache_resource
def load_face_detector():
cascade_path = 'haarcascade_frontalface_default.xml' # Path to your Haar Cascade file
if not os.path.exists(cascade_path):
st.error(f"Error: Haar Cascade file not found at {cascade_path}.")
st.markdown("Please download `haarcascade_frontalface_default.xml` from:")
st.markdown("[https://github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_frontalface_default.xml)")
st.markdown("And place it in a `cascades` folder next to `app.py`.")
st.stop()
face_cascade = cv2.CascadeClassifier(cascade_path)
if face_cascade.empty():
st.error(f"Error: Could not load Haar Cascade classifier from {cascade_path}. Check file integrity.")
st.stop()
return face_cascade
# Load the model and face detector when the app starts
model = load_emotion_model()
face_detector = load_face_detector()
# --- 2. Define Constants and Labels ---
IMG_HEIGHT = 48
IMG_WIDTH = 48
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
label_colors = {
'angry': (0, 0, 255), # BGR Red
'disgust': (0, 165, 255), # BGR Orange
'fear': (0, 255, 255), # BGR Yellow
'happy': (0, 255, 0), # BGR Green
'neutral': (255, 255, 0), # BGR Cyan
'sad': (255, 0, 0), # BGR Blue
'surprise': (255, 0, 255) # BGR Magenta
}
# --- 3. Streamlit App Layout ---
st.title("Live Facial Emotion Recognition")
st.markdown("""
This application uses a deep learning model (trained on FER-2013) to detect emotions from faces in real-time.
It requires access to your computer's webcam.
""")
stframe = st.empty()
st_status = st.empty()
col1, col2 = st.columns([1,1])
with col1:
start_button = st.button("Start Camera", key="start_camera")
with col2:
stop_button = st.button("Stop Camera", key="stop_camera")
# Initialize session state for camera control and performance tracking
if "camera_started" not in st.session_state:
st.session_state.camera_started = False
if "cap" not in st.session_state:
st.session_state.cap = None
if "last_process_time" not in st.session_state:
st.session_state.last_process_time = 0.0
# --- Performance Configuration ---
DESIRED_FPS = 15 # Aim for 15 frames per second for processing
FRAME_INTERVAL_SECONDS = 1.0 / DESIRED_FPS
FACE_DETECTION_DOWNSCALE = 0.5 # Scale factor for face detection (e.g., 0.5 means half size)
# --- 4. Main Camera Loop Logic ---
if start_button:
st.session_state.camera_started = True
if stop_button:
st.session_state.camera_started = False
st_status.info("Camera stopped.")
if st.session_state.cap is not None and st.session_state.cap.isOpened():
st.session_state.cap.release()
st.session_session.cap = None
stframe.empty()
# Updated: use_container_width instead of use_column_width
stframe.image(np.zeros((480, 640, 3), dtype=np.uint8), channels="RGB", use_container_width=True)
if st.session_state.camera_started:
st_status.info("Starting camera... Please allow camera access if prompted.")
if st.session_state.cap is None or not st.session_state.cap.isOpened():
st.session_state.cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
if not st.session_state.cap.isOpened():
st_status.error("Failed to open camera. Please check if it's connected and not in use.")
st.session_state.camera_started = False
st.stop()
while st.session_state.camera_started:
ret, frame = st.session_state.cap.read()
if not ret:
st_status.error("Failed to read frame from camera. It might be disconnected or an error occurred.")
st.session_state.camera_started = False
break
current_time = time.time()
if current_time - st.session_state.last_process_time >= FRAME_INTERVAL_SECONDS:
st.session_state.last_process_time = current_time
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
small_frame = cv2.resize(gray_frame, (0, 0), fx=FACE_DETECTION_DOWNSCALE, fy=FACE_DETECTION_DOWNSCALE)
faces = face_detector.detectMultiScale(small_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
original_faces = []
for (x, y, w, h) in faces:
x_orig = int(x / FACE_DETECTION_DOWNSCALE)
y_orig = int(y / FACE_DETECTION_DOWNSCALE)
w_orig = int(w / FACE_DETECTION_DOWNSCALE)
h_orig = int(h / FACE_DETECTION_DOWNSCALE)
original_faces.append((x_orig, y_orig, w_orig, h_orig))
for (x, y, w, h) in original_faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
face_roi = gray_frame[max(0, y):min(gray_frame.shape[0], y+h), max(0, x):min(gray_frame.shape[1], x+w)]
if face_roi.size == 0:
continue
face_roi = cv2.resize(face_roi, (IMG_WIDTH, IMG_HEIGHT))
face_roi = np.expand_dims(face_roi, axis=0)
face_roi = np.expand_dims(face_roi, axis=-1)
face_roi = face_roi / 255.0
predictions = model.predict(face_roi, verbose=0)[0]
emotion_index = np.argmax(predictions)
predicted_emotion = emotion_labels[emotion_index]
confidence = predictions[emotion_index] * 100
text_color = label_colors.get(predicted_emotion, (255, 255, 255))
text = f"{predicted_emotion} ({confidence:.2f}%)"
text_y = y - 10 if y - 10 > 10 else y + h + 20
cv2.putText(frame, text, (x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.9, text_color, 2, cv2.LINE_AA)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Updated: use_container_width instead of use_column_width
stframe.image(frame_rgb, channels="RGB", use_container_width=True)
time.sleep(0.001) # Small sleep to yield control, can be adjusted or removed
if st.session_state.cap is not None and st.session_state.cap.isOpened():
st.session_state.cap.release()
st.session_state.cap = None
st_status.info("Camera released.")