Rerandaka's picture
API case bn
cc06c7b verified
raw
history blame
1.17 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
model_id = "Rerandaka/Child_safty_bigbird_1"
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
# Inference function
def classify(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class = torch.argmax(logits, dim=1).item()
return str(predicted_class)
# Use Blocks to define interface and API
with gr.Blocks() as demo:
gr.Markdown("## Child-Safety Text Classifier\nThis model detects unsafe or inappropriate text for children.")
with gr.Row():
input_box = gr.Textbox(label="Enter text to classify")
output_box = gr.Textbox(label="Prediction")
btn = gr.Button("Submit")
btn.click(fn=classify, inputs=input_box, outputs=output_box)
# βœ… Named API endpoint
demo.load(fn=classify, inputs=input_box, outputs=output_box, api_name="predict")
# Launch space
demo.launch()