Spaces:
Running
on
Zero
Running
on
Zero
| from pathlib import Path | |
| import librosa | |
| import torch | |
| import perth | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from .models.s3tokenizer import S3_SR | |
| from .models.s3gen import S3GEN_SR, S3Gen | |
| REPO_ID = "ResembleAI/chatterbox" | |
| class ChatterboxVC: | |
| ENC_COND_LEN = 6 * S3_SR | |
| DEC_COND_LEN = 10 * S3GEN_SR | |
| def __init__( | |
| self, | |
| s3gen: S3Gen, | |
| device: str, | |
| ref_dict: dict=None, | |
| ): | |
| self.sr = S3GEN_SR | |
| self.s3gen = s3gen | |
| self.device = device | |
| self.watermarker = perth.PerthImplicitWatermarker() | |
| if ref_dict is None: | |
| self.ref_dict = None | |
| else: | |
| self.ref_dict = { | |
| k: v.to(device) if torch.is_tensor(v) else v | |
| for k, v in ref_dict.items() | |
| } | |
| def from_local(cls, ckpt_dir, device) -> 'ChatterboxVC': | |
| ckpt_dir = Path(ckpt_dir) | |
| # Always load to CPU first for non-CUDA devices to handle CUDA-saved models | |
| if device in ["cpu", "mps"]: | |
| map_location = torch.device('cpu') | |
| else: | |
| map_location = None | |
| ref_dict = None | |
| if (builtin_voice := ckpt_dir / "conds.pt").exists(): | |
| states = torch.load(builtin_voice, map_location=map_location) | |
| ref_dict = states['gen'] | |
| s3gen = S3Gen() | |
| s3gen.load_state_dict( | |
| load_file(ckpt_dir / "s3gen.safetensors"), strict=False | |
| ) | |
| s3gen.to(device).eval() | |
| return cls(s3gen, device, ref_dict=ref_dict) | |
| def from_pretrained(cls, device) -> 'ChatterboxVC': | |
| # Check if MPS is available on macOS | |
| if device == "mps" and not torch.backends.mps.is_available(): | |
| if not torch.backends.mps.is_built(): | |
| print("MPS not available because the current PyTorch install was not built with MPS enabled.") | |
| else: | |
| print("MPS not available because the current MacOS version is not 12.3+ and/or you do not have an MPS-enabled device on this machine.") | |
| device = "cpu" | |
| for fpath in ["s3gen.safetensors", "conds.pt"]: | |
| local_path = hf_hub_download(repo_id=REPO_ID, filename=fpath) | |
| return cls.from_local(Path(local_path).parent, device) | |
| def set_target_voice(self, wav_fpath): | |
| ## Load reference wav | |
| s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR) | |
| s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN] | |
| self.ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device) | |
| def generate( | |
| self, | |
| audio, | |
| target_voice_path=None, | |
| ): | |
| if target_voice_path: | |
| self.set_target_voice(target_voice_path) | |
| else: | |
| assert self.ref_dict is not None, "Please `prepare_conditionals` first or specify `target_voice_path`" | |
| with torch.inference_mode(): | |
| audio_16, _ = librosa.load(audio, sr=S3_SR) | |
| audio_16 = torch.from_numpy(audio_16).float().to(self.device)[None, ] | |
| s3_tokens, _ = self.s3gen.tokenizer(audio_16) | |
| wav, _ = self.s3gen.inference( | |
| speech_tokens=s3_tokens, | |
| ref_dict=self.ref_dict, | |
| ) | |
| wav = wav.squeeze(0).detach().cpu().numpy() | |
| watermarked_wav = self.watermarker.apply_watermark(wav, sample_rate=self.sr) | |
| return torch.from_numpy(watermarked_wav).unsqueeze(0) |