import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # ✅ required # Load model model_id = "Rerandaka/Cild_safety_bigbird" tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False) model = AutoModelForSequenceClassification.from_pretrained(model_id) # Inference function def classify(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): logits = model(**inputs).logits predicted_class = torch.argmax(logits, dim=1).item() return str(predicted_class) # API-ready Gradio Interface demo = gr.Interface( fn=classify, inputs=gr.Textbox(label="Enter text"), outputs=gr.Textbox(label="Prediction") ) # ✅ Enable API and queue demo.queue() demo.launch(show_api=True)