File size: 18,108 Bytes
a7066c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198c0c6
a7066c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from flask import Flask, request, jsonify, make_response, Response
import requests
import time
import uuid
import warnings
from waitress import serve
import json
import tiktoken
import socket
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from pymemcache.client.base import Client
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
import os
import logging
from io import BytesIO
import coloredlogs
import printedcolors
import base64

# Suppress warnings from flask_limiter
warnings.filterwarnings("ignore", category=UserWarning, module="flask_limiter.extension")

# Create a logger object
logger = logging.getLogger("1min-relay")

# Install coloredlogs with desired log level
coloredlogs.install(level='DEBUG', logger=logger)

def check_memcached_connection(host='memcached', port=11211):
    try:
        client = Client((host, port))
        client.set('test_key', 'test_value')
        if client.get('test_key') == b'test_value':
            client.delete('test_key')  # Clean up
            return True
        else:
            return False
    except:
        return False
        
logger.info('''
    _ __  __ _      ___     _           
 / |  \/  (_)_ _ | _ \___| |__ _ _  _ 
 | | |\/| | | ' \|   / -_) / _` | || |
 |_|_|  |_|_|_||_|_|_\___|_\__,_|\_, |
                                 |__/ ''')


def calculate_token(sentence, model="DEFAULT"):
    """Calculate the number of tokens in a sentence based on the specified model."""
    
    if model.startswith("mistral"):
        # Initialize the Mistral tokenizer
        tokenizer = MistralTokenizer.v3(is_tekken=True)
        model_name = "open-mistral-nemo" # Default to Mistral Nemo
        tokenizer = MistralTokenizer.from_model(model_name)
        tokenized = tokenizer.encode_chat_completion(
            ChatCompletionRequest(
                messages=[
                    UserMessage(content=sentence),
                ],
                model=model_name,
            )
        )
        tokens = tokenized.tokens
        return len(tokens)

    elif model in ["gpt-3.5-turbo", "gpt-4"]:
        # Use OpenAI's tiktoken for GPT models
        encoding = tiktoken.encoding_for_model(model)
        tokens = encoding.encode(sentence)
        return len(tokens)

    else:
        # Default to openai
        encoding = tiktoken.encoding_for_model("gpt-4")
        tokens = encoding.encode(sentence)
        return len(tokens)
app = Flask(__name__)
if check_memcached_connection():
    limiter = Limiter(
        get_remote_address,
        app=app,
        storage_uri="memcached://memcached:11211",  # Connect to Memcached created with docker
    )
else:
    # Used for ratelimiting without memcached
    limiter = Limiter(
        get_remote_address,
        app=app,
    )
    logger.warning("Memcached is not available. Using in-memory storage for rate limiting. Not-Recommended")


ONE_MIN_API_URL = "https://api.1min.ai/api/features"
ONE_MIN_CONVERSATION_API_URL = "https://api.1min.ai/api/conversations"
ONE_MIN_CONVERSATION_API_STREAMING_URL = "https://api.1min.ai/api/features?isStreaming=true"
ONE_MIN_ASSET_URL = "https://api.1min.ai/api/assets"

# Define the models that are available for use
ALL_ONE_MIN_AVAILABLE_MODELS = [
    "deepseek-chat",
    "deepseek-reasoner",
    "o1-preview",
    "o1-mini",
    "gpt-4o-mini",
    "gpt-4o",
    "gpt-4-turbo",
    "gpt-4",
    "gpt-3.5-turbo",
    "claude-instant-1.2",
    "claude-2.1",
    "claude-3-7-sonnet-20250219",
    "claude-3-5-sonnet-20240620",
    "claude-3-opus-20240229",
    "claude-3-sonnet-20240229",
    "claude-3-haiku-20240307",
    "gemini-1.0-pro",
    "gemini-1.5-pro",
    "gemini-1.5-flash",
    "mistral-large-latest",
    "mistral-small-latest",
    "mistral-nemo",
    "open-mistral-7b",

   # Replicate
   "meta/llama-2-70b-chat", 
   "meta/meta-llama-3-70b-instruct", 
   "meta/meta-llama-3.1-405b-instruct", 
   "command"
]

# Define the models that support vision inputs
vision_supported_models = [
    "gpt-4o",
    "gpt-4o-mini",
    "gpt-4-turbo"
]


# Default values
SUBSET_OF_ONE_MIN_PERMITTED_MODELS = ["mistral-nemo", "gpt-4o", "deepseek-chat"]
PERMIT_MODELS_FROM_SUBSET_ONLY = False

# Read environment variables
one_min_models_env = os.getenv("SUBSET_OF_ONE_MIN_PERMITTED_MODELS")  # e.g. "mistral-nemo,gpt-4o,deepseek-chat"
permit_not_in_available_env = os.getenv("PERMIT_MODELS_FROM_SUBSET_ONLY")  # e.g. "True" or "False"

# Parse or fall back to defaults
if one_min_models_env:
    SUBSET_OF_ONE_MIN_PERMITTED_MODELS = one_min_models_env.split(",")

if permit_not_in_available_env and permit_not_in_available_env.lower() == "true":
    PERMIT_MODELS_FROM_SUBSET_ONLY = True

# Combine into a single list
AVAILABLE_MODELS = []
AVAILABLE_MODELS.extend(SUBSET_OF_ONE_MIN_PERMITTED_MODELS)

@app.route('/', methods=['GET', 'POST'])
def index():
    if request.method == 'POST':
        return ERROR_HANDLER(1212)
    if request.method == 'GET':
        internal_ip = socket.gethostbyname(socket.gethostname())
        return "Congratulations! Your API is working! You can now make requests to the API.\n\nEndpoint: " + internal_ip + ':5001/v1'
@app.route('/v1/models')
@limiter.limit("500 per minute")
def models():
    # Dynamically create the list of models with additional fields
    models_data = []
    if not PERMIT_MODELS_FROM_SUBSET_ONLY:
        one_min_models_data = [
            {
                "id": model_name,
                "object": "model",
                "owned_by": "1minai",
                "created": 1727389042
            }
            for model_name in ALL_ONE_MIN_AVAILABLE_MODELS
        ]
    else:
        one_min_models_data = [
            {"id": model_name, "object": "model", "owned_by": "1minai", "created": 1727389042}
            for model_name in SUBSET_OF_ONE_MIN_PERMITTED_MODELS
        ]
    models_data.extend(one_min_models_data)
    return jsonify({"data": models_data, "object": "list"})

def ERROR_HANDLER(code, model=None, key=None):
    # Handle errors in OpenAI-Structued Error
    error_codes = { # Internal Error Codes
        1002: {"message": f"The model {model} does not exist.", "type": "invalid_request_error", "param": None, "code": "model_not_found", "http_code": 400},
        1020: {"message": f"Incorrect API key provided: {key}. You can find your API key at https://app.1min.ai/api.", "type": "authentication_error", "param": None, "code": "invalid_api_key", "http_code": 401},
        1021: {"message": "Invalid Authentication", "type": "invalid_request_error", "param": None, "code": None, "http_code": 401},
        1212: {"message": f"Incorrect Endpoint. Please use the /v1/chat/completions endpoint.", "type": "invalid_request_error", "param": None, "code": "model_not_supported", "http_code": 400},
        1044: {"message": f"This model does not support image inputs.", "type": "invalid_request_error", "param": None, "code": "model_not_supported", "http_code": 400},
        1412: {"message": f"No message provided.", "type": "invalid_request_error", "param": "messages", "code": "invalid_request_error", "http_code": 400},
        1423: {"message": f"No content in last message.", "type": "invalid_request_error", "param": "messages", "code": "invalid_request_error", "http_code": 400},
    }
    error_data = {k: v for k, v in error_codes.get(code, {"message": "Unknown error", "type": "unknown_error", "param": None, "code": None}).items() if k != "http_code"} # Remove http_code from the error data
    logger.error(f"An error has occurred while processing the user's request. Error code: {code}")
    return jsonify({"error": error_data}), error_codes.get(code, {}).get("http_code", 400) # Return the error data without http_code inside the payload and get the http_code to return.

def format_conversation_history(messages, new_input):
    """
    Formats the conversation history into a structured string.
    
    Args:
        messages (list): List of message dictionaries from the request
        new_input (str): The new user input message
    
    Returns:
        str: Formatted conversation history
    """
    formatted_history = ["Conversation History:\n"]
    
    for message in messages:
        role = message.get('role', '').capitalize()
        content = message.get('content', '')
        
        # Handle potential list content
        if isinstance(content, list):
            content = '\n'.join(item['text'] for item in content if 'text' in item)
        
        formatted_history.append(f"{role}: {content}")
    
    # Append additional messages only if there are existing messages
    if messages: # Save credits if it is the first message.
        formatted_history.append("Respond like normal. The conversation history will be automatically updated on the next MESSAGE. DO NOT ADD User: or Assistant: to your output. Just respond like normal.")
        formatted_history.append("User Message:\n")
    formatted_history.append(new_input) 
    
    return '\n'.join(formatted_history)


@app.route('/v1/chat/completions', methods=['POST', 'OPTIONS'])
@limiter.limit("500 per minute")
def conversation():
    if request.method == 'OPTIONS':
        return handle_options_request()
    image = False
    

    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith("Bearer "):
        logger.error("Invalid Authentication")
        return ERROR_HANDLER(1021)
    
    api_key = auth_header.split(" ")[1]
    
    headers = {
        'API-KEY': api_key
    }
    
    request_data = request.json
    
    all_messages = format_conversation_history(request_data.get('messages', []), request_data.get('new_input', ''))

    messages = request_data.get('messages', [])
    if not messages:
        return ERROR_HANDLER(1412)

    user_input = messages[-1].get('content')
    if not user_input:
        return ERROR_HANDLER(1423)

    # Check if user_input is a list and combine text if necessary
    image = False
    if isinstance(user_input, list):
        image_paths = []
        for item in user_input:
            if 'text' in item:
                combined_text = '\n'.join(item['text'])
            try:
                if 'image_url' in item:
                    if request_data.get('model', 'mistral-nemo') not in vision_supported_models:
                        return ERROR_HANDLER(1044, request_data.get('model', 'mistral-nemo'))
                    if item['image_url']['url'].startswith("data:image/png;base64,"):
                        base64_image = item['image_url']['url'].split(",")[1]
                        binary_data = base64.b64decode(base64_image)
                    else:
                        binary_data = requests.get(item['image_url']['url'])
                        binary_data.raise_for_status()  # Raise an error for bad responses
                        binary_data = BytesIO(binary_data.content)
                    files = {
                        'asset': ("relay" + str(uuid.uuid4()), binary_data, 'image/png')
                    }
                    asset = requests.post(ONE_MIN_ASSET_URL, files=files, headers=headers)
                    asset.raise_for_status()  # Raise an error for bad responses
                    image_path = asset.json()['fileContent']['path']
                    image_paths.append(image_path)
                    image = True
            except Exception as e:
                print(f"An error occurred e:" + str(e)[:60])
                # Optionally log the error or return an appropriate response

        user_input = str(combined_text)

    prompt_token = calculate_token(str(all_messages))
    if PERMIT_MODELS_FROM_SUBSET_ONLY and request_data.get('model', 'mistral-nemo') not in AVAILABLE_MODELS:
        return ERROR_HANDLER(1002, request_data.get('model', 'mistral-nemo')) # Handle invalid model
    
    logger.debug(f"Proccessing {prompt_token} prompt tokens with model {request_data.get('model', 'mistral-nemo')}")

    if not image:
        payload = {
            "type": "CHAT_WITH_AI",
            "model": request_data.get('model', 'mistral-nemo'),
            "promptObject": {
                "prompt": all_messages,
                "isMixed": False,
                "webSearch": False
            }
        }
    else:
        payload = {
            "type": "CHAT_WITH_IMAGE",
            "model": request_data.get('model', 'mistral-nemo'),
            "promptObject": {
                "prompt": all_messages,
                "isMixed": False,
                "imageList": image_paths
            }
        }
    
    headers = {"API-KEY": d785d7c21da4971f180e19295f278e34b7928539d93ccb283d2e98c02561337a, 'Content-Type': 'application/json'}

    if not request_data.get('stream', False):
        # Non-Streaming Response
        logger.debug("Non-Streaming AI Response")
        response = requests.post(ONE_MIN_API_URL, json=payload, headers=headers)
        response.raise_for_status()
        one_min_response = response.json()
        
        transformed_response = transform_response(one_min_response, request_data, prompt_token)
        response = make_response(jsonify(transformed_response))
        set_response_headers(response)
        
        return response, 200
    
    else:
        # Streaming Response
        logger.debug("Streaming AI Response")
        response_stream = requests.post(ONE_MIN_CONVERSATION_API_STREAMING_URL, data=json.dumps(payload), headers=headers, stream=True)
        if response_stream.status_code != 200:
            if response_stream.status_code == 401:
                return ERROR_HANDLER(1020)
            logger.error(f"An unknown error occurred while processing the user's request. Error code: {response_stream.status_code}")
            return ERROR_HANDLER(response_stream.status_code)
        return Response(stream_response(response_stream, request_data, request_data.get('model', 'mistral-nemo'), int(prompt_token)), content_type='text/event-stream')
def handle_options_request():
    response = make_response()
    response.headers.add('Access-Control-Allow-Origin', '*')
    response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
    response.headers.add('Access-Control-Allow-Methods', 'POST, OPTIONS')
    return response, 204

def transform_response(one_min_response, request_data, prompt_token):
    completion_token = calculate_token(one_min_response['aiRecord']["aiRecordDetail"]["resultObject"][0])
    logger.debug(f"Finished processing Non-Streaming response. Completion tokens: {str(completion_token)}")
    logger.debug(f"Total tokens: {str(completion_token + prompt_token)}")
    return {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion",
        "created": int(time.time()),
        "model": request_data.get('model', 'mistral-nemo'),
        "choices": [
            {
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": one_min_response['aiRecord']["aiRecordDetail"]["resultObject"][0],
                },
                "finish_reason": "stop"
            }
        ],
        "usage": {
            "prompt_tokens": prompt_token,
            "completion_tokens": completion_token,
            "total_tokens": prompt_token + completion_token
        }
    }
    
def set_response_headers(response):
    response.headers['Content-Type'] = 'application/json'
    response.headers['Access -Control-Allow-Origin'] = '*'
    response.headers['X-Request-ID'] = str (uuid.uuid4())

def stream_response(response, request_data, model, prompt_tokens):
    all_chunks = ""
    for chunk in response.iter_content(chunk_size=1024):
        finish_reason = None

        return_chunk = {
            "id": f"chatcmpl-{uuid.uuid4()}",
            "object": "chat.completion.chunk",
            "created": int(time.time()),
            "model": request_data.get('model', 'mistral-nemo'),
            "choices": [
                {
                    "index": 0,
                    "delta": {
                        "content": chunk.decode('utf-8')
                    },
                    "finish_reason": finish_reason
                }
            ]
        }
        all_chunks += chunk.decode('utf-8')
        yield f"data: {json.dumps(return_chunk)}\n\n"
        
    tokens = calculate_token(all_chunks)
    logger.debug(f"Finished processing streaming response. Completion tokens: {str(tokens)}")
    logger.debug(f"Total tokens: {str(tokens + prompt_tokens)}")
        
    # Final chunk when iteration stops
    final_chunk = {
        "id": f"chatcmpl-{uuid.uuid4()}",
        "object": "chat.completion.chunk",
        "created": int(time.time()),
        "model": request_data.get('model', 'mistral-nemo'),
        "choices": [
            {
                "index": 0,
                "delta": {
                    "content": ""    
                },
                "finish_reason": "stop"
            }
        ],
        "usage": {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": tokens,
            "total_tokens": tokens + prompt_tokens
        }
    }
    yield f"data: {json.dumps(final_chunk)}\n\n"
    yield "data: [DONE]\n\n"

if __name__ == '__main__':
    internal_ip = socket.gethostbyname(socket.gethostname())
    response = requests.get('https://api.ipify.org')
    public_ip = response.text
    logger.info(f"""{printedcolors.Color.fg.lightcyan}  
Server is ready to serve at:
Internal IP: {internal_ip}:5001
Public IP: {public_ip} (only if you've setup port forwarding on your router.)
Enter this url to OpenAI clients supporting custom endpoint:
{internal_ip}:5001/v1
If does not work, try:
{internal_ip}:5001/v1/chat/completions
{printedcolors.Color.reset}""")
    serve(app, host='0.0.0.0', port=5001, threads=6) # Thread has a default of 4 if not specified. We use 6 to increase performance and allow multiple requests at once.