Spaces:
Build error
Build error
Regino
commited on
Commit
·
2f58ee5
1
Parent(s):
103895d
first commit
Browse files- haarcascade_frontalface_default.xml +0 -0
- models/emotion_model_best.h5 +3 -0
- requirements.txt +4 -3
- src/streamlit_app.py +172 -38
haarcascade_frontalface_default.xml
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/emotion_model_best.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:32bc4d63ae296293c472c3861da4af54c21f8c2432646f0a23a9a8b53b6ea255
|
| 3 |
+
size 17770192
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
opencv-python
|
| 3 |
+
numpy
|
| 4 |
+
tensorflow
|
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,174 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
|
|
|
| 3 |
import streamlit as st
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
import time
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# --- Streamlit Page Configuration (MUST BE THE FIRST STREAMLIT COMMAND) ---
|
| 11 |
+
st.set_page_config(page_title="Real-time Emotion Recognition", layout="wide")
|
| 12 |
+
|
| 13 |
+
# --- 1. Load Model and Face Detector (Cached for Performance) ---
|
| 14 |
+
|
| 15 |
+
@st.cache_resource
|
| 16 |
+
def load_emotion_model():
|
| 17 |
+
model_path = 'models/emotion_model_best.h5' # Path to your trained model
|
| 18 |
+
if not os.path.exists(model_path):
|
| 19 |
+
st.error(f"Error: Model file not found at {model_path}. Please ensure training was successful and the file exists.")
|
| 20 |
+
st.stop()
|
| 21 |
+
try:
|
| 22 |
+
model = tf.keras.models.load_model(model_path)
|
| 23 |
+
return model
|
| 24 |
+
except Exception as e:
|
| 25 |
+
st.error(f"Error loading model from {model_path}: {e}")
|
| 26 |
+
st.stop()
|
| 27 |
+
|
| 28 |
+
@st.cache_resource
|
| 29 |
+
def load_face_detector():
|
| 30 |
+
cascade_path = 'haarcascade_frontalface_default.xml' # Path to your Haar Cascade file
|
| 31 |
+
if not os.path.exists(cascade_path):
|
| 32 |
+
st.error(f"Error: Haar Cascade file not found at {cascade_path}.")
|
| 33 |
+
st.markdown("Please download `haarcascade_frontalface_default.xml` from:")
|
| 34 |
+
st.markdown("[https://github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_frontalface_default.xml](https://github.com/opencv/opencv/blob/4.x/data/haarcascades/haarcascade_frontalface_default.xml)")
|
| 35 |
+
st.markdown("And place it in a `cascades` folder next to `app.py`.")
|
| 36 |
+
st.stop()
|
| 37 |
+
face_cascade = cv2.CascadeClassifier(cascade_path)
|
| 38 |
+
if face_cascade.empty():
|
| 39 |
+
st.error(f"Error: Could not load Haar Cascade classifier from {cascade_path}. Check file integrity.")
|
| 40 |
+
st.stop()
|
| 41 |
+
return face_cascade
|
| 42 |
+
|
| 43 |
+
# Load the model and face detector when the app starts
|
| 44 |
+
model = load_emotion_model()
|
| 45 |
+
face_detector = load_face_detector()
|
| 46 |
+
|
| 47 |
+
# --- 2. Define Constants and Labels ---
|
| 48 |
+
IMG_HEIGHT = 48
|
| 49 |
+
IMG_WIDTH = 48
|
| 50 |
+
emotion_labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
| 51 |
+
|
| 52 |
+
label_colors = {
|
| 53 |
+
'angry': (0, 0, 255), # BGR Red
|
| 54 |
+
'disgust': (0, 165, 255), # BGR Orange
|
| 55 |
+
'fear': (0, 255, 255), # BGR Yellow
|
| 56 |
+
'happy': (0, 255, 0), # BGR Green
|
| 57 |
+
'neutral': (255, 255, 0), # BGR Cyan
|
| 58 |
+
'sad': (255, 0, 0), # BGR Blue
|
| 59 |
+
'surprise': (255, 0, 255) # BGR Magenta
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
# --- 3. Streamlit App Layout ---
|
| 63 |
+
st.title("Live Facial Emotion Recognition")
|
| 64 |
+
|
| 65 |
+
st.markdown("""
|
| 66 |
+
This application uses a deep learning model (trained on FER-2013) to detect emotions from faces in real-time.
|
| 67 |
+
It requires access to your computer's webcam.
|
| 68 |
+
""")
|
| 69 |
+
|
| 70 |
+
stframe = st.empty()
|
| 71 |
+
st_status = st.empty()
|
| 72 |
+
|
| 73 |
+
col1, col2 = st.columns([1,1])
|
| 74 |
+
with col1:
|
| 75 |
+
start_button = st.button("Start Camera", key="start_camera")
|
| 76 |
+
with col2:
|
| 77 |
+
stop_button = st.button("Stop Camera", key="stop_camera")
|
| 78 |
+
|
| 79 |
+
# Initialize session state for camera control and performance tracking
|
| 80 |
+
if "camera_started" not in st.session_state:
|
| 81 |
+
st.session_state.camera_started = False
|
| 82 |
+
if "cap" not in st.session_state:
|
| 83 |
+
st.session_state.cap = None
|
| 84 |
+
if "last_process_time" not in st.session_state:
|
| 85 |
+
st.session_state.last_process_time = 0.0
|
| 86 |
+
|
| 87 |
+
# --- Performance Configuration ---
|
| 88 |
+
DESIRED_FPS = 15 # Aim for 15 frames per second for processing
|
| 89 |
+
FRAME_INTERVAL_SECONDS = 1.0 / DESIRED_FPS
|
| 90 |
+
FACE_DETECTION_DOWNSCALE = 0.5 # Scale factor for face detection (e.g., 0.5 means half size)
|
| 91 |
+
|
| 92 |
+
# --- 4. Main Camera Loop Logic ---
|
| 93 |
+
|
| 94 |
+
if start_button:
|
| 95 |
+
st.session_state.camera_started = True
|
| 96 |
+
|
| 97 |
+
if stop_button:
|
| 98 |
+
st.session_state.camera_started = False
|
| 99 |
+
st_status.info("Camera stopped.")
|
| 100 |
+
if st.session_state.cap is not None and st.session_state.cap.isOpened():
|
| 101 |
+
st.session_state.cap.release()
|
| 102 |
+
st.session_session.cap = None
|
| 103 |
+
stframe.empty()
|
| 104 |
+
# Updated: use_container_width instead of use_column_width
|
| 105 |
+
stframe.image(np.zeros((480, 640, 3), dtype=np.uint8), channels="RGB", use_container_width=True)
|
| 106 |
+
|
| 107 |
+
if st.session_state.camera_started:
|
| 108 |
+
st_status.info("Starting camera... Please allow camera access if prompted.")
|
| 109 |
+
|
| 110 |
+
if st.session_state.cap is None or not st.session_state.cap.isOpened():
|
| 111 |
+
st.session_state.cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
|
| 112 |
+
if not st.session_state.cap.isOpened():
|
| 113 |
+
st_status.error("Failed to open camera. Please check if it's connected and not in use.")
|
| 114 |
+
st.session_state.camera_started = False
|
| 115 |
+
st.stop()
|
| 116 |
+
|
| 117 |
+
while st.session_state.camera_started:
|
| 118 |
+
ret, frame = st.session_state.cap.read()
|
| 119 |
+
if not ret:
|
| 120 |
+
st_status.error("Failed to read frame from camera. It might be disconnected or an error occurred.")
|
| 121 |
+
st.session_state.camera_started = False
|
| 122 |
+
break
|
| 123 |
+
|
| 124 |
+
current_time = time.time()
|
| 125 |
+
if current_time - st.session_state.last_process_time >= FRAME_INTERVAL_SECONDS:
|
| 126 |
+
st.session_state.last_process_time = current_time
|
| 127 |
+
|
| 128 |
+
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 129 |
+
|
| 130 |
+
small_frame = cv2.resize(gray_frame, (0, 0), fx=FACE_DETECTION_DOWNSCALE, fy=FACE_DETECTION_DOWNSCALE)
|
| 131 |
+
|
| 132 |
+
faces = face_detector.detectMultiScale(small_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
| 133 |
+
|
| 134 |
+
original_faces = []
|
| 135 |
+
for (x, y, w, h) in faces:
|
| 136 |
+
x_orig = int(x / FACE_DETECTION_DOWNSCALE)
|
| 137 |
+
y_orig = int(y / FACE_DETECTION_DOWNSCALE)
|
| 138 |
+
w_orig = int(w / FACE_DETECTION_DOWNSCALE)
|
| 139 |
+
h_orig = int(h / FACE_DETECTION_DOWNSCALE)
|
| 140 |
+
original_faces.append((x_orig, y_orig, w_orig, h_orig))
|
| 141 |
+
|
| 142 |
+
for (x, y, w, h) in original_faces:
|
| 143 |
+
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
| 144 |
+
|
| 145 |
+
face_roi = gray_frame[max(0, y):min(gray_frame.shape[0], y+h), max(0, x):min(gray_frame.shape[1], x+w)]
|
| 146 |
+
|
| 147 |
+
if face_roi.size == 0:
|
| 148 |
+
continue
|
| 149 |
+
|
| 150 |
+
face_roi = cv2.resize(face_roi, (IMG_WIDTH, IMG_HEIGHT))
|
| 151 |
+
face_roi = np.expand_dims(face_roi, axis=0)
|
| 152 |
+
face_roi = np.expand_dims(face_roi, axis=-1)
|
| 153 |
+
face_roi = face_roi / 255.0
|
| 154 |
+
|
| 155 |
+
predictions = model.predict(face_roi, verbose=0)[0]
|
| 156 |
+
emotion_index = np.argmax(predictions)
|
| 157 |
+
predicted_emotion = emotion_labels[emotion_index]
|
| 158 |
+
confidence = predictions[emotion_index] * 100
|
| 159 |
+
|
| 160 |
+
text_color = label_colors.get(predicted_emotion, (255, 255, 255))
|
| 161 |
+
text = f"{predicted_emotion} ({confidence:.2f}%)"
|
| 162 |
+
text_y = y - 10 if y - 10 > 10 else y + h + 20
|
| 163 |
+
cv2.putText(frame, text, (x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.9, text_color, 2, cv2.LINE_AA)
|
| 164 |
+
|
| 165 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 166 |
+
# Updated: use_container_width instead of use_column_width
|
| 167 |
+
stframe.image(frame_rgb, channels="RGB", use_container_width=True)
|
| 168 |
+
|
| 169 |
+
time.sleep(0.001) # Small sleep to yield control, can be adjusted or removed
|
| 170 |
|
| 171 |
+
if st.session_state.cap is not None and st.session_state.cap.isOpened():
|
| 172 |
+
st.session_state.cap.release()
|
| 173 |
+
st.session_state.cap = None
|
| 174 |
+
st_status.info("Camera released.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|