Spaces:
Sleeping
Sleeping
Regino
commited on
Commit
·
2f58ee5
1
Parent(s):
103895d
first commit
Browse files- haarcascade_frontalface_default.xml +0 -0
- models/emotion_model_best.h5 +3 -0
- requirements.txt +4 -3
- src/streamlit_app.py +172 -38
haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/emotion_model_best.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32bc4d63ae296293c472c3861da4af54c21f8c2432646f0a23a9a8b53b6ea255
|
3 |
+
size 17770192
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
1 |
+
streamlit
|
2 |
+
opencv-python
|
3 |
+
numpy
|
4 |
+
tensorflow
|
src/streamlit_app.py
CHANGED
@@ -1,40 +1,174 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
# app.py
|
2 |
+
|
|
|
3 |
import streamlit as st
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
import time
|
8 |
+
import os
|
9 |
+
|
10 |
+
# --- Streamlit Page Configuration (MUST BE THE FIRST STREAMLIT COMMAND) ---
|
11 |
+
st.set_page_config(page_title="Real-time Emotion Recognition", layout="wide")
|
12 |
+
|
13 |
+
# --- 1. Load Model and Face Detector (Cached for Performance) ---
|
14 |
+
|
15 |
+
@st.cache_resource
|
16 |
+
def load_emotion_model():
|
17 |
+
model_path = 'models/emotion_model_best.h5' # Path to your trained model
|
18 |
+
if not os.path.exists(model_path):
|
19 |
+
st.error(f"Error: Model file not found at {model_path}. Please ensure training was successful and the file exists.")
|
20 |
+
st.stop()
|
21 |
+
try:
|
22 |
+
model = tf.keras.models.load_model(model_path)
|
23 |
+
return model
|
24 |
+
except Exception as e:
|
25 |
+
st.error(f"Error loading model from {model_path}: {e}")
|
26 |
+
st.stop()
|
27 |
+
|
28 |
+
@st.cache_resource
|
29 |
+
def load_face_detector():
|
30 |
+
cascade_path = 'haarcascade_frontalface_default.xml' # Path to your Haar Cascade file
|
31 |
+
if not os.path.exists(cascade_path):
|
32 |
+
st.error(f"Error: Haar Cascade file not found at {cascade_path}.")
|
33 |
+
st.markdown("Please download `haarcascade_frontalface_default.xml` from:")
|
34 |
+
st.markdown("[https://github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_frontalface_default.xml)")
|
35 |
+
st.markdown("And place it in a `cascades` folder next to `app.py`.")
|
36 |
+
st.stop()
|
37 |
+
face_cascade = cv2.CascadeClassifier(cascade_path)
|
38 |
+
if face_cascade.empty():
|
39 |
+
st.error(f"Error: Could not load Haar Cascade classifier from {cascade_path}. Check file integrity.")
|
40 |
+
st.stop()
|
41 |
+
return face_cascade
|
42 |
+
|
43 |
+
# Load the model and face detector when the app starts
|
44 |
+
model = load_emotion_model()
|
45 |
+
face_detector = load_face_detector()
|
46 |
+
|
47 |
+
# --- 2. Define Constants and Labels ---
|
48 |
+
IMG_HEIGHT = 48
|
49 |
+
IMG_WIDTH = 48
|
50 |
+
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
51 |
+
|
52 |
+
label_colors = {
|
53 |
+
'angry': (0, 0, 255), # BGR Red
|
54 |
+
'disgust': (0, 165, 255), # BGR Orange
|
55 |
+
'fear': (0, 255, 255), # BGR Yellow
|
56 |
+
'happy': (0, 255, 0), # BGR Green
|
57 |
+
'neutral': (255, 255, 0), # BGR Cyan
|
58 |
+
'sad': (255, 0, 0), # BGR Blue
|
59 |
+
'surprise': (255, 0, 255) # BGR Magenta
|
60 |
+
}
|
61 |
+
|
62 |
+
# --- 3. Streamlit App Layout ---
|
63 |
+
st.title("Live Facial Emotion Recognition")
|
64 |
+
|
65 |
+
st.markdown("""
|
66 |
+
This application uses a deep learning model (trained on FER-2013) to detect emotions from faces in real-time.
|
67 |
+
It requires access to your computer's webcam.
|
68 |
+
""")
|
69 |
+
|
70 |
+
stframe = st.empty()
|
71 |
+
st_status = st.empty()
|
72 |
+
|
73 |
+
col1, col2 = st.columns([1,1])
|
74 |
+
with col1:
|
75 |
+
start_button = st.button("Start Camera", key="start_camera")
|
76 |
+
with col2:
|
77 |
+
stop_button = st.button("Stop Camera", key="stop_camera")
|
78 |
+
|
79 |
+
# Initialize session state for camera control and performance tracking
|
80 |
+
if "camera_started" not in st.session_state:
|
81 |
+
st.session_state.camera_started = False
|
82 |
+
if "cap" not in st.session_state:
|
83 |
+
st.session_state.cap = None
|
84 |
+
if "last_process_time" not in st.session_state:
|
85 |
+
st.session_state.last_process_time = 0.0
|
86 |
+
|
87 |
+
# --- Performance Configuration ---
|
88 |
+
DESIRED_FPS = 15 # Aim for 15 frames per second for processing
|
89 |
+
FRAME_INTERVAL_SECONDS = 1.0 / DESIRED_FPS
|
90 |
+
FACE_DETECTION_DOWNSCALE = 0.5 # Scale factor for face detection (e.g., 0.5 means half size)
|
91 |
+
|
92 |
+
# --- 4. Main Camera Loop Logic ---
|
93 |
+
|
94 |
+
if start_button:
|
95 |
+
st.session_state.camera_started = True
|
96 |
+
|
97 |
+
if stop_button:
|
98 |
+
st.session_state.camera_started = False
|
99 |
+
st_status.info("Camera stopped.")
|
100 |
+
if st.session_state.cap is not None and st.session_state.cap.isOpened():
|
101 |
+
st.session_state.cap.release()
|
102 |
+
st.session_session.cap = None
|
103 |
+
stframe.empty()
|
104 |
+
# Updated: use_container_width instead of use_column_width
|
105 |
+
stframe.image(np.zeros((480, 640, 3), dtype=np.uint8), channels="RGB", use_container_width=True)
|
106 |
+
|
107 |
+
if st.session_state.camera_started:
|
108 |
+
st_status.info("Starting camera... Please allow camera access if prompted.")
|
109 |
+
|
110 |
+
if st.session_state.cap is None or not st.session_state.cap.isOpened():
|
111 |
+
st.session_state.cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
|
112 |
+
if not st.session_state.cap.isOpened():
|
113 |
+
st_status.error("Failed to open camera. Please check if it's connected and not in use.")
|
114 |
+
st.session_state.camera_started = False
|
115 |
+
st.stop()
|
116 |
+
|
117 |
+
while st.session_state.camera_started:
|
118 |
+
ret, frame = st.session_state.cap.read()
|
119 |
+
if not ret:
|
120 |
+
st_status.error("Failed to read frame from camera. It might be disconnected or an error occurred.")
|
121 |
+
st.session_state.camera_started = False
|
122 |
+
break
|
123 |
+
|
124 |
+
current_time = time.time()
|
125 |
+
if current_time - st.session_state.last_process_time >= FRAME_INTERVAL_SECONDS:
|
126 |
+
st.session_state.last_process_time = current_time
|
127 |
+
|
128 |
+
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
129 |
+
|
130 |
+
small_frame = cv2.resize(gray_frame, (0, 0), fx=FACE_DETECTION_DOWNSCALE, fy=FACE_DETECTION_DOWNSCALE)
|
131 |
+
|
132 |
+
faces = face_detector.detectMultiScale(small_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
133 |
+
|
134 |
+
original_faces = []
|
135 |
+
for (x, y, w, h) in faces:
|
136 |
+
x_orig = int(x / FACE_DETECTION_DOWNSCALE)
|
137 |
+
y_orig = int(y / FACE_DETECTION_DOWNSCALE)
|
138 |
+
w_orig = int(w / FACE_DETECTION_DOWNSCALE)
|
139 |
+
h_orig = int(h / FACE_DETECTION_DOWNSCALE)
|
140 |
+
original_faces.append((x_orig, y_orig, w_orig, h_orig))
|
141 |
+
|
142 |
+
for (x, y, w, h) in original_faces:
|
143 |
+
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
144 |
+
|
145 |
+
face_roi = gray_frame[max(0, y):min(gray_frame.shape[0], y+h), max(0, x):min(gray_frame.shape[1], x+w)]
|
146 |
+
|
147 |
+
if face_roi.size == 0:
|
148 |
+
continue
|
149 |
+
|
150 |
+
face_roi = cv2.resize(face_roi, (IMG_WIDTH, IMG_HEIGHT))
|
151 |
+
face_roi = np.expand_dims(face_roi, axis=0)
|
152 |
+
face_roi = np.expand_dims(face_roi, axis=-1)
|
153 |
+
face_roi = face_roi / 255.0
|
154 |
+
|
155 |
+
predictions = model.predict(face_roi, verbose=0)[0]
|
156 |
+
emotion_index = np.argmax(predictions)
|
157 |
+
predicted_emotion = emotion_labels[emotion_index]
|
158 |
+
confidence = predictions[emotion_index] * 100
|
159 |
+
|
160 |
+
text_color = label_colors.get(predicted_emotion, (255, 255, 255))
|
161 |
+
text = f"{predicted_emotion} ({confidence:.2f}%)"
|
162 |
+
text_y = y - 10 if y - 10 > 10 else y + h + 20
|
163 |
+
cv2.putText(frame, text, (x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.9, text_color, 2, cv2.LINE_AA)
|
164 |
+
|
165 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
166 |
+
# Updated: use_container_width instead of use_column_width
|
167 |
+
stframe.image(frame_rgb, channels="RGB", use_container_width=True)
|
168 |
+
|
169 |
+
time.sleep(0.001) # Small sleep to yield control, can be adjusted or removed
|
170 |
|
171 |
+
if st.session_state.cap is not None and st.session_state.cap.isOpened():
|
172 |
+
st.session_state.cap.release()
|
173 |
+
st.session_state.cap = None
|
174 |
+
st_status.info("Camera released.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|