Spaces:
Sleeping
Sleeping
First commit
Browse files- .gitignore +90 -0
- Dockerfile +41 -0
- SatelliteClassification.py +292 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
env/
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
*.egg-info/
|
24 |
+
.installed.cfg
|
25 |
+
*.egg
|
26 |
+
|
27 |
+
# Installer logs
|
28 |
+
pip-log.txt
|
29 |
+
pip-delete-this-directory.txt
|
30 |
+
|
31 |
+
# Unit test / coverage reports
|
32 |
+
htmlcov/
|
33 |
+
.tox/
|
34 |
+
.nox/
|
35 |
+
.coverage
|
36 |
+
.coverage.*
|
37 |
+
.cache
|
38 |
+
nosetests.xml
|
39 |
+
coverage.xml
|
40 |
+
*.cover
|
41 |
+
.hypothesis/
|
42 |
+
.pytest_cache/
|
43 |
+
|
44 |
+
# Jupyter Notebook
|
45 |
+
.ipynb_checkpoints
|
46 |
+
|
47 |
+
# Pyre type checker
|
48 |
+
.pyre/
|
49 |
+
|
50 |
+
# VS Code
|
51 |
+
.vscode/
|
52 |
+
|
53 |
+
# System files
|
54 |
+
.DS_Store
|
55 |
+
Thumbs.db
|
56 |
+
|
57 |
+
# Hugging Face cache
|
58 |
+
hf_cache/
|
59 |
+
|
60 |
+
# Docker
|
61 |
+
*.log
|
62 |
+
|
63 |
+
# Gradio temp
|
64 |
+
*.gradio
|
65 |
+
|
66 |
+
# Model checkpoints
|
67 |
+
*.pth
|
68 |
+
*.pt
|
69 |
+
|
70 |
+
# Environment files
|
71 |
+
.env
|
72 |
+
.env.*
|
73 |
+
|
74 |
+
# Ignore data
|
75 |
+
*.arrow
|
76 |
+
*.lock
|
77 |
+
|
78 |
+
# Ignore images and plots
|
79 |
+
*.png
|
80 |
+
*.jpg
|
81 |
+
*.jpeg
|
82 |
+
*.bmp
|
83 |
+
*.gif
|
84 |
+
|
85 |
+
# Ignore other temp files
|
86 |
+
*.tmp
|
87 |
+
*.temp
|
88 |
+
|
89 |
+
# Ignore README artifacts
|
90 |
+
*.md~
|
Dockerfile
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python image with a version compatible with torch and gradio
|
2 |
+
FROM python:3.11-slim
|
3 |
+
|
4 |
+
# Set environment variables
|
5 |
+
ENV PYTHONDONTWRITEBYTECODE=1 \
|
6 |
+
PYTHONUNBUFFERED=1 \
|
7 |
+
HF_HOME=/app/hf_cache
|
8 |
+
|
9 |
+
# Set work directory
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
# Install system dependencies
|
13 |
+
RUN apt-get update && \
|
14 |
+
apt-get install -y --no-install-recommends \
|
15 |
+
build-essential \
|
16 |
+
git \
|
17 |
+
libglib2.0-0 \
|
18 |
+
libsm6 \
|
19 |
+
libxext6 \
|
20 |
+
libxrender-dev \
|
21 |
+
ffmpeg \
|
22 |
+
&& rm -rf /var/lib/apt/lists/*
|
23 |
+
|
24 |
+
# Copy requirements
|
25 |
+
COPY requirements.txt ./
|
26 |
+
|
27 |
+
# Install Python dependencies
|
28 |
+
RUN pip install --upgrade pip && \
|
29 |
+
pip install --no-cache-dir -r requirements.txt
|
30 |
+
|
31 |
+
# Copy the rest of the code
|
32 |
+
COPY . .
|
33 |
+
|
34 |
+
# Expose port for Gradio
|
35 |
+
EXPOSE 7860
|
36 |
+
|
37 |
+
# Set Gradio to listen on all interfaces (required for Spaces)
|
38 |
+
ENV GRADIO_SERVER_NAME=0.0.0.0
|
39 |
+
|
40 |
+
# Run the app
|
41 |
+
CMD ["python", "SatelliteClassification.py"]
|
SatelliteClassification.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision.models import resnet18
|
5 |
+
from datasets import load_dataset
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
from PIL import Image
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import io
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
import base64
|
14 |
+
|
15 |
+
# Model architecture definition
|
16 |
+
class ResNet18_Dropout(nn.Module):
|
17 |
+
def __init__(self, in_channels, num_classes, dropout_rate=0.3):
|
18 |
+
super().__init__()
|
19 |
+
self.model = resnet18(weights=None)
|
20 |
+
self.model.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
21 |
+
in_features = self.model.fc.in_features
|
22 |
+
self.model.fc = nn.Sequential(
|
23 |
+
nn.Dropout(dropout_rate),
|
24 |
+
nn.Linear(in_features, num_classes)
|
25 |
+
)
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return self.model(x)
|
29 |
+
|
30 |
+
def transform_multispectral_map(example):
|
31 |
+
image = np.array(example["image"], dtype=np.float32)
|
32 |
+
|
33 |
+
if image.ndim != 3 or image.shape[2] != 13:
|
34 |
+
raise ValueError(f"Expected shape (H, W, 13), got {image.shape}")
|
35 |
+
|
36 |
+
# Normalize
|
37 |
+
image = image / 2750.0
|
38 |
+
image = np.clip(image, 0, 1)
|
39 |
+
|
40 |
+
# === DATA AUGMENTATION ===
|
41 |
+
# Horizontal flip
|
42 |
+
if random.random() < 0.5:
|
43 |
+
image = np.flip(image, axis=1).copy()
|
44 |
+
|
45 |
+
# Vertical flip
|
46 |
+
if random.random() < 0.5:
|
47 |
+
image = np.flip(image, axis=0).copy()
|
48 |
+
|
49 |
+
# Rotation (by 90, 180, 270)
|
50 |
+
if random.random() < 0.5:
|
51 |
+
k = random.choice([1, 2, 3])
|
52 |
+
image = np.rot90(image, k=k, axes=(0, 1)).copy()
|
53 |
+
|
54 |
+
# === SHAPE FORMAT ===
|
55 |
+
image = image.transpose(2, 0, 1) # (C=13, H, W)
|
56 |
+
|
57 |
+
return {
|
58 |
+
"image": torch.tensor(image, dtype=torch.float32),
|
59 |
+
"label": torch.tensor(example["label"], dtype=torch.long)
|
60 |
+
}
|
61 |
+
|
62 |
+
# RGB conversion functions
|
63 |
+
def load_rgb_from_multispectral_sample(numpy_array):
|
64 |
+
"""
|
65 |
+
Takes a NumPy array with 13 multispectral bands and returns a scaled RGB NumPy array.
|
66 |
+
Equivalent to loading bands 4-3-2 and scaling as GDAL would.
|
67 |
+
"""
|
68 |
+
# GDAL-style scaling: scale 0–2750 -> 1–255
|
69 |
+
def scale_band(band):
|
70 |
+
band = np.clip((band / 2750) * 255, 0, 255)
|
71 |
+
return band.astype(np.uint8)
|
72 |
+
|
73 |
+
# Bands 4 (red), 3 (green), 2 (blue) => index 3, 2, 1 in 0-based
|
74 |
+
bands = [3, 2, 1]
|
75 |
+
|
76 |
+
# Ensure the input is a NumPy array
|
77 |
+
if not isinstance(numpy_array, np.ndarray):
|
78 |
+
raise TypeError("Input must be a NumPy array")
|
79 |
+
|
80 |
+
# Check if the array has the expected number of channels (13)
|
81 |
+
if numpy_array.shape[-1] != 13:
|
82 |
+
raise ValueError(f"Input array must have 13 channels, but got {numpy_array.shape[-1]}")
|
83 |
+
|
84 |
+
# Extract and scale the RGB bands from the NumPy array
|
85 |
+
rgb = np.stack([scale_band(numpy_array[:, :, b]) for b in bands], axis=-1)
|
86 |
+
return rgb
|
87 |
+
|
88 |
+
def load_rgb_from_transformed_tensor(tensor_image):
|
89 |
+
"""
|
90 |
+
Takes a torch.Tensor with 13 multispectral bands (C, H, W) and returns a scaled RGB NumPy array.
|
91 |
+
"""
|
92 |
+
if not isinstance(tensor_image, torch.Tensor):
|
93 |
+
raise TypeError("Input must be a torch.Tensor")
|
94 |
+
if tensor_image.shape[0] != 13:
|
95 |
+
raise ValueError(f"Expected 13 channels, got {tensor_image.shape[0]}")
|
96 |
+
|
97 |
+
# Convert to NumPy (C, H, W) → (H, W, C)
|
98 |
+
np_image = tensor_image.numpy()
|
99 |
+
np_image = np.transpose(np_image, (1, 2, 0)) # (H, W, 13)
|
100 |
+
|
101 |
+
# Bands 4-3-2 → index 3, 2, 1
|
102 |
+
bands = [3, 2, 1]
|
103 |
+
|
104 |
+
def scale_band(band):
|
105 |
+
band = np.clip((band * 255), 0, 255)
|
106 |
+
return band.astype(np.uint8)
|
107 |
+
|
108 |
+
rgb = np.stack([scale_band(np_image[:, :, b]) for b in bands], axis=-1) # (H, W, 3)
|
109 |
+
return rgb
|
110 |
+
|
111 |
+
# Global variables for model and dataset
|
112 |
+
model = None
|
113 |
+
dataset = None
|
114 |
+
label_names = None
|
115 |
+
label2id = None
|
116 |
+
id2label = None
|
117 |
+
|
118 |
+
def load_model_and_data():
|
119 |
+
"""Load the model and dataset"""
|
120 |
+
global model, dataset, label_names, label2id, id2label
|
121 |
+
|
122 |
+
try:
|
123 |
+
# Load dataset
|
124 |
+
print("Loading dataset...")
|
125 |
+
dataset = load_dataset("blanchon/EuroSAT_MSI", cache_dir="./hf_cache", streaming=False)
|
126 |
+
dataset["test"] = dataset["test"].map(transform_multispectral_map)
|
127 |
+
dataset["test"].set_format(type="torch", columns=["image", "label"])
|
128 |
+
|
129 |
+
# Setup labels
|
130 |
+
label_names = dataset["train"].features['label'].names
|
131 |
+
label2id = {name: i for i, name in enumerate(label_names)}
|
132 |
+
id2label = {v: k for k, v in label2id.items()}
|
133 |
+
num_classes = len(label_names)
|
134 |
+
|
135 |
+
# Load model
|
136 |
+
print("Loading model...")
|
137 |
+
model_path = hf_hub_download(repo_id="Rhodham96/Resnet18DropoutSentinel", filename="pytorch_model.bin")
|
138 |
+
model = ResNet18_Dropout(in_channels=13, num_classes=num_classes)
|
139 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
140 |
+
model.eval()
|
141 |
+
|
142 |
+
print(f"Model and dataset loaded successfully!")
|
143 |
+
print(f"Classes: {label_names}")
|
144 |
+
return True
|
145 |
+
|
146 |
+
except Exception as e:
|
147 |
+
print(f"Error loading model or dataset: {str(e)}")
|
148 |
+
return False
|
149 |
+
|
150 |
+
def predict_images():
|
151 |
+
"""Process 16 random images and return results"""
|
152 |
+
global model, dataset, id2label
|
153 |
+
|
154 |
+
if model is None or dataset is None:
|
155 |
+
return "Model or dataset not loaded. Please wait for initialization."
|
156 |
+
|
157 |
+
test_dataloader = DataLoader(dataset["test"], batch_size=32, shuffle=True)
|
158 |
+
|
159 |
+
try:
|
160 |
+
# Get 16 random samples from validation set
|
161 |
+
|
162 |
+
num_batches = 5
|
163 |
+
collected_images = []
|
164 |
+
collected_labels = []
|
165 |
+
collected_preds = []
|
166 |
+
#criterion = nn.CrossEntropyLoss()
|
167 |
+
model.eval()
|
168 |
+
with torch.no_grad():
|
169 |
+
for i, batch in enumerate(test_dataloader):
|
170 |
+
if i >= num_batches:
|
171 |
+
break
|
172 |
+
images = batch['image']
|
173 |
+
labels = batch['label']
|
174 |
+
|
175 |
+
outputs = model(images)
|
176 |
+
_, preds = outputs.max(1)
|
177 |
+
|
178 |
+
collected_images.append(images.cpu())
|
179 |
+
collected_labels.append(labels.cpu())
|
180 |
+
collected_preds.append(preds.cpu())
|
181 |
+
|
182 |
+
# Concatenate all samples
|
183 |
+
images = torch.cat(collected_images)
|
184 |
+
labels = torch.cat(collected_labels)
|
185 |
+
preds = torch.cat(collected_preds)
|
186 |
+
|
187 |
+
# Randomly select 10 indices
|
188 |
+
indices = random.sample(range(len(images)), 10)
|
189 |
+
|
190 |
+
# Prepare for plotting
|
191 |
+
selected_images = images[indices]
|
192 |
+
selected_labels = labels[indices]
|
193 |
+
selected_preds = preds[indices]
|
194 |
+
image_to_see_layers = selected_images[0]
|
195 |
+
label_to_see_layers = selected_labels[0]
|
196 |
+
# Plot
|
197 |
+
fig, axes = plt.subplots(2, 5, figsize=(15, 6))
|
198 |
+
axes = axes.flatten()
|
199 |
+
|
200 |
+
for i in range(10):
|
201 |
+
img = load_rgb_from_transformed_tensor(selected_images[i])
|
202 |
+
|
203 |
+
axes[i].imshow(img)
|
204 |
+
axes[i].axis("off")
|
205 |
+
true_label = id2label[selected_labels[i].item()]
|
206 |
+
pred_label = id2label[selected_preds[i].item()]
|
207 |
+
color = "green" if pred_label == true_label else "red"
|
208 |
+
axes[i].set_title(f"T: {true_label}\nP: {pred_label}", color=color)
|
209 |
+
|
210 |
+
plt.tight_layout()
|
211 |
+
|
212 |
+
# Convert plot to image
|
213 |
+
buf = io.BytesIO()
|
214 |
+
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
215 |
+
buf.seek(0)
|
216 |
+
plt.close()
|
217 |
+
|
218 |
+
# Convert to PIL Image
|
219 |
+
result_image = Image.open(buf)
|
220 |
+
|
221 |
+
# Calculate accuracy
|
222 |
+
correct_predictions = (selected_preds == selected_labels).sum().item()
|
223 |
+
accuracy = correct_predictions / len(selected_labels) * 100
|
224 |
+
summary = f"Accuracy: {correct_predictions}/{len(selected_labels)} ({accuracy:.1f}%)\n"
|
225 |
+
summary += f"Classes: {', '.join(label_names)}"
|
226 |
+
|
227 |
+
return result_image, summary
|
228 |
+
|
229 |
+
except Exception as e:
|
230 |
+
error_msg = f"Error during prediction: {str(e)}"
|
231 |
+
print(error_msg)
|
232 |
+
# Return a placeholder image and error message
|
233 |
+
placeholder = Image.new('RGB', (800, 600), color='lightgray')
|
234 |
+
return placeholder, error_msg
|
235 |
+
|
236 |
+
def create_interface():
|
237 |
+
"""Create the Gradio interface"""
|
238 |
+
|
239 |
+
# Initialize model and data
|
240 |
+
init_success = load_model_and_data()
|
241 |
+
|
242 |
+
if not init_success:
|
243 |
+
def error_function():
|
244 |
+
placeholder = Image.new('RGB', (800, 600), color='red')
|
245 |
+
return placeholder, "Failed to load model or dataset. Please check the logs."
|
246 |
+
|
247 |
+
interface = gr.Interface(
|
248 |
+
fn=error_function,
|
249 |
+
inputs=[],
|
250 |
+
outputs=[
|
251 |
+
gr.Image(type="pil", label="Results"),
|
252 |
+
gr.Textbox(label="Summary")
|
253 |
+
],
|
254 |
+
title="🛰️ Satellite Image Classification - ERROR",
|
255 |
+
description="Failed to initialize the application."
|
256 |
+
)
|
257 |
+
return interface
|
258 |
+
|
259 |
+
# Create the main interface
|
260 |
+
interface = gr.Interface(
|
261 |
+
fn=predict_images,
|
262 |
+
inputs=[],
|
263 |
+
outputs=[
|
264 |
+
gr.Image(type="pil", label="Classification Results (16 Random Images)"),
|
265 |
+
gr.Textbox(label="Summary", lines=3)
|
266 |
+
],
|
267 |
+
title="🛰️ Satellite Image Classification with ResNet18",
|
268 |
+
description="""
|
269 |
+
This app classifies satellite images from the EuroSAT dataset using a trained ResNet18 model.
|
270 |
+
|
271 |
+
**How it works:**
|
272 |
+
- Loads 16 random satellite images from the validation set
|
273 |
+
- Each image has 13 spectral bands, converted to RGB for display
|
274 |
+
- Shows true labels vs predicted labels
|
275 |
+
- Green titles = correct predictions, Red titles = incorrect predictions
|
276 |
+
|
277 |
+
**Dataset:** EuroSAT with 13 multispectral bands
|
278 |
+
**Model:** ResNet18 with dropout, trained on 13-channel input
|
279 |
+
|
280 |
+
Click "Submit" to process 16 new random images!
|
281 |
+
""",
|
282 |
+
examples=[],
|
283 |
+
cache_examples=False,
|
284 |
+
allow_flagging="never"
|
285 |
+
)
|
286 |
+
|
287 |
+
return interface
|
288 |
+
|
289 |
+
# Launch the app
|
290 |
+
if __name__ == "__main__":
|
291 |
+
demo = create_interface()
|
292 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
torch>=2.0.0
|
3 |
+
torchvision>=0.15.0
|
4 |
+
datasets>=2.0.0
|
5 |
+
huggingface_hub>=0.14.0
|
6 |
+
numpy
|
7 |
+
pillow
|
8 |
+
matplotlib
|