import nltk import streamlit as st import fitz # PyMuPDF for PDF extraction import re from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer from sumy.summarizers.lsa import LsaSummarizer from rouge_score import rouge_scorer # For ROUGE score evaluation # Ensure the necessary tokenizer is downloaded nltk.download("punkt_tab") # Function to extract text from PDF def extract_text_from_pdf(uploaded_file): doc = fitz.open(stream=uploaded_file.read(), filetype="pdf") text = "" for page in doc: text += page.get_text("text") + "\n" return clean_text(text) # Function to clean text (removes unwanted symbols, extra spaces, and bullets) def clean_text(text): text = re.sub(r"[•▪●◦○▶♦]", "", text) # Remove bullet points text = re.sub(r"[\u2022\u2023\u25AA\u25AB\u25A0\u25CF\u00B7]", "", text) # Additional bullets text = re.sub(r"\s+", " ", text) # Normalize spaces text = re.sub(r"[^a-zA-Z0-9.,!?()'\"%$@&\s]", "", text) # Keep only readable text return text.strip() # Function to summarize text using LSA def summarize_text(text, num_sentences=3): text = clean_text(text) # Clean text before summarizing parser = PlaintextParser.from_string(text, Tokenizer("english")) summarizer = LsaSummarizer() summary = summarizer(parser.document, num_sentences) return " ".join(str(sentence) for sentence in summary) # Function to calculate ROUGE scores def calculate_rouge(reference_text, generated_summary): scorer = rouge_scorer.RougeScorer(["rouge1", "rouge2", "rougeL"], use_stemmer=True) scores = scorer.score(reference_text, generated_summary) rouge1 = scores["rouge1"].fmeasure rouge2 = scores["rouge2"].fmeasure rougeL = scores["rougeL"].fmeasure return rouge1, rouge2, rougeL # Streamlit UI st.title("📄 Text Summarization App") st.write("This app summarizes long text using **Latent Semantic Analysis (LSA)**, an **unsupervised learning method**, and evaluates the summary using **ROUGE scores**.") # Sidebar input options st.sidebar.header("Options") file_uploaded = st.sidebar.file_uploader("Upload a file (TXT or PDF)", type=["txt", "pdf"]) manual_text = st.sidebar.text_area("Or enter text manually", "") # Explanation of the models st.subheader("🔎 How It Works") st.markdown(""" - **Summarization Model: Latent Semantic Analysis (LSA)** LSA is an **unsupervised learning method** that identifies important sentences using **Singular Value Decomposition (SVD)**. It finds hidden relationships between words and sentences **without requiring labeled data**. - **Evaluation Metric: ROUGE Score** - **ROUGE-1**: Measures single-word overlap - **ROUGE-2**: Measures two-word sequence overlap - **ROUGE-L**: Measures the longest common subsequence """) # Summarization button if st.sidebar.button("Summarize"): if file_uploaded: if file_uploaded.type == "text/plain": # TXT file text = file_uploaded.read().decode("utf-8") elif file_uploaded.type == "application/pdf": # PDF file text = extract_text_from_pdf(file_uploaded) else: st.sidebar.error("Unsupported file format.") st.stop() elif manual_text.strip(): text = manual_text else: st.sidebar.error("Please upload a file or enter text.") st.stop() # Show loading animation with st.spinner("Summarizing text... Please wait."): # Generate summary summary = summarize_text(text, num_sentences=5) # Calculate ROUGE score rouge1, rouge2, rougeL = calculate_rouge(text, summary) # Display summary in justified format st.subheader("📌 Summarized Text") st.markdown(f"
{summary}
", unsafe_allow_html=True) # Display ROUGE scores st.subheader("📊 Summary Quality (ROUGE Score)") st.write(f"**ROUGE-1 Score:** {rouge1:.4f}") st.write(f"**ROUGE-2 Score:** {rouge2:.4f}") st.write(f"**ROUGE-L Score:** {rougeL:.4f}")