Spaces:
Build error
Build error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| from typing import Any, Dict, List, Tuple | |
| import torch | |
| from torch.nn import functional as F | |
| from detectron2.structures import BoxMode, Instances | |
| from densepose.converters import ToChartResultConverter | |
| from densepose.converters.base import IntTupleBox, make_int_box | |
| from densepose.structures import DensePoseDataRelative, DensePoseList | |
| class DensePoseBaseSampler: | |
| """ | |
| Base DensePose sampler to produce DensePose data from DensePose predictions. | |
| Samples for each class are drawn according to some distribution over all pixels estimated | |
| to belong to that class. | |
| """ | |
| def __init__(self, count_per_class: int = 8): | |
| """ | |
| Constructor | |
| Args: | |
| count_per_class (int): the sampler produces at most `count_per_class` | |
| samples for each category | |
| """ | |
| self.count_per_class = count_per_class | |
| def __call__(self, instances: Instances) -> DensePoseList: | |
| """ | |
| Convert DensePose predictions (an instance of `DensePoseChartPredictorOutput`) | |
| into DensePose annotations data (an instance of `DensePoseList`) | |
| """ | |
| boxes_xyxy_abs = instances.pred_boxes.tensor.clone().cpu() | |
| boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) | |
| dp_datas = [] | |
| for i in range(len(boxes_xywh_abs)): | |
| annotation_i = self._sample(instances[i], make_int_box(boxes_xywh_abs[i])) | |
| annotation_i[DensePoseDataRelative.S_KEY] = self._resample_mask( # pyre-ignore[6] | |
| instances[i].pred_densepose | |
| ) | |
| dp_datas.append(DensePoseDataRelative(annotation_i)) | |
| # create densepose annotations on CPU | |
| dp_list = DensePoseList(dp_datas, boxes_xyxy_abs, instances.image_size) | |
| return dp_list | |
| def _sample(self, instance: Instances, bbox_xywh: IntTupleBox) -> Dict[str, List[Any]]: | |
| """ | |
| Sample DensPoseDataRelative from estimation results | |
| """ | |
| labels, dp_result = self._produce_labels_and_results(instance) | |
| annotation = { | |
| DensePoseDataRelative.X_KEY: [], | |
| DensePoseDataRelative.Y_KEY: [], | |
| DensePoseDataRelative.U_KEY: [], | |
| DensePoseDataRelative.V_KEY: [], | |
| DensePoseDataRelative.I_KEY: [], | |
| } | |
| n, h, w = dp_result.shape | |
| for part_id in range(1, DensePoseDataRelative.N_PART_LABELS + 1): | |
| # indices - tuple of 3 1D tensors of size k | |
| # 0: index along the first dimension N | |
| # 1: index along H dimension | |
| # 2: index along W dimension | |
| indices = torch.nonzero(labels.expand(n, h, w) == part_id, as_tuple=True) | |
| # values - an array of size [n, k] | |
| # n: number of channels (U, V, confidences) | |
| # k: number of points labeled with part_id | |
| values = dp_result[indices].view(n, -1) | |
| k = values.shape[1] | |
| count = min(self.count_per_class, k) | |
| if count <= 0: | |
| continue | |
| index_sample = self._produce_index_sample(values, count) | |
| sampled_values = values[:, index_sample] | |
| sampled_y = indices[1][index_sample] + 0.5 | |
| sampled_x = indices[2][index_sample] + 0.5 | |
| # prepare / normalize data | |
| x = (sampled_x / w * 256.0).cpu().tolist() | |
| y = (sampled_y / h * 256.0).cpu().tolist() | |
| u = sampled_values[0].clamp(0, 1).cpu().tolist() | |
| v = sampled_values[1].clamp(0, 1).cpu().tolist() | |
| fine_segm_labels = [part_id] * count | |
| # extend annotations | |
| annotation[DensePoseDataRelative.X_KEY].extend(x) | |
| annotation[DensePoseDataRelative.Y_KEY].extend(y) | |
| annotation[DensePoseDataRelative.U_KEY].extend(u) | |
| annotation[DensePoseDataRelative.V_KEY].extend(v) | |
| annotation[DensePoseDataRelative.I_KEY].extend(fine_segm_labels) | |
| return annotation | |
| def _produce_index_sample(self, values: torch.Tensor, count: int): | |
| """ | |
| Abstract method to produce a sample of indices to select data | |
| To be implemented in descendants | |
| Args: | |
| values (torch.Tensor): an array of size [n, k] that contains | |
| estimated values (U, V, confidences); | |
| n: number of channels (U, V, confidences) | |
| k: number of points labeled with part_id | |
| count (int): number of samples to produce, should be positive and <= k | |
| Return: | |
| list(int): indices of values (along axis 1) selected as a sample | |
| """ | |
| raise NotImplementedError | |
| def _produce_labels_and_results(self, instance: Instances) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Method to get labels and DensePose results from an instance | |
| Args: | |
| instance (Instances): an instance of `DensePoseChartPredictorOutput` | |
| Return: | |
| labels (torch.Tensor): shape [H, W], DensePose segmentation labels | |
| dp_result (torch.Tensor): shape [2, H, W], stacked DensePose results u and v | |
| """ | |
| converter = ToChartResultConverter | |
| chart_result = converter.convert(instance.pred_densepose, instance.pred_boxes) | |
| labels, dp_result = chart_result.labels.cpu(), chart_result.uv.cpu() | |
| return labels, dp_result | |
| def _resample_mask(self, output: Any) -> torch.Tensor: | |
| """ | |
| Convert DensePose predictor output to segmentation annotation - tensors of size | |
| (256, 256) and type `int64`. | |
| Args: | |
| output: DensePose predictor output with the following attributes: | |
| - coarse_segm: tensor of size [N, D, H, W] with unnormalized coarse | |
| segmentation scores | |
| - fine_segm: tensor of size [N, C, H, W] with unnormalized fine | |
| segmentation scores | |
| Return: | |
| Tensor of size (S, S) and type `int64` with coarse segmentation annotations, | |
| where S = DensePoseDataRelative.MASK_SIZE | |
| """ | |
| sz = DensePoseDataRelative.MASK_SIZE | |
| S = ( | |
| F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False) | |
| .argmax(dim=1) | |
| .long() | |
| ) | |
| I = ( | |
| ( | |
| F.interpolate( | |
| output.fine_segm, | |
| (sz, sz), | |
| mode="bilinear", | |
| align_corners=False, | |
| ).argmax(dim=1) | |
| * (S > 0).long() | |
| ) | |
| .squeeze() | |
| .cpu() | |
| ) | |
| # Map fine segmentation results to coarse segmentation ground truth | |
| # TODO: extract this into separate classes | |
| # coarse segmentation: 1 = Torso, 2 = Right Hand, 3 = Left Hand, | |
| # 4 = Left Foot, 5 = Right Foot, 6 = Upper Leg Right, 7 = Upper Leg Left, | |
| # 8 = Lower Leg Right, 9 = Lower Leg Left, 10 = Upper Arm Left, | |
| # 11 = Upper Arm Right, 12 = Lower Arm Left, 13 = Lower Arm Right, | |
| # 14 = Head | |
| # fine segmentation: 1, 2 = Torso, 3 = Right Hand, 4 = Left Hand, | |
| # 5 = Left Foot, 6 = Right Foot, 7, 9 = Upper Leg Right, | |
| # 8, 10 = Upper Leg Left, 11, 13 = Lower Leg Right, | |
| # 12, 14 = Lower Leg Left, 15, 17 = Upper Arm Left, | |
| # 16, 18 = Upper Arm Right, 19, 21 = Lower Arm Left, | |
| # 20, 22 = Lower Arm Right, 23, 24 = Head | |
| FINE_TO_COARSE_SEGMENTATION = { | |
| 1: 1, | |
| 2: 1, | |
| 3: 2, | |
| 4: 3, | |
| 5: 4, | |
| 6: 5, | |
| 7: 6, | |
| 8: 7, | |
| 9: 6, | |
| 10: 7, | |
| 11: 8, | |
| 12: 9, | |
| 13: 8, | |
| 14: 9, | |
| 15: 10, | |
| 16: 11, | |
| 17: 10, | |
| 18: 11, | |
| 19: 12, | |
| 20: 13, | |
| 21: 12, | |
| 22: 13, | |
| 23: 14, | |
| 24: 14, | |
| } | |
| mask = torch.zeros((sz, sz), dtype=torch.int64, device=torch.device("cpu")) | |
| for i in range(DensePoseDataRelative.N_PART_LABELS): | |
| mask[I == i + 1] = FINE_TO_COARSE_SEGMENTATION[i + 1] | |
| return mask | |