Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,614 Bytes
9d593b2 9386371 9d593b2 0b3e025 9d593b2 0b3e025 9386371 0b3e025 9386371 0b3e025 9386371 0b3e025 9386371 0b3e025 9386371 0b3e025 9386371 9d593b2 9386371 9d593b2 0b3e025 3dab9c0 9d593b2 9386371 0b3e025 9386371 0b3e025 9386371 0b3e025 9386371 0b3e025 9d593b2 3dab9c0 0b3e025 9d593b2 9386371 9d593b2 9386371 bf4bbc3 9386371 58ffee2 9d593b2 9386371 9d593b2 9386371 9d593b2 58ffee2 9d593b2 9386371 9d593b2 9386371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import random
import numpy as np
import torch
from chatterbox.src.chatterbox.tts import ChatterboxTTS
import gradio as gr
import spaces
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"🚀 Running on device: {DEVICE}")
# --- Global Model Initialization ---
MODEL = None
def get_or_load_model():
"""Loads the ChatterboxTTS model if it hasn't been loaded already,
and ensures it's on the correct device."""
global MODEL
if MODEL is None:
print("Model not loaded, initializing...")
try:
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
if hasattr(MODEL, 'to') and str(MODEL.device) != DEVICE:
MODEL.to(DEVICE)
print(f"Model loaded successfully. Internal device: {getattr(MODEL, 'device', 'N/A')}")
except Exception as e:
print(f"Error loading model: {e}")
raise
return MODEL
# Attempt to load the model at startup.
try:
get_or_load_model()
except Exception as e:
print(f"CRITICAL: Failed to load model on startup. Application may not function. Error: {e}")
def set_seed(seed: int):
"""Sets the random seed for reproducibility across torch, numpy, and random."""
torch.manual_seed(seed)
if DEVICE == "cuda":
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
@spaces.GPU
def generate_tts_audio(
text_input: str,
audio_prompt_path_input: str,
exaggeration_input: float,
temperature_input: float,
seed_num_input: int,
cfgw_input: float
) -> tuple[int, np.ndarray]:
"""
Generates TTS audio using the ChatterboxTTS model.
Args:
text_input: The text to synthesize (max 300 characters).
audio_prompt_path_input: Path to the reference audio file.
exaggeration_input: Exaggeration parameter for the model.
temperature_input: Temperature parameter for the model.
seed_num_input: Random seed (0 for random).
cfgw_input: CFG/Pace weight.
Returns:
A tuple containing the sample rate (int) and the audio waveform (numpy.ndarray).
"""
current_model = get_or_load_model()
if current_model is None:
raise RuntimeError("TTS model is not loaded.")
if seed_num_input != 0:
set_seed(int(seed_num_input))
print(f"Generating audio for text: '{text_input[:50]}...'")
wav = current_model.generate(
text_input[:300], # Truncate text to max chars
audio_prompt_path=audio_prompt_path_input,
exaggeration=exaggeration_input,
temperature=temperature_input,
cfg_weight=cfgw_input,
)
print("Audio generation complete.")
return (current_model.sr, wav.squeeze(0).numpy())
with gr.Blocks() as demo:
gr.Markdown(
"""
# Chatterbox TTS Demo
Generate high-quality speech from text with reference audio styling.
"""
)
with gr.Row():
with gr.Column():
text = gr.Textbox(
value="Now let's make my mum's favourite. So three mars bars into the pan. Then we add the tuna and just stir for a bit, just let the chocolate and fish infuse. A sprinkle of olive oil and some tomato ketchup. Now smell that. Oh boy this is going to be incredible.",
label="Text to synthesize (max chars 300)",
max_lines=5
)
ref_wav = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Reference Audio File (Optional)",
value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_shadowheart4.flac"
)
exaggeration = gr.Slider(
0.25, 2, step=.05, label="Exaggeration (Neutral = 0.5, extreme values can be unstable)", value=.5
)
cfg_weight = gr.Slider(
0.2, 1, step=.05, label="CFG/Pace", value=0.5
)
with gr.Accordion("More options", open=False):
seed_num = gr.Number(value=0, label="Random seed (0 for random)")
temp = gr.Slider(0.05, 5, step=.05, label="Temperature", value=.8)
run_btn = gr.Button("Generate", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="Output Audio")
run_btn.click(
fn=generate_tts_audio,
inputs=[
text,
ref_wav,
exaggeration,
temp,
seed_num,
cfg_weight,
],
outputs=[audio_output],
)
demo.launch() |